
Faculty of Science

Noble Gases and Water Under
Confinement in Graphenic

Nanostructures: From Material
Behavior to Interfacial

Thermodynamics

Thesis submitted in fulfilment of the requirements for the degree of
doctor in philosophy in physics

at the University of Antwerp

Fahim Faraji

Antwerpen, 2024

Supervisors
prof. dr. Erik C. Neyts

prof. dr. Mehdi Neek-Amal
prof. dr. Milorad V. Milošević



Jury
Chairman
prof. dr. Dirk Lamoen, University of Antwerp, Belgium

Supervisors
prof. dr. Erik C. Neyts, University of Antwerp, Belgium
prof. dr. Mehdi Neek-Amal, University of Antwerp, Belgium
prof. dr. Milorad V. Milošević, University of Antwerp, Belgium

Members
prof. dr. Annemie Bogaerts, University of Antwerp, Belgium
prof. dr. Lino da Costa Pereira, Katholieke Universiteit Leuven, Belgium
prof. dr. Paola Carbone, University of Manchester, United Kingdom

Contact
Fahim Faraji
University of Antwerp
Faculty of Science
PLASMANT
Condensed Matter Theory (CMT)
Groenenborgerlaan 171, 2020 Antwerpen, België
M: fahim.faraji@uantwerpen.be

© 2024 Fahim Faraji
All rights reserved.

ISBN 987-90-57285-34-7
Wettelĳk depot D/2022/12.293/03

9 879057 285347



Dutch title:

Edelgassen en Water Onder
Opsluiting in Grafeenachtige

Nanostructuren: Van
Materiaalgedrag tot Interfaciale

Thermodynamica





To Mom,
For Everything



2



Acknowledgements

I would like to express my deepest gratitude to my advisors, Prof. François M. Peeters,
Prof. Erik C. Neyts, Prof. Mehdi Neek-Amal, and Prof. Milorad V. Milošević, whose un-
wavering guidance, invaluable insights, and continuous support have been instrumental
throughout the entirety of my doctoral journey. Their expertise and encouragement have
been pivotal in shaping the course of my research and academic growth.

Additionally, I extend my sincere appreciation to the experimentalists at KU Leuven,
specifically the group of Prof. Lino da Costa Pereira, and at the University of Manchester,
led by Prof. Irina Grigorieva, for their collaboration and contributions to my work, which
enriched the depth and breadth of my research endeavors.

A heartfelt thank you extends to all my teachers and professors from the first stage of
elementary school, whose dedication to education ignited my passion for learning and
set the foundation for my academic pursuits.

To my family, both blood-related and my newfound Belgian family, consisting of Elke,
Pjotr, Yoppe, Lotje, Tony, and Nora, your care and fondness have been a constant source
of strength, and I am profoundly grateful for the warmth and kinship you have extended
to me during my time in Belgium.

I extend my sincere appreciation to everyone in the CMT and PLASMANT groups at
the University of Antwerp. The collaborative and stimulating research environment pro-
vided by these groups has been pivotal in shaping my research endeavors. Additionally,
I would like to thank the CalcUA team for their support and access to the HPC core
facility, which greatly enhanced the computational aspects of my research.

Special thanks go to all my friends made during my PhD, whose camaraderie and shared
experiences have made this academic journey not only intellectually enriching but also a
period of personal growth and lifelong connections.

This acknowledgment is a tribute to the collective efforts and support of all those who
have been part of my academic and personal journey. Your contributions, whether big
or small, have left an indelible mark, and for that, I am truly grateful.

During the writing of this thesis, artificial intelligence (AI) was utilized to assist with
language-related issues, for which I am grateful.

Fahim Faraji
Antwerp, October 2024

i



ii



Abstract

This thesis initiates an inquiry into the intricate interplay between confinement and
material behaviors, addressing cutting-edge topics in nanomechanics and interfacial
physics. Each section explores how confinement significantly alters material properties
compared to their bulk counterparts, extending the investigation into the nuanced realm
of thermodynamic properties at interfaces.

We first demonstrate the breakdown of a previously acknowledged universal aspect ra-
tio (height versus diameter) in nanometer-sized bubbles within graphene, laying the
groundwork for a detailed examination of adhesion energies. Further, the indentation of
graphene nanobubbles reveals failure points reminiscent of viral shells through analysis
using the Föppl–von Kármán (FvK) dimensionless number. Additionally, phase transi-
tions of encapsulated noble gases are explored, exhibiting intriguing behaviors under
varying temperatures.

The formation of anomalous shapes in flat nanobubbles encapsulated by hexagonal
boron nitride is also investigated, highlighting the influence of heating rates and hy-
drogen bonding. The cation-controlled permeation of charged polymers through nano-
capillaries is examined, revealing distinct effects of monovalent cations on polymer trans-
mission speed. The ability to manipulate permeation is elucidated based on the differing
surface versus bulk preferences of various alkali cations in the presence of an external
electric field, offering valuable insights into the interplay between ionic dynamics and
nano-confinement effects.

The exploration continues with an assessment of the accuracy of the Kelvin equation in
nanoscale capillaries, proposing a revision based on disjoining pressure. Finally, critical
commentary on the Shuttleworth equation corrects misconceptions and contributes to a
comprehensive understanding of interfacial thermodynamics.
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Abstract – Nederlandse versie

Deze thesis is een onderzoek naar de complexe interactie tussen beperking en mate-
riaalgedrag en behandelt cutting-edge onderwerpen in nanomechanica en interfaciale
fysica. Elke sectie verkent hoe beperking de materiaaleigenschappen aanzienlĳk veran-
dert in vergelĳking met hun massa-tegenhangers, en breidt het onderzoek uit naar het
genuanceerde domein van thermodynamische eigenschappen aan interfaces.

We demonstreren eerst het falen van een eerder erkende universele aspectverhouding
(hoogte versus diameter) in nanometer-grote bubbels binnen grafenen, wat de basis legt
voor een gedetailleerde analyse van hechtenergieën. Verder onthult de indrukking van
grafeennanobubbels falingspunten die doen denken aan virale schillen door middel van
analyse met het dimensionale Föppl–von Kármán (FvK) getal. Daarnaast onderzoeken
we faseovergangen van ingekapselde edelgassen, die intrigerend gedrag vertonen onder
variërende temperaturen.

De vorming van anomale vormen in platte nanobubbels ingekapseld door hexagonaal
boornitride wordt eveneens onderzocht, waarbĳ de invloed van verwarmingssnelhe-
den en waterstofbruggen wordt benadrukt. De kation-gecontroleerde permeatie van
geladen polymeren door nano-capillairen wordt bestudeerd, waarbĳ specifieke effecten
van monovalente kationen op de transmissiesnelheid van polymeren worden onthuld.
De mogelĳkheid om permeatie te manipuleren wordt verhelderd op basis van de ver-
schillende oppervlakte- versus bulkvoorkeuren van verschillende alkali-kationen in de
aanwezigheid van een extern elektrisch veld, wat waardevolle inzichten biedt in de in-
teractie tussen ionendynamica en nano-beperkingseffecten.

Het onderzoek gaat verder met een beoordeling van de nauwkeurigheid van de Kelvin-
vergelĳking in nanoschaal-capillairen, waarbĳ een revisie wordt voorgesteld op basis
van disjunctiedruk. Ten slotte biedt een kritische commentaar op de Shuttleworth-
vergelĳking correcties voor misvattingen en draagt bĳ aan een alomvattend begrip van
interfaciale thermodynamica.
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Introduction

In the landscape of contemporary scientific inquiry, nanoscience stands as a transforma-
tive force, reshaping the boundaries of what is conceivable and propelling innovation
across disciplines. At the heart of this revolution is nanomechanics, a field focused on
unraveling the mechanical intricacies of materials at the nanoscale. The significance of
nanoscience and nanomechanics resonates across diverse realms of application, from
materials engineering to biomedical sciences. The ability to manipulate and understand
materials at the atomic and molecular levels opens avenues for groundbreaking technolo-
gies, fostering the development of advanced materials with tailored properties and the
creation of nanoscale devices with unprecedented functionalities [1–11]. As researchers
navigate this intricate terrain, the quest for understanding the mechanical behaviors of
materials at the nanoscale not only deepens our fundamental knowledge but also holds
the promise of revolutionary advancements in materials design, healthcare, and elec-
tronics, making nanoscience a driving force in the forefront of contemporary research
and technological progress [12–18].

In the intricate landscape of nanoscience, confinement stands out as a pivotal factor
shaping the properties and behaviors of materials at the nanoscale. This phenomenon
introduces a paradigm shift, where spatial restrictions give rise to novel phenomena
and behaviors distinct from the bulk characteristics of materials. Whether manifested in
nanoscale structures or in the nuanced responses of materials to confinement, this spatial
limit becomes a critical lens unveiling the intricacies of material behaviors in restricted
spaces [19]. This emphasis on confinement is not purely theoretical; it resonates with the
practical challenges and opportunities in nanotechnological applications. From minia-
turized electronic components to advancements in targeted drug delivery systems, the
impact of confinement governs the performance and functionality of nanoscale systems
[20–24].

The importance of interface phenomena becomes particularly pronounced when grap-
pling with systems characterized by a substantial surface-to-volume ratio, as is the case
in nanoscale confinements [25]. In such confined spaces, the interfacial region becomes
a dominant player, governing material behaviors and dictating the performance of nano-
materials. The heightened significance of interfaces in confined systems is underscored
by their potential to dictate mechanical, thermodynamic, and chemical interactions [26–
33]. Therefore, understanding and manipulating these interface-driven phenomena be-
come imperative for tailoring materials to meet specific requirements in nanotechnology
applications.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: If one considers 2D crystals to be analogous to Lego blocks (right panel), the
construction of a huge variety of layered structures becomes possible. Conceptually, this
atomic-scale Lego resembles molecular beam epitaxy but employs different ‘construction’
rules and a distinct set of materials. This image and caption are sourced from ref. 23.

A noteworthy development in the exploration of nanoscale confinement lies in the emer-
gence of two-dimensional (2D) van der Waals (vdW) heterostructures, with graphene
prominently standing at the forefront [23]. These heterostructures, composed of atomi-
cally thin layers stacked atop one another (Fig. 1.1), offer a unique platform for creating
well-defined boundaries in confined systems [34]. Graphene, owing to its exceptional
mechanical strength and electrical conductivity, serves as an exemplary building block
for constructing these boundaries [35–40]. The precise layering of diverse 2D materials
introduces tailored properties and functionalities, further accentuating the confinement
effects within the created nanoenvironments. As these heterostructures become the focal
point of investigation, their potential as boundaries in confinements opens avenues for
manipulating material behaviors at the nanoscale.

Despite the precision achieved in the synthesis of 2D sheets stacked at interfaces, the
presence of impurities has proven to be an inherent challenge in this advanced process.
The synthesis of these atomic layers is susceptible to the infiltration of foreign particles,
gases, or defects, which inevitably become trapped between the 2D sheets during their
assembly [34]. The entrapment of impurities within the layers poses a critical considera-
tion, as it can influence the electronic, mechanical, and thermal properties of the resulting
van der Waals (vdW) heterostructures.

Once considered a signature of robust adhesion and assembly [41], the phenomenon of
trapped impurities manifesting as bubbles within 2D materials has undergone a trans-
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Figure 1.2: Atomic force microscope (AFM) images of graphene bubbles of different
shapes. Scale bars, 500 nm (a); 100 nm (b); 500 nm (c). The vertical scale on the right
indicates the height of the bubbles. This image and caption are sourced from ref. 52.

formative shift in perception. Fig. 1.2 displays atomic force microscope (AFM) images
of example bubbles formed by 2D sheets. Far from being merely artifacts, these bub-
bles have evolved into powerful tools with diverse applications. They serve as unique
probes for studying the elastic properties of the involved 2D crystals [37]. Additionally,
the evaluation of conditions that nanoscale confinement exerts on the enclosed materi-
als has become a focal point of research, leveraging these impurity-induced bubbles as
observable markers. Examples range from the encapsulation of water inside graphene
nanocapillaries [42–44] to the confinement of nanocrystals or biological molecules within
graphene liquid cells [45–48]. Further, the study extends to room-temperature ice con-
fined in a 2D nanochannel [49, 50] and the use of a hydrothermal anvil made of graphene
on diamond [51], showcasing the versatility of impurity-induced bubbles as valuable
tools in probing and manipulating materials at the nanoscale.

The meticulous study of the morphology of impurity-induced bubbles within 2D mate-
rials stands as a crucial endeavor, shedding light on fundamental aspects of nanoscale
confinement [52, 53]. Through a combination of analytical membrane theory [54, 55]
and experimental investigations, researchers have discerned that the shape of these bub-
bles adheres to a universal aspect ratio between height and radius (Fig. 1.3) [52]. This
revelation carries profound implications, as it not only enhances our understanding
of the underlying mechanics governing bubble formation but also provides a valuable
benchmark for interpreting and predicting bubble morphologies in diverse 2D material
systems.

Despite the established understanding of a universal aspect ratio governing the mor-
phology of impurity-induced bubbles, a groundbreaking revelation emerges through
the synergy of scanning tunneling microscopy (STM) and molecular dynamics simula-
tion. This collaborative exploration, conducted in partnership with the group of Prof.
Lino da Costa Pereira at KU Leuven, has unveiled a notable breakdown in the universal
aspect ratio, particularly in the shaping of very small bubbles with radii less than 1 nm.
The intricacies of this deviation have been systematically investigated in chapter 3 of this



4 CHAPTER 1. INTRODUCTION

Figure 1.3: (a) Measured aspect ratios as a function of the base radius for graphene (blue
symbols) and monolayer hexaghonal boron-nitride (hBN) (red symbols). Dashed line
shows the mean value. Top left inset: sketch of a nearly round bubble and its effective
radius 𝑅 determined as 𝑅 =

√
𝐴/𝜋, where 𝐴 is the measured area of the base of the

bubble. Right inset: aspect ratio of the bubbles as a function of their volume. (b) Aspect
ratio of MoS2 bubbles on hBN and MoS2 substrates. Dashed lines show the mean values
of ℎ𝑚𝑎𝑥/𝑅 = 0.14 and 0.17, respectively. The logarithmic scale is used to accommodate
the large range of R. Inset: AFM image of a typical MoS2 bubble. This image and caption
are sourced from ref. 52.

thesis. The breakdown in the universal aspect ratio is attributed to the out-of-plane set-
tlements of trapped elements within these diminutive bubbles, coupled with the atomic
compressibility of the confined materials [56].

Nanoindentation, a powerful technique in the realm of nanoscience, serves as a sophis-
ticated tool for probing and characterizing the mechanical properties of materials at
the nanoscale [37, 57]. This method involves the controlled application of a precisely
defined force onto a nanometer-sized indenter, often a sharp tip or pyramid, creating
localized deformations on the material surface. In the context of nanobubbles within
two-dimensional (2D) sheets, by measuring the resulting load-displacement curve, valu-
able information about hardness, elastic modulus, and the hydrostatic pressures of the
confined matter can be extracted with exceptional precision.

While nanoindentation offers invaluable insights into the mechanical properties of nanobub-
bles and 2D sheets, the prospect of membrane failure, or rupture, looms as a critical
consideration, drawing parallels with observations from indenting viral shells. High
indentation forces, while informative in probing the robustness of materials, can lead to
structural failures in membranes. This concern is particularly relevant in the context of
nanobubbles within 2D sheets, where the delicate balance between probing mechanical
properties and avoiding rupture becomes paramount.

In the investigation of membrane response to nanoindentation, the applicability of the
elasticity theory of thin shells, proves to be a cornerstone. The advantages of this theory
lie in its ability to capture the intricate interplay between forces, deformations, and ma-
terial properties. Using molecular dynamics simulation, we reveal the applicability of



5

Figure 1.4: (a) Shapes of icosahedral shells under external force calculated numerically by
finite-element analysis with FvK numbers 𝛾 = 100 (top) and 𝛾 = 1200 (bottom). (b) Force-
indentation curves of an icosahedral shell with isotropic elastic properties deformed by
a spherical tip. The force 𝐹 and the indentation (i.e., the reduction in diameter along
the indenting axis) 𝜁 are expressed in dimensionless units, with 𝑅 the equivalent radius
of shell and tip, 𝑌 the two-dimensional Young’s modulus, and 𝜅 the bending modulus.
The dimensionless control parameter 𝛾 = 𝑌𝑅2/𝜅 determines whether the curve has a
snap-through discontinuity. The inset compares the force-indentation curves of spherical
and icosahedral shells with 𝛾 = 900. This image and caption are sourced from ref. 58.

the Föppl–von Kármán (FvK) dimensionless number within the context of the elasticity
theory of thin shells as a predictive tool for discerning the failure points of graphene
nanobubbles [59]. The FvK number is defined as 𝑌𝑅2/𝜅, where 𝑌 and 𝜅 represent the
Young’s modulus and bending stiffness of the membrane, respectively, and 𝑅 denotes
its radius of curvature. Mirroring the observed failure mechanisms in viral shells un-
der indentation (Fig. 1.4) [58], the FvK dimensionless number proves instrumental in
forecasting the points at which these nanobubbles succumb to external forces. This
groundbreaking revelation is meticulously examined and expounded upon in chapter
4 of this thesis. Additionally, in chapter 4, a critical facet of our investigation delves
into the aggregation properties of the elements confined within nanobubbles, revealing
deviations from their bulk phase diagrams.

In recent experiments conducted by the group of Prof. Irina Grigorieva at the University
of Manchester, an intriguing anomaly in the realm of bubble shapes has surfaced. This
anomaly takes the form of flat Iceland shapes observed within bubbles created in hexago-
nal boron nitride (hBN) sheets. Chapter 5 of this thesis delves into the exploration of these
unique bubbles, unraveling the intricate influence of hydrogen bonds. The presence of
hydrogen bonds between the hydrogen atoms of trapped substances—whether water or
hydrocarbon molecules—and the nitride acceptors of the hBN membranes proves to be a
decisive factor shaping these special bubble morphologies. The study not only highlights
the specific role of hydrogen bonding but also brings to light the highly irregular nature
of the morphologies exhibited by bubbles within hBN sheets.

Contrary to the conventional perception of impurities as undesirable elements, there are
instances where their intentional introduction serves strategic purposes. One notable
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Figure 1.5: DNA translocation through 2D-nanoslit devices. a) Cross-sectional view of
a 2D-nanoslit device in the DNA translocation setup. DNA is introduced from the cis
(negatively biased) side and a positive voltage is applied to drive the DNA through the
slit. b) Oblique-view schematic of the 2D nanoslit. The device is made by sandwiching
graphene spacers between top and bottom layers of graphite crystals to form an atomically
smooth surface within the slit. The graphene spacer defines the height of the device to
an accuracy of a single layer—0.34 nm. The entire graphene crystal was then masked
and etched perpendicularly to define the length of the slit. The final device geometry
was 𝑤 = 110 nm, ℎ = 6.5 nm, 𝑙 = 400 nm. This image and caption are sourced from ref.
60.

application lies in the intentional incorporation of impurities, such as macromolecules
or other biomolecules, within nanocapillaries (Fig. 1.5)[22, 60–63]. This deliberate place-
ment serves dual purposes: first, it facilitates high-resolution imaging of these macro-
molecules, enabling researchers to glean detailed insights into their structures and in-
teractions. Second, the controlled presence of impurities within nanocapillaries serves
as a means for aligning large biomolecules, capitalizing on the confined environment to
influence their orientation.

The ability to precisely control the speed of permeation of large molecules within
nanocapillaries stands as a critical factor. This level of control allows researchers to
manipulate the transport kinetics of large molecules, influencing the rate at which they
traverse the confined spaces of nanocapillaries. Building upon prior experiments that
elucidated the role of various alkali cations in modulating the speed of DNA passage
through nanopores of approximately 15 nm (Fig. 1.6) [64], our investigation takes a fresh
perspective in the context of charged polymers navigating through nanocapillaries below
2 nm [65]. Remarkably, our findings reveal a parallel yet distinct trend in the permeation
behavior of charged polymers compared to DNA. The observed discrepancy in perme-
ation trends can be traced back to two primary sources. Firstly, the remarkably slim
nature of these nanocapillaries enhances the hydrodynamic drag force experienced by
macromolecules, creating a pronounced effect on their transit dynamics. This heightened
drag force becomes a dominant factor in dictating the permeation behavior, particularly in
comparison to larger nanocapillaries. Secondly, the solvation dynamics of alkali cations
play a pivotal role, differing significantly in the confined space of sub-2 nm nanocapil-
laries compared to the bulk water environment. The altered solvation of alkali cations
within small water clusters exerts a distinctive influence on the overall ion dynamics,
thereby affecting the permeation characteristics of charged polymers. This dual origin
of divergent trends, thoroughly investigated in chapter 6, contributes to a comprehen-
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Figure 1.6: Experiments showing the slowing down of DNA translocation in LiCl. (a)
Example current recordings for 48.5 kbp 𝜆-dsDNA filtered at 5 kHz in 1 M KCl (left), 1
M NaCl (middle), and 1 M LiCl (right). (b) Translocation time histograms corresponding
to (a). This image and caption are sourced from ref. 64.

sive understanding of the intricate interplay between hydrodynamics, ion solvation, and
nanoscale confinement effects on macromolecular permeation.

The solvation dynamics of ions within small water clusters, comprising fewer than 250
water molecules, introduces a fascinating realm of complexity. Historically, the literature
has delved into the surface versus bulk preference of different cations and anions in
water, often presenting contentious issues [66–69]. However, the preferences in the
presence of an external electric field, a driving force for our charged macromolecules,
have remained elusive. Chapter 6 also embarks on a thorough exploration, shedding
light on the nuanced behaviors of cations in small water clusters under the influence of
external electric fields.

In the presence of a narrow, open-ended capillary tube submerged in a liquid container, a
familiar phenomenon occurs—capillary rise or fall. This behavior is characterized by the
liquid within the tube reaching a level distinct from the liquid surface in the container.
The disparity in height is intricately governed by a balance between the weight of the
liquid column and the force exerted by capillary pressure. The capillary pressure, a
crucial factor in this equilibrium, signifies the pressure difference across the interface of
the liquid and its vapor above. It is this pressure difference that dictates the elevation
or descent of the liquid within the capillary tube. When capillary pressure is precisely
matched with the gravitational force acting on the liquid column, a stable position is
attained, leading to capillary equilibrium.

However, when we venture into experiments at the nanoscale, where the dimensions are
comparable to molecular distances, the classical force balance governing capillary rise or
fall encounters new considerations. At this level, the familiar equilibrium between the
weight of the liquid column and capillary pressure must be reevaluated to include the
difference in vapor pressure between the surface of the container and the surface of the
tube. Unlike macroscopic devices where this pressure difference is typically negligible,
at the nanoscale, molecular interactions and surface effects become prominent. The
pressure difference, akin to the variation in atmospheric pressure with altitude, must
now be considered in the force balance equation.

In 1870, the renowned physicist William Thomson, later known as Lord Kelvin, made a
significant contribution by deriving an analytical expression for the vapor pressure over a
liquid meniscus. Grounded in macroscopic thermodynamic homogeneity, Lord Kelvin’s
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Figure 1.7: (a) Relative humidity 𝑅𝐻𝐶 required for water condensation in mica channels
of different heights ℎ. Blue circles indicate experimental observations. Two solid curves
indicate 𝑅𝐻𝐾 given by Kelvin equation with bulk water’s characteristics for the range of
possible 𝜃 for mica (colour-coded). Inset: molecular dynamics calculations for changes
in 𝛾𝑠𝑙 caused by restructuring of water inside 2D channels. Red symbols are the expected
behaviour calculated using the oscillating 𝛾𝑠 shown in the upper curve. Black dashed
curve, same analysis but assuming fully flexible capillary walls allowing relaxation into
the energy minima at commensurate ℎ. Green filled circles, same analysis but for a finite
rigidity of the confining walls. (b) Same as (a), but for graphite capillaries. This image
and caption are sourced from ref. 70.

work provided a fundamental insight into the conditions that initiate the spontaneous
condensation of vapor above the liquid meniscus. This derived expression, now widely
recognized as the Kelvin equation, captures the delicate equilibrium between the liquid
and vapor phases. The Kelvin equation predicts the relative humidity at which capillary
condensation occurs as 𝑅𝐻𝐾 = exp

(
−2𝜎

𝑘𝐵𝑇𝜌𝑁 𝑑

)
, where 𝜎 is the liquid surface tension, 𝑇 is

temperature, 𝜌𝑁 is the number density of liquid, 𝑘𝐵 is the Boltzmann constant, and 𝑑 is
the diameter of the meniscus curvature.

Recent experiments have yielded surprising results regarding the Kelvin equation, orig-
inally formulated under specific assumptions derived from macroscopic thermodynam-
ics. Contrary to expectations, the equation has demonstrated resilience beyond its ini-
tially envisaged applicability range, particularly in nanoscale capillaries (Fig. 1.7) [70].
The current understanding of this phenomenon attributes it to the oscillatory behavior
of the solid-liquid interfacial free energy [70]. However, in chapter 7 of this thesis, we
delve into the intricacies of this explanation, revealing thermodynamic and capillarity
inconsistencies. Through a careful revision of the Kelvin equation, we propose a different
hypothesis, ascribing its validity in nanoscale confinement to the influence of disjoining
pressure.

Disjoining pressure is a fundamental concept in interfacial thermodynamics, playing a
pivotal role in understanding the behavior of confined fluids and thin films [71, 72].
Emerging as a deviation from equilibrium pressure due to intermolecular interactions at
the interface between two phases, disjoining pressure becomes particularly pronounced
in systems where the distance between interfaces approaches molecular dimensions.
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Figure 1.8: Interfacial thermal conductance as a function of work of adhesion [∼ 1 +
𝑐𝑜𝑠(𝜃)]. Simulations results (circles) are in good agreement with experimental data [74]
(triangles) and show the direct proportionality of interfacial thermal conductance to the
work of adhesion. This image and caption are sourced from ref. 75.

This phenomenon is governed by a delicate balance of forces, including van der Waals
attractions, electrostatic interactions, steric effects, and solvation forces. The confinement
geometry and curvature of the interface heavily influence the magnitude and distribution
of disjoining pressure, ultimately dictating the stability and dynamics of thin liquid films,
bubbles, droplets, and other confined systems [73].

To substantiate our hypothesis, we perform extensive calculations on wetting properties
and interfacial heat transfer. Specifically, we calculate the free energy change of the
system resulting from the separation of two materials at their interface, a quantity known
as the work of adhesion. Additionally, we calculate the interfacial thermal conductance,
referred to as the Kapitza conductance, which arises from differences in electronic and
vibrational properties between materials. This conductance occurs when an energy
carrier (phonon or electron, depending on the material) traverses the interface. While
it is previously acknowledged that the work of adhesion and Kapitza conductance are
directly proportional (Fig. 1.8) [75], our investigation within nanocapillaries reveals a
breakdown in this proportionality due to confinement effects. Specifically, we find that
in nanocapillaries, the work of adhesion is more influenced by entropy than energy.

Surface free energy and surface tension are often considered equivalent when studying
the surfaces of liquids. However, this equivalence does not extend to solids, leading to
common confusion between the two concepts [76]. In 1950, Shuttleworth introduced an
equation to describe the relationship between these quantities [77]. The Shuttleworth
equation reads 𝛾 = 𝐹+𝐴

(
𝜕𝐹
𝜕𝐴

)
, where𝐴 is surface area, 𝛾 is surface tension and 𝐹 is surface

free energy per unit area. Since then, a considerable amount of scientific discussion and
debate has taken place in the literature, both in support [78–82] and criticism [83–88] of
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the Shuttleworth equation, particularly regarding its derivation and its alignment with
Hermann’s mathematical structure of thermodynamics. In chapter 8 of this thesis, we
offer a critical commentary on these debates, aiming to provide clarity and insight into
the ongoing discourse surrounding the Shuttleworth equation and its implications in
surface science.

Overall, this thesis delves into cutting-edge scientific inquiries in nanoscience, focus-
ing on instances where confinement significantly influences the material properties and
interfacial thermodynamics. Our findings underscore the necessity of abandoning pre-
sumptions based on macroscopic physical laws or equations for a thorough understand-
ing of phenomena at the nanoscale. Instead, meticulous fundamental derivations are
imperative. While this research marks a significant stride forward, it is not the final
destination. Future research endeavors will address substantial scientific gaps, such as
exploring interfacial free energies and the role of entropy in nanobubble systems, an
area notably overlooked in existing literature. Additionally, investigations into thermal
resistance at interfaces within nanobubbles and the evaluation of solid-vapor interfacial
free energy, a contentious concept, remain essential for advancing our understanding of
nanoscale phenomena.
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Methodological Framework

Molecular dynamics simulation serves as the primary tool utilized in this thesis. Within this
chapter, we aim to provide a concise overview of this computational technique. Beginning with a
summary of classical mechanics, we explore the fundamentals of molecular dynamics. Addition-
ally, we offer a succinct introduction to equilibrium statistical mechanics, crucial for connecting
the observable thermodynamic properties of the systems under investigation with their microscopic
behaviors simulated through molecular dynamics. It is important to note that achieving a com-
prehensive understanding of molecular dynamics and statistical mechanics extends beyond the
scope of a single chapter. The content presented in this chapter draws from "Statistical Mechanics:
Theory and Molecular Simulation" by Mark E. Tuckerman, published by Oxford University Press
in 2010. Interested readers are encouraged to consult this reference or similar literature covering
relevant topics.

2.1 Classical mechanics

Isaac Newton introduced his renowned equations of motion in the 17𝑡ℎ century, which
subsequently formed the foundation of classical mechanics.

Newton’s first law of motion, often referred to as the law of inertia, establishes that an
object will persist in its state of rest or uniform motion in a straight line unless acted
upon by an external force. This principle asserts that the natural tendency of an object
is to maintain its current state of motion, whether stationary or moving with constant
velocity.

Newton’s second law of motion quantifies the relationship between force, mass, and
acceleration. It states that the acceleration of an object is directly proportional to the net
force acting on it and inversely proportional to its mass. Mathematically, it is articulated
as Σ𝐹 = 𝑚𝑎, where Σ𝐹 represents the net force, 𝑚 denotes the mass of the object, and 𝑎
signifies its acceleration. This law provides a precise means of predicting the acceleration
of an object when subjected to known forces and possessing a defined mass. When there
is no net force acting on an object (𝐹 = 0), according to the second law, its acceleration (𝑎)
is also zero. This implies that the object will either remain at rest or continue its uniform
motion, in line with the principle of inertia described in the first law. Thus, Newton’s
first law is encompassed within the broader framework of the second law.

11
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Newton’s third law of motion asserts that for every action, there exists an equal and
opposite reaction. In essence, when one object exerts a force on another, the second
object exerts a force of equal magnitude but in the opposite direction on the first object.

Together, these three laws form the cornerstone of classical mechanics, underpinning
our understanding of motion and dynamics across various disciplines. They serve as
foundational principles for analyzing and predicting the behavior of physical systems.
Specifically, Newton’s second law enables the prediction and understanding of various
phenomena, with applications in fields as diverse as engineering, biomechanics, materi-
als science, and more. In essence, Newton’s second law offers a fundamental framework
for analyzing and comprehending the dynamics of the physical world at various scales.

Newton’s second law, being a second-order differential equation, necessitates two initial
conditions for accurate prediction of subsequent motion. These initial conditions en-
compass both the object’s initial positions and velocities. With this information and the
forces acting on the system, one can use Newton’s second law to determine the object’s
motion at any point in time.

However, in the study of real-world systems such as biological tissues, granular ma-
terials, or turbulent flows, solving Newton’s second law analytically for each particle’s
constituents becomes impractical due to the enormous number of particles and compu-
tational complexity. Additionally, the nonlinear nature of forces in such systems further
complicates analytical solutions. Consequently, numerical methods are indispensable
for accurately studying the dynamics of these systems.

Numerically solving Newton’s second law for each particle of the system is known as
molecular dynamics (MD). This technique involves discretizing Newton’s equations of
motion and integrating them numerically to track the positions and velocities of atoms or
molecules in a system over time. However, is such microscopic information—positions
and velocities of all particles—of interest for scientists? Indeed, practical thermody-
namic quantities such as pressure and temperature often take precedence for scientists
over tracking the exact dynamics of all particles within a system. The bridge between
the microscopic dynamics of individual particles and the macroscopic thermodynamic
quantities of interest is provided by a branch of science known as statistical mechanics.

In this chapter, we offer a concise introduction to the fundamental concepts of classical
statistical mechanics and molecular dynamics. These disciplines serve as the cornerstone
of the research conducted in this thesis, laying the groundwork for the discussions and
analyses presented in the subsequent chapters.

2.2 Molecular dynamics

Molecular dynamics offers a computational platform akin to a virtual laboratory, enabling
numerous numerical experiments that mimic real physical or chemical systems to a cer-
tain degree. This approach facilitates the manipulation of control parameters to conduct
successive experiments easily. Furthermore, it allows the creation of extreme conditions,
such as high temperature and pressure, in a straightforward and safer manner. However,
the accuracy of the results is contingent upon the fidelity of the numerical model. Addi-
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tionally, there is a risk of introducing artificial bias if the molecular dynamics simulation
fails to adequately sample a sufficient number of microstates within the allotted time.

The Fermi–Pasta–Ulam calculation of 1955 stands out as one of the earliest instances
of such a numerical thought experiment. In this study, the equations of motion for a
one-dimensional chain of nonlinear oscillators were numerically integrated to assess the
degree of ergodicity—defined in the following sections—and energy equipartitioning
within the system. Subsequently, Alder and Wainwright conducted the pioneering
condensed-phase molecular dynamics calculation on a hard-sphere system in 1957 and
1959, revealing the existence of a solid–liquid phase transition.

Building on this work, Rahman and Verlet performed simulations using a realistic con-
tinuous potential for systems comprising 864 argon atoms in 1964 and 1967, respec-
tively. Another significant advancement occurred when Berne and colleagues investi-
gated molecular dynamics simulations of diatomic liquids, exploring the time depen-
dence of molecular reorientation in these systems through various studies conducted
between 1968 and 1971.

Following these endeavors, Stillinger and Rahman conducted pioneering molecular dy-
namics simulations of liquid water in 1971, 1972, and 1974. Shortly thereafter, Karplus
and his team reported the first molecular dynamics calculations of proteins in 1976 and
1977. The explicit treatment of molecular systems was made possible by the development
of techniques for maintaining specific bonding patterns, either through stiff intramolec-
ular forces or by imposing holonomic constraints into the simulation.

The field of molecular dynamics has greatly benefited from advancements in high-
performance computing. While the original Alder and Wainwright calculations ne-
cessitated the use of a supercomputer at Lawrence Livermore National Laboratory in
California, such as the UNIVAC system, modern molecular dynamics simulations with
force fields can be conducted on desktop computers. However, a significant milestone
in molecular dynamics, known as ab initio or first-principles molecular dynamics, as in-
troduced by Car and Parrinello in 1985, currently relies on large-scale high-performance
supercomputing resources.

In ab initio molecular dynamics calculations, interatomic interactions are computed di-
rectly from the electronic structure on the fly as the simulation progresses, enabling
explicit treatment of chemical bonding breaking and forming events. The computational
overhead associated with solving the electronic Schrödinger equation using commonly
employed approximation schemes is substantial, necessitating the use of these resources.

The field of molecular dynamics is dynamic and rapidly evolving, with the immediate
availability of free software packages capable of conducting various types of molecular
dynamics calculations significantly expanding the user base of this methodology.
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2.3 Numerical methods for solving Newton’s equations of
motion

By utilizing numerical methods, one can discretize the continuous equations of motion
and integrate them numerically to predict the behavior of dynamical systems over time.
Some commonly used numerical methods for solving Newton’s equations, which we will
elaborate on in subsequent sections, include: the Euler method, the Runge-Kutta method,
the Leapfrog method, the Verlet method, and the Velocity Verlet method. All these
methods fall under the category of finite-difference methods (FDM), which approximate
derivatives in ordinary differential equations (ODEs) or partial differential equations
(PDEs) using finite differences.

2.3.1 Euler method

The Euler Method is expressed as 𝑦𝑛+1 = 𝑦𝑛 + ℎ · 𝑓 (𝑡𝑛 , 𝑦𝑛), where 𝑦𝑛 is the approximate
value of the solution at time 𝑡𝑛 . ℎ is the step size. 𝑓 (𝑡𝑛 , 𝑦𝑛) is the derivative of 𝑦 with
respect to 𝑡 evaluated at 𝑡𝑛 and 𝑦𝑛 .

This method involves iteratively updating the approximate solution 𝑦𝑛 at each time step
𝑡𝑛 by adding the product of the step size ℎ and the derivative of 𝑦 with respect to 𝑡 at 𝑡𝑛
and 𝑦𝑛 .

For Newton’s equations of motion, which typically involve second-order ODEs, the Euler
Method can be applied by first converting them into a system of first-order ODEs.

Newton’s second law can be expressed as a first-order ODE for velocity (𝑣): 𝑑𝑣
𝑑𝑡

= 𝐹
𝑚 .

Additionally, the velocity 𝑣 is related to the particle’s position (𝑥) by another first-order
ODE: 𝑑𝑥

𝑑𝑡
= 𝑣.

Now, applying the Euler Method to this system involves discretizing time into small
steps (ℎ) and updating the velocity and position at each step: 𝑣𝑛+1 = 𝑣𝑛 + ℎ · 𝐹

𝑚 and
𝑥𝑛+1 = 𝑥𝑛 + ℎ · 𝑣𝑛 .

These equations allow us to numerically approximate the velocity and position of the
particle at each time step 𝑛, providing a solution to Newton’s equations of motion under
the given force 𝐹. In molecular dynamics, the step size used for numerical integration is
commonly referred to as the time step, typically denoted by Δ𝑡.

2.3.2 Runge-Kutta method

Runge-Kutta methods are a family of numerical techniques used for solving ODEs. One
of the most widely used Runge-Kutta methods is the fourth-order Runge-Kutta method
(RK4). RK4 involves four intermediate steps to approximate the solution at each step.
It evaluates the derivative of the solution function at various points within the time
interval, combining these derivatives to obtain a weighted average that gives a more
accurate estimate of the solution.
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The general form of the fourth-order Runge-Kutta method for solving the initial value
problem 𝑑𝑦

𝑑𝑡
= 𝑓 (𝑡 , 𝑦) with initial condition 𝑦(𝑡0) = 𝑦0 is:

Step 1. Estimating the slope at the initial point: 𝑘1 = Δ𝑡 · 𝑓 (𝑡𝑛 , 𝑦𝑛).

Step 2. Estimating the slope at the midpoint of the interval, using 𝑘1 as an estimate:
𝑘2 = Δ𝑡 · 𝑓 (𝑡𝑛 + ℎ

2 , 𝑦𝑛 +
𝑘1
2 ).

Step 3. Repeating step 2, but now using 𝑘2 as an estimate: 𝑘3 = Δ𝑡 · 𝑓 (𝑡𝑛 + ℎ
2 , 𝑦𝑛 +

𝑘2
2 ).

Step 4. Estimating the slope at the end of the interval, using 𝑘3 as an estimate: 𝑘4 =

Δ𝑡 · 𝑓 (𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3).

Step 5. Combining the slopes to obtain the weighted average: 𝑦𝑛+1 = 𝑦𝑛 + 1
6 (𝑘1 + 2𝑘2 +

2𝑘3 + 𝑘4).

Newton’s equations of motion can be represented as a system of first-order ODEs (see
above). Now, applying the fourth-order Runge-Kutta method (RK4) involves updating
the velocity and position of the particle at each time step using a weighted average of
four intermediate slopes.

This process is iterated over each time step to approximate the particle’s trajectory over
time, providing a numerical solution to Newton’s equations of motion.

2.3.3 Leapfrog method

Unlike the Euler method, which updates positions and velocities at the same time step,
the Leapfrog method employs a staggered approach, updating positions and veloci-
ties alternately. The basic algorithm of the leapfrog method for solving ODEs can be
summarized as follows:

Step 1. Updating velocities to 𝑣1/2 = 𝑣0 + 1
2 𝑎(𝑥0)Δ𝑡, where 𝑎(𝑥0) is the acceleration at 𝑥0

and Δ𝑡 is the step size.

Step 2. Updating positions to 𝑥1 = 𝑥0 + 𝑣1/2Δ𝑡.

Step 3. Updating velocities to 𝑣1 = 𝑣1/2 + 1
2 𝑎(𝑥1)Δ𝑡, where 𝑎(𝑥1) is the acceleration at 𝑥1.

It continues the process for each step until reaching the desired endpoint. To apply the
leapfrog method to solve Newton’s equations of motion, we first need to rewrite them as
a system of first-order ODEs (see above), followed by its discretization protocol to predict
the positions and velocities of particles over time.

2.3.4 Verlet and Velocity Verlet methods

The Verlet method is a widely utilized approach for its simplicity and efficiency in
integrating equations of motion. The Verlet method updates particle positions and
velocities at discrete time steps, relying on their Taylor series expansion of the current
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states and accelerations. The position of a particle at time 𝑡 + Δ𝑡 is computed as 𝑥𝑡+Δ𝑡 =
𝑥𝑡 + 𝑣𝑡 · Δ𝑡 + 1

2 𝑎𝑡 · Δ𝑡2.

Simultaneously, the velocity is updated as 𝑣𝑡+Δ𝑡 = 𝑣𝑡 + 𝑎𝑡+𝑎𝑡+Δ𝑡
2 ·Δ𝑡. This equation adjusts

the velocity for the next time step based on the current acceleration and the average
acceleration over the time interval Δ𝑡.

While the Verlet algorithm’s simplicity is attractive, it lacks explicit velocity evolution,
which can be considered somewhat less refined. Expanding upon the Verlet method,
the Velocity Verlet method offers enhanced accuracy and stability by explicitly updating
both positions and velocities. In this method, the velocity is first updated at the midpoint
of the time step: 𝑣𝑡+ 1

2Δ𝑡
= 𝑣𝑡 + 𝑎𝑡

2 · Δ𝑡.

Subsequently, the acceleration at the new position 𝑥𝑡+Δ𝑡 is computed. Finally, the velocity
at the end of the time step is determined by combining the velocity at the midpoint with
the average acceleration: 𝑣𝑡+Δ𝑡 = 𝑣𝑡+ 1

2Δ𝑡
+ 𝑎𝑡+𝑎𝑡+Δ𝑡

2 · Δ𝑡.

The Verlet and Velocity Verlet algorithms adhere to a critical property essential for the
long-term stability of numerical solvers. The property is time-reversibility, which dictates
that if we initialize the system with positions 𝑟1(𝑡 + Δ𝑡), ..., 𝑟𝑁 (𝑡 + Δ𝑡) and velocities
𝑣1(𝑡 + Δ𝑡), ..., 𝑣𝑁 (𝑡 + Δ𝑡), stepping backward in time by a duration of −Δ𝑡 should lead
us back to the initial state 𝑟1(𝑡), ..., 𝑟𝑁 (𝑡) and 𝑣1(𝑡), ..., 𝑣𝑁 (𝑡). Time-reversibility reflects a
fundamental symmetry of Newton’s equations, which any numerical integrator should
uphold.

2.4 Choosing the initial conditions

At this point, it is pertinent to discuss the selection process for initial conditions in
molecular dynamics calculations. Establishing these conditions can pose a challenge,
particularly depending on the system’s complexity. For instance, in the case of a basic
liquid, one approach might involve initializing coordinates resembling the solid phase
of the substance and subsequently transitioning to a liquid state under appropriate
thermodynamic conditions.

Alternatively, random initial coordinates can be employed, with a constraint on par-
ticle distance to mitigate strong repulsive forces initially. In molecular liquids, bond
lengths and bend angles may be determined by holonomic constraints or set to equilib-
rium values. However, for more intricate systems like molecular crystals or biological
macromolecules, initial coordinates are typically derived from experimental X-ray crys-
tal structures available in databases such as the Cambridge Structure Database [89], the
Inorganic Crystal Structure Database [90], or the Protein Data Bank [91].

Using experimental structures may necessitate providing missing data, such as the co-
ordinates of hydrogen atoms unresolvable through experimentation. In the case of
biological systems, it is often essential to immerse the macromolecule in a water bath.
In this scenario, coordinates from a well-equilibrated pure water simulation may be em-
ployed. Following immersion, excess water molecules within a certain proximity to any
atom in the macromolecule are removed, while retaining crystallographic waters bound
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within the molecule. Subsequently, re-establishing equilibrium is imperative, typically
involving energy adjustment to achieve a desired temperature and volume adjustment
to maintain a specific pressure level.

After defining the initial coordinates, the next step is to establish the initial velocities.
Typically, this involves drawing velocities from a Maxwell-Boltzmann distribution, en-
suring that the velocities sampled adhere to any constraints placed on the system.

The Maxwell-Boltzmann distribution, described by the probability distribution function
𝑓 (𝑣) = 4𝜋

(
𝑚

2𝜋𝑘𝑇
)3/2

𝑣2𝑒−
𝑚𝑣2
2𝑘𝑇 , 𝑘 being Boltzmann’s constant, delineates the likelihood of

particle velocities in a thermal system. This function elucidates the statistical nature of
particle velocities, crucial for understanding gas diffusion, effusion, and equilibrium dy-
namics. Derived from kinetic theory, it provides a fundamental link between temperature
𝑇 and the distribution of particle speeds 𝑣.

Once the initial conditions are defined, all the necessary information to commence a
simulation is accessible, allowing for the utilization of one of the algorithms elaborated
above like the Velocity Verlet algorithm to integrate the equations of motion.

2.5 Conservative and nonconservative forces

Newton’s equations of motion can be reformulated into alternative frameworks known
as Lagrangian and Hamiltonian mechanics, provided the forces acting on the system
are conservative. Therefore, it is pertinent to distinguish between conservative and
nonconservative forces before discussing these formulations.

In mechanics, conservative forces are distinguished by their property of conserving
mechanical energy within a system. These forces exhibit path-independence, meaning
that the work done by the force is solely dependent on the endpoints of the motion,
regardless of the path taken. Mathematically, the work 𝑊 done by a conservative force
can be expressed as the negative change in potential energyΔ𝑈 : 𝑊 = −Δ𝑈 . Alternatively,
it can be expressed as the negative line integral of the force over the path: 𝑊 = −

∫ 𝐵

𝐴
®𝐹 ·𝑑®𝑠,

where ®𝐹 represents the conservative force, 𝑑®𝑠 denotes an infinitesimal displacement
vector, and 𝐴 and 𝐵 are the initial and final positions, respectively. Common examples
of conservative forces include gravitational and electrostatic forces.

Conservative forces can be expressed as the gradient of a scalar field. The fundamental
theorem of calculus for line integrals states that the line integral of a conservative vector
field over a closed path is zero:

∮
𝐶

F · 𝑑s = 0. Now, let us consider a closed path 𝐶 and
apply this theorem. Using the definition of conservative forces, we have:

∮
𝐶

F ·𝑑s = −Δ𝑈 .

Since this integral is zero for any closed path, it follows that Δ𝑈 = 0 for any closed path.
This implies that the change in potential energy𝑈 around any closed path is zero, which
means that the potential energy𝑈 is constant throughout space. Therefore, we can define
a scalar field𝑈 such that ∇𝑈 = F, and thus, conservative forces can indeed be expressed
as the gradient of a scalar field.

On the other hand, nonconservative forces are characterized by their path-dependence,
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where the work done depends on the specific path taken. For a nonconservative force,
the work𝑊 is given by the line integral of the force over the path: 𝑊 =

∫ 𝐵

𝐴
®𝐹 · 𝑑®𝑠.

Nonconservative forces often lead to a dissipation of mechanical energy within the sys-
tem. Frictional forces, such as air resistance or kinetic friction, are prominent examples
of nonconservative forces. These forces result in the conversion of mechanical energy
into other forms, such as heat or sound. When dealing with conservative forces, classical
mechanics allows for the representation of the system’s dynamics through equivalent
formalisms known as Lagrangian and Hamiltonian mechanics. We will introduce these
formalisms further in the following sections.

2.6 Lagrangian formulation of classical mechanics

In the Lagrangian formulation of mechanics, the dynamics of a system are described
using the principle of least action, where the action functional 𝑆 is minimized along the
path of motion:

𝑆 =

∫ 𝑡2

𝑡1

𝐿(q, ¤q, 𝑡) 𝑑𝑡 (2.1)

Here, 𝐿 represents the Lagrangian function, which is the difference between the kinetic
and potential energies of the system:

𝐿(q, ¤q, 𝑡) = 𝑇(q, ¤q, 𝑡) −𝑉(q, 𝑡) (2.2)

The Lagrangian depends on the generalized coordinates q, their time derivatives ¤q, and
possibly time 𝑡. Through the principle of least action, the Euler-Lagrange equation is
derived:

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕 ¤q

)
− 𝜕𝐿

𝜕q
= 0 (2.3)

These equations govern the evolution of the system’s generalized coordinates q with
respect to time 𝑡. By expressing the force term in Newton’s second law of motion as the
gradient of a scalar field (potential energy) and expanding the Euler-Lagrange equation,
we can demonstrate the equivalence between the Lagrangian and Newton’s formulations.

2.7 Hamiltonian formulation of classical mechanics

In the Hamiltonian formulation of classical mechanics, the dynamics of a system are
described using the Hamiltonian function 𝐻, which is defined as the sum of the system’s
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kinetic energy𝑇 and potential energy𝑉 , expressed in terms of the generalized coordinates
q and their conjugate momenta p:

𝐻(q, p, 𝑡) = 𝑇(q, p, 𝑡) +𝑉(q, 𝑡) (2.4)

The generalized momenta p are defined as the partial derivatives of the Lagrangian 𝐿
(see above) with respect to the generalized velocities ¤q:

p =
𝜕𝐿

𝜕 ¤q (2.5)

Through the Hamiltonian’s principle, which states that the action functional 𝑆 is sta-
tionary with respect to variations in the trajectory of the system, we derive Hamilton’s
equations of motion:

¤q =
𝜕𝐻

𝜕p

¤p = −𝜕𝐻

𝜕q

(2.6)

These equations govern the evolution of the generalized coordinates q and momenta p
with respect to time 𝑡, providing an alternative framework to Lagrangian mechanics for
analyzing the dynamics of mechanical systems.

By manipulating Hamilton’s equations, one can show that the trajectories obtained from
both formalisms are equivalent, thus establishing the equivalence between the Hamilto-
nian formulation of classical mechanics and Newton’s equations of motion. However, it
requires applying the Legendre transform to the Lagrangian function introduced above.
Hence, we briefly introduce the Legendre transform and leave the rest to the reader to
prove the equivalency of Hamilton’s equations and Newton’s equations.

2.8 Legendre transform

Consider a simple function 𝑓 (𝑥) of a single variable 𝑥. Suppose we aim to express 𝑓 (𝑥) in
terms of a new variable 𝑠, where 𝑠 and 𝑥 are related by 𝑠 = 𝑓 ′(𝑥), denoted as 𝑔(𝑥), with
𝑓 ′(𝑥) = 𝑑𝑓

𝑑𝑥
.

Can we determine 𝑓 (𝑥) at a point 𝑥0 given only 𝑠0 = 𝑓 ′(𝑥0) = 𝑔(𝑥0)? The answer is no.
This is because 𝑠0, being the slope of the tangent line to 𝑓 (𝑥) at 𝑥0, is also the slope of
𝑓 (𝑥) + 𝑐 at 𝑥 = 𝑥0 for any constant 𝑐. Thus, 𝑓 (𝑥0) cannot be uniquely determined from 𝑠0.

However, if we specify both the slope, 𝑠0 = 𝑓 ′(𝑥0), and the y-intercept, 𝑏(𝑥0), of the
tangent line to the function at 𝑥0, then 𝑓 (𝑥0) can be uniquely determined. In fact, 𝑓 (𝑥0)
will be given by the equation of the tangent line at 𝑥0: 𝑓 (𝑥0) = 𝑓 ′(𝑥0)𝑥0 + 𝑏(𝑥0).
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This equation shows how we may transform from a description of 𝑓 (𝑥) in terms of 𝑥
to a new description in terms of 𝑠. Recognizing that 𝑓 ′(𝑥) = 𝑔(𝑥) = 𝑠 and 𝑥 = 𝑔−1(𝑠),
and assuming that 𝑠 = 𝑔(𝑥) exists and is a one-to-one mapping, the function 𝑏(𝑔−1(𝑠)),
given by 𝑏(𝑔−1(𝑠)) = 𝑓 (𝑔−1(𝑠)) − 𝑠𝑔−1(𝑠) contains the same information as the original
𝑓 (𝑥) but expressed as a function of 𝑠 instead of 𝑥. We call the function 𝑓 (𝑠) = 𝑏(𝑔−1(𝑠))
the Legendre transform of 𝑓 (𝑥).

The Legendre transform 𝑓 (𝑠) can be written compactly as: 𝑓 (𝑠) = 𝑓 (𝑥(𝑠)) − 𝑠𝑥(𝑠), where
𝑥(𝑠) serves to remind us that 𝑥 is a function of 𝑠 through the variable transformation
𝑥 = 𝑔−1(𝑠).

2.9 Non-Hamiltonian systems

We have mainly concentrated on systems governed by Hamilton’s principle. Neverthe-
less, it is essential to briefly diverge and examine broader dynamical equations of motion
that do not stem from Lagrangian or Hamiltonian functions, known as non-Hamiltonian
systems.

Non-Hamiltonian systems are of interest because Hamilton’s equations only apply to
conservative systems, isolated or under the influence of external fields. However, many
physical systems involve non-conservative forces, like frictional forces or damping effects,
which cannot be derived from potential functions. Examples include systems subject
to frictional forces, damping effects, and chaotic dynamics exemplified by the Lorenz
equations.

Non-Hamiltonian systems find relevance when considering a physical system in contact
with a larger system, termed a bath, which regulates macroscopic properties like pressure
or temperature. By simplifying the bath’s microscopic details into fewer variables that
couple with the physical subsystem, non-Hamiltonian equations of motion are proposed.
These equations generally deviate from Hamiltonian form due to the elimination of the
bath’s microscopic nature.

We will focus on dynamical systems of the form: ¤𝑥 = 𝜉(𝑥). Here, 𝑥 represents a phase
space vector of 𝑛 components, and 𝜉(𝑥) is a continuous, differentiable function. A key
characteristic of non-Hamiltonian systems is their nonvanishing phase-space compress-
ibility: 𝜅(𝑥) = ∑𝑛

𝑖=1
𝜕 ¤𝑥𝑖
𝜕𝑥𝑖

≠ 0.

When the compressibility is non-zero, many theorems about Hamiltonian systems no
longer hold. However, certain properties of Hamiltonian systems can still apply to non-
Hamiltonian systems under specific conditions. Even systems initially formulated in
canonical variables may exhibit nonvanishing compressibility.

An example of a non-Hamiltonian system is the damped forced harmonic oscillator,
described by the equation of motion: 𝑚 ¥𝑥 = −𝑚𝜔2𝑥 − 𝜁 ¤𝑥.

This system’s dynamics include a nonvanishing compressibility, indicating a decrease
in phase-space volume over time. If driven by a periodic forcing function, the system
reaches a steady state, exhibiting resonant frequencies characterized by large amplitudes.
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2.10 Extensions beyond conservative systems

Although the Lagrangian and Hamiltonian formulations are traditionally developed
for systems governed by conservative forces, they can be extended to include non-
conservative forces, such as friction or velocity-dependent forces. For non-conservative
forces that depend on velocity, it may be possible to define a generalized potential func-
tion𝑉 that incorporates both positions and velocities. In this case, the generalized forces
𝐹𝑗 , which represent forces that may not arise from a potential energy function, can be
derived from 𝑉 according to the relation:

𝐹𝑗 =
𝑑

𝑑𝑡

𝜕𝑉

𝜕 ¤𝑓𝑗
− 𝜕𝑉

𝜕 𝑓𝑗
,

which equates to Lagrange’s equations. By defining the Lagrangian as 𝐿 = 𝑇 −𝑉 , where
𝑇 is the kinetic energy, Lagrange’s equations of the second kind or the Euler–Lagrange
equations of motion are obtained:

𝜕𝐿

𝜕 𝑓𝑗
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑓𝑗
= 0.

However, the Euler–Lagrange equations can only account for non-conservative forces
when an appropriate potential function can be identified. In cases where such a potential
cannot be defined, Lagrange’s equations, which directly involve generalized forces rather
than potentials, offer a more general approach. This discussion, while important, extends
beyond the scope of this thesis, and readers are encouraged to consult more advanced
references in analytical mechanics for further details.

2.11 Foundation of statistical mechanics

The roots of thermodynamics trace back to the pioneering efforts of Otto von Guer-
icke (1602–1686), who devised the inaugural vacuum pump in 1650, and Robert Boyle
(1627–1691), who, building upon von Guericke’s invention, identified an inverse relation-
ship between the pressure and volume of a gas at a constant temperature and quantity,
establishing what became known as Boyle’s Law. The field further evolved during
the nineteenth century, propelled by the groundbreaking contributions of R. J. Mayer
(1814–1878) and J. P. Joule (1818–1889), who elucidated the concept of heat as a manifes-
tation of energy. Additionally, R. Clausius (1822–1888) and N. L. S. Carnot (1796–1832)
introduced the fundamental notion of entropy. These seminal works collectively form
the foundation of thermodynamics, culminating in the formulation of its laws.

While rooted in empirical observations, thermodynamics has endured over time as a
phenomenological theory of macroscopic matter. Remarkably, its framework remains
elegantly self-contained, devoid of any explicit reference to the microscopic constituents
of matter. Nevertheless, in previous sections, we introduced the laws of classical me-
chanics, which dictate that the positions and velocities of all particles within a system
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at any given moment determine both its past and future evolution. Through simple
examples involving systems with few degrees of freedom and straightforward forces,
we demonstrated that Newton’s second law of motion provides the means to deduce
the trajectories of such systems. Thus, classical mechanics furnishes a comprehensive
framework capable of predicting the properties of a system at any instant in time.

To establish a logical foundation for thermodynamics, it is imperative to employ micro-
scopic laws of motion to macroscopic systems. However, this approach encounters two
significant hurdles: Firstly, macroscopic systems possess an immense number of degrees
of freedom (with 1 mole consisting of approximately 6.022 × 1023 particles). Secondly,
real-world systems are characterized by highly intricate interactions. Consequently, while
theoretically feasible to predict the microscopic dynamics of any classical system solely
based on initial conditions, the sheer complexity of macroscopic systems renders such
efforts futile.

Moreover, the highly nonlinear nature of forces in practical systems precludes analytical
solutions to equations of motion. Alternatively, attempting numerical solutions on a
computer faces memory constraints; storing a single phase space point for a system of
1023 particles exceeds current and foreseeable memory capacities. Thus, although classi-
cal mechanics encompasses all necessary information for predicting system properties,
extracting this information proves seemingly insurmountable.

Beyond the issue of macroscopic system size lies a subtler challenge: the second law of
thermodynamics dictates a time direction, specifically, the direction in which entropy
increases. This temporal arrow appears incompatible with the reversibility inherent in
microscopic mechanical laws, giving rise to Loschmidt’s paradox, which seemingly pits
thermodynamics against microscopic mechanics.

Demonstrating, for instance, that Newton’s second law maintains its structure when sub-
jected to a time-reversal transformation 𝑡 → −𝑡 is straightforward. This transformation
entails 𝑑

𝑑𝑡
→ − 𝑑

𝑑𝑡
, while 𝑑2

𝑑𝑡2
→ 𝑑2

𝑑𝑡2
. The presence of time-reversal symmetry suggests

that if a mechanical system progresses from an initial condition 𝑥0 at time 𝑡 = 0 to 𝑥𝑡 at
𝑡 > 0, and subsequently, all velocities are reversed (𝑣𝑖 → −𝑣𝑖), the system will revert to its
original microscopic state 𝑥0. This holds true for the microscopic principles of quantum
mechanics as well. Consequently, discerning whether a movie depicting a mechanical
system is advancing in the forward or reverse direction should be impossible.

The reconciliation of macroscopic thermodynamics with microscopic laws necessitated
the emergence of a new discipline: statistical mechanics. Rooted in ideas from Clausius
and James C. Maxwell, statistical mechanics burgeoned primarily from the contributions
of Ludwig Boltzmann and Josiah W. Gibbs. Early advancements stemmed from the
recognition that macroscopic observable properties of a system are not heavily contingent
upon the intricate dynamical motion of individual particles, but rather on gross averages
that attenuate these microscopic intricacies.

Thus, by statistically applying microscopic mechanical laws, a bridge is established be-
tween microscopic and macroscopic theories of matter. This concept not only underpins
a rational framework for thermodynamics but also facilitates computation of numerous
other macroscopic observables. The cornerstone of statistical mechanics is the ensem-
ble concept, representing a collection of systems sharing common macroscopic traits.
Averages over an ensemble yield thermodynamic quantities and other equilibrium and
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dynamic properties.

2.12 The ensemble concept

The microscopic state refers to the detailed description of a system at the smallest scale,
typically involving individual particles such as atoms or molecules. It encompasses the
position and velocity of each constituent particle.

Phase space is a mathematical concept to represent all possible states of a physical system.
It is a multi-dimensional space where each dimension corresponds to a degree of freedom
of the system, such as position or velocity. Therefore, the microscopic state of a system
can be thought of as a specific point in phase space, representing the exact configuration
of the system at a given moment in time. By considering the evolution of this point in
phase space over time, one can understand how the system’s microscopic state changes
and how it behaves dynamically.

The laws of thermodynamics, when not accounting for the microscopic origins of macro-
scopic thermodynamic observables, render thermodynamics primarily a phenomeno-
logical theory. Now, our aim is to establish this microscopic basis and forge a connection
between the macroscopic and microscopic realms. Although solving classical equations
of motion for a system of 1023 particles with complex, nonlinear interactions governing
real systems is impractical, it is worth considering: If we could solve these equations for
such a vast number of particles, would the exhaustive microscopic information generated
be essential for describing macroscopic observables?

Intuitively, the answer seems to be no. While the extensive microscopic information
could predict any macroscopic observable, many microscopic configurations can lead to
the same macroscopic properties. For instance, linking temperature to the average kinetic
energy of individual particles allows for numerous velocity assignments consistent with
a given total energy, resulting in the same temperature measure. Each assignment
corresponds to a distinct point in phase space and, consequently, a unique microscopic
state. Similarly, connecting pressure to the average force per unit area exerted by particles
on container walls permits multiple arrangements yielding the same pressure measure,
each corresponding to a unique point in phase space.

Consider predicting macroscopic time-dependent properties: starting with a large set
of initial conditions drawn from a state of thermodynamic equilibrium and launching
trajectories from each, the resulting trajectories would all be distinct in phase space.
Despite their uniqueness, these trajectories should converge, in the long run, to the same
macroscopic dynamical observables, such as vibrational spectra and diffusion constants.

This idea—that macroscopic observables are insensitive to precise microscopic details—forms
the basis of the ensemble concept introduced by Gibbs. Formally, an ensemble comprises
systems governed by the same microscopic interactions and sharing common macro-
scopic properties (e.g., total energy, volume, and number of moles). Each system evolves
under microscopic laws from a different initial condition, ensuring each system has a
unique microscopic state at any given time. Macroscopic observables are then calculated
by averaging over the ensemble.
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Ensembles can describe a range of thermodynamic situations, from isolated systems to
those in contact with heat baths or particle reservoirs, or coupled to pressure control
mechanisms. In classical ensemble theory, every macroscopic observable of a system
is directly linked to a microscopic function of the system’s coordinates and momenta.
For example, temperature is connected to the average kinetic energy in kinetic theory.
Denoting A as a macroscopic equilibrium observable and a(x) as a microscopic phase
space function, their relationship within the ensemble is established through an averaging
procedure, which reads:

⟨𝐴⟩ = 1
𝑁

𝑁∑
𝑖=1

𝑎(𝑥𝑖) (2.7)

where ⟨𝐴⟩ denotes the ensemble average of the macroscopic observable 𝐴, 𝑎(𝑥𝑖) repre-
sents the microscopic phase space function that can be used to calculate 𝐴 for the 𝑖-th
microstate 𝑥𝑖 , and 𝑁 is the total number of microstates considered in the ensemble.

Recall our earlier question: If we could solve the equations of motion for a vast number
of particles, would the detailed microscopic information be necessary for describing
macroscopic observables? While previously answered in the negative, the opposite
viewpoint also holds weight: all information required to describe a physical system is
encoded in its microscopic equations of motion. While solving these equations for 1023

particles is unfeasible, numerical solutions for systems with particle numbers ranging
from 102 to 109, depending on interaction complexity, are possible. Molecular dynamics
offers valuable insights into complex phenomena, despite not reaching truly macroscopic
scales.

Ensembles in statistical mechanics encompass various frameworks for describing the
behavior of physical systems at equilibrium. The three primary ensembles—canonical,
microcanonical, and grand canonical—differ in their constraints and the variables they
hold constant.

Microcanonical ensemble, also known as the NVE ensemble, represents a statistical sce-
nario wherein the total energy and the number of particles in the system are fixed to
specific values. Each member of this ensemble is obliged to possess an identical total en-
ergy and particle count. For the system to maintain statistical equilibrium, it must remain
entirely isolated, incapable of exchanging energy or particles with its surroundings.

Canonical ensemble, alternatively termed the NVT ensemble, characterizes a statistical
ensemble where the energy is not precisely determined, but the number of particles
remains constant. Instead of energy, the temperature is specified. This ensemble is
suitable for describing a closed system that is, or has been, weakly thermally connected
to a heat reservoir. To uphold statistical equilibrium, the system must remain completely
closed, unable to exchange particles with its environment, yet it may interact weakly
thermally with other systems characterized by ensembles with the same temperature.

Grand canonical ensemble, also referred to as the 𝜇VT ensemble, represents a statistical
ensemble where neither the energy nor the particle number is fixed. Instead, the tem-
perature and chemical potential are specified. This ensemble is apt for describing an
open system, one that is, or has been, weakly connected to a reservoir (such as thermal,
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chemical, radiative, or electrical contact). The ensemble maintains statistical equilibrium
if the system interacts weakly with other systems characterized by ensembles with the
same temperature and chemical potential.

In the following discussion, we will provide a brief overview of each ensemble and
explore their applications in physical systems.

2.12.1 Microcanonical ensemble

This ensemble encompasses all microscopic states existing on the constant energy hyper-
surface 𝐻(𝑥) = 𝐸. This observation implies a close relationship between the microcanon-
ical ensemble and classical Hamiltonian mechanics. In the latter, it has been established
that the equations of motion preserve the total energy, denoted as 𝑑𝐻

𝑑𝑡
= 0, leading to

𝐻(𝑥) = const.

Consider a scenario where we have a system evolving according to Hamilton’s equations.
Given that the equations of motion conserve the Hamiltonian𝐻(𝑥), a generated trajectory
will produce microscopic configurations belonging to a microcanonical ensemble with
energy 𝐸. Furthermore, let us suppose that with an infinite duration, the system with
energy 𝐸 can explore all configurations on the constant energy hypersurface. A system
demonstrating this property is termed as ergodic and can be utilized to construct a
microcanonical ensemble.

In essence, dynamical systems offer a potent approach for generating an ensemble along
with its associated averages. This forms the foundation of the molecular dynamics
methodology, which has emerged as one of the most widely utilized techniques for
addressing problems in statistical mechanics.

2.12.2 Canonical ensemble

The microcanonical ensemble comprises a series of isolated systems, each characterized
by fixed values of particle number 𝑁 , volume 𝑉 , and total energy 𝐸 (see above). As
all members share the same underlying Hamiltonian 𝐻(𝑥), the phase space distribution
across the constant energy hypersurface 𝐻(𝑥) = 𝐸 is uniform, while it remains zero
off the hypersurface. Consequently, the entire ensemble can be generated through a
dynamical system evolving in accordance with Hamilton’s equations of motion, under
the assumption of ergodicity—wherein the dynamical system explores all points on the
constant energy hypersurface over an infinite duration. Leveraging this assumption, a
molecular dynamics calculation can yield a microcanonical distribution.

However, the primary drawback of the microcanonical ensemble lies in its departure
from the conditions typically encountered in experimental settings, where total energy
remains constant. Hence, there arises a necessity to devise ensembles featuring differ-
ent sets of thermodynamic control variables to better align with common experimental
conditions. An exemplary alternative is the canonical ensemble, wherein the thermody-
namic control variables consist of constant particle number 𝑁 , constant volume 𝑉 , and
constant temperature 𝑇. These parameters delineate a system in thermal contact with an
infinite heat source, thus reflecting more conventional experimental setups.
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Figure 2.1: A system (system 1) in contact with a thermal reservoir (system 2). System 1
has N1 particles in a volume V1; system 2 has N2 particles in a volume V2. This image
and caption are sourced from ref. 92.

In the canonical ensemble, we presume that a system can solely transfer heat with its
surroundings. To demonstrate further, we examine two systems in thermal connection.
We designate the physical system as System 1 and the surroundings as System 2 (refer
to Fig. 2.1). System 1 is assumed to encompass 𝑁1 particles within a volume 𝑉1, while
System 2 houses𝑁2 particles within a volume𝑉2. Moreover, System 1 possesses an energy
𝐸1, and System 2 holds an energy 𝐸2, thus yielding a total energy 𝐸 = 𝐸1 + 𝐸2. System
2 is deliberately considered much larger than System 1, ensuring 𝑁2 ≫ 𝑁1, 𝑉2 ≫ 𝑉1,
and 𝐸2 ≫ 𝐸1. Often termed as a thermal reservoir, System 2 can exchange energy
with System 1 without significantly altering its own energy state. The thermodynamic
universe, constituted by the combination of System 1 and System 2, is addressed within
the microcanonical ensemble. Consequently, the total Hamiltonian 𝐻(𝑥) of the universe
is delineated as the sum of contributions from System 1 and System 2, denoted as
𝐻1(𝑥1) +𝐻2(𝑥2), where 𝑥1 represents the phase space vector of System 1, and 𝑥2 signifies
the phase space vector of System 2.

It can be shown that the mere solution of Hamilton’s equations for the total Hamiltonian
𝐻(𝑥) = 𝐻1(𝑥1) + 𝐻2(𝑥2) would result in the separate conservation of 𝐻1(𝑥1) and 𝐻2(𝑥2),
owing to the separability of the Hamiltonian. However, the microcanonical distribution,
proportional to 𝛿(𝐻(𝑥) − 𝐸), enables the exploration of all conceivable energies 𝐸1 and
𝐸2 satisfying 𝐸1 + 𝐸2 = 𝐸, without necessitating an explicit potential coupling between
the two systems. Given the capacity for energy exchange between the two systems, the
conservation of 𝐻(𝑥1) and 𝐻(𝑥2) independently is not anticipated.
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Figure 2.2: Two systems in contact with a common thermal reservoir at temperature T.
System 1 has N1 particles in a volume V1; system 2 has N2 particles in a volume V2.
The dashed lines indicate that systems 1 and 2 can exchange particles. This image and
caption are sourced from ref. 92.

2.12.3 Grand canonical ensemble

The microcanonical and canonical ensembles we have explored share a common char-
acteristic: they maintain a fixed particle number 𝑁 as one of the controlling variables.
However, the grand canonical ensemble diverges from this pattern by allowing fluctua-
tions in the particle number while holding the chemical potential 𝜇 constant.

Why is such an ensemble necessary? Numerous physical situations involve systems
where the particle number fluctuates. These include phenomena such as liquid-vapor
equilibria, capillary condensation, and, notably, in fields like molecular electronics and
batteries, where a device is linked to an electron source. In computational molecular
design, there is a need to explore a broad chemical space of compounds to optimize specific
properties (e.g., binding energy to a target), necessitating variation in both the number
and chemical identity of constituent atoms. Additionally, in some instances, working
within the grand canonical ensemble simply proves to be more convenient. Moreover,
given that all ensembles become equivalent in the thermodynamic limit, we have the
flexibility to select the ensemble that best suits the requirements of the specific problem
at hand.

Given that the grand canonical ensemble utilizes 𝜇, 𝑉 , and 𝑇 as its control parameters, it
is convenient to conceptualize this ensemble as akin to a canonical ensemble linked with a
particle reservoir, which instigates fluctuations in the particle count. As the terminology
suggests, a particle reservoir refers to a system capable of accepting or releasing particles
without significantly altering its own particle number. Hence, envisioning two systems
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interconnected with a shared thermal reservoir at temperature 𝑇 becomes apt: System 1,
with 𝑁1 particles and volume 𝑉1, and System 2, with 𝑁2 particles and volume 𝑉2. These
two systems possess the capacity to exchange particles, with System 2 serving as the
particle reservoir, thereby ensuring 𝑁2 ≫ 𝑁1 (refer to Fig. 2.2).

2.13 Free energy

In the microcanonical ensemble, we consider the control variables as the particle number
𝑁 , volume𝑉 , and total energy 𝐸. The entropy 𝑆(𝑁,𝑉, 𝐸) is a state function dependent on
these variables. A state function is a property that depends only on the current state of
a system and not on how that state was reached. It essentially describes the condition or
configuration of the system at a particular moment, regardless of the path taken to reach
that condition.

The thermodynamic variables obtained from partial derivatives of the entropy are: 1
𝑇 =(

𝜕𝑆
𝜕𝐸

)
𝑁,𝑉

, 𝑃𝑇 =

(
𝜕𝑆
𝜕𝑉

)
𝑁,𝐸

, and 𝜇
𝑇 =

(
𝜕𝑆
𝜕𝑁

)
𝑉,𝐸

.

In terms of energy 𝐸, these relations become: 𝑇 =

(
𝜕𝐸
𝜕𝑆

)
𝑁,𝑉

, 𝑃 = −
(
𝜕𝐸
𝜕𝑉

)
𝑁,𝑆

, and 𝜇 =(
𝜕𝐸
𝜕𝑁

)
𝑉,𝑆

.

To transform from the microcanonical to the canonical ensemble, the later equations
are preferred, as they directly provide the temperature 𝑇 instead of 1/𝑇. The aim is to
transform the function 𝐸(𝑁,𝑉, 𝑆) into a function of 𝑁,𝑉, and 𝑇. Since 𝑇 = 𝜕𝐸/𝜕𝑆, one
can apply the Legendre transform method. The new function, denoted as 𝐴(𝑁,𝑉, 𝑇), is
given by:

𝐴(𝑁,𝑉, 𝑇) = 𝐸(𝑁,𝑉, 𝑆(𝑁,𝑉, 𝑇)) − 𝑇 𝜕𝑆(𝑁,𝑉, 𝑇)
𝜕𝑇

= 𝐸(𝑁,𝑉, 𝑆(𝑇)) − 𝑇𝑆(𝑁,𝑉, 𝑇) (2.8)

This function 𝐴(𝑁,𝑉, 𝑇) is known as the Helmholtz free energy. Physically, when a ther-
modynamic transformation of a system from state 1 to state 2 occurs along a reversible
path, the work needed equals the change in Helmholtz free energy Δ𝐴.

By applying a similar Legendre transformation, the volume in the Helmholtz free energy
𝐴(𝑁,𝑉, 𝑇) can be transformed into the external pressure 𝑃, resulting in a new free energy
denoted as 𝐺(𝑁, 𝑃, 𝑇):

𝐺(𝑁, 𝑃, 𝑇) = 𝐴(𝑁,𝑉(𝑃), 𝑇) −𝑉(𝑃)𝜕𝐴
𝜕𝑉

(2.9)

Utilizing the relation 𝑃 = − 𝜕𝐴
𝜕𝑉 , we derive:

𝐺(𝑁, 𝑃, 𝑇) = 𝐴(𝑁,𝑉(𝑃), 𝑇) + 𝑃𝑉(𝑃) (2.10)
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This function 𝐺(𝑁, 𝑃, 𝑇) is recognized as the Gibbs free energy. This Legendre transfor-
mation converts the canonical ensemble into another ensemble, known as the isothermal-
isobaric (NPT) ensemble.

It is important to note that free energy functions, balancing energetic and entropic terms,
determine whether a process is thermodynamically favorable (with a decrease in free
energy) or unfavorable (with an increase in free energy). It is worth noting that, however,
they do not dictate the time scale of the process.

It is now evident that free energy holds significant importance in statistical mechanics.
However, rather than focusing solely on absolute free energy values, the emphasis often
lies in discerning the difference between the free energies of two thermodynamic states.

Throughout this thesis, we will repeatedly discuss free energy differences in various
contexts, as detailed in subsequent chapters. Numerous techniques have been developed
for calculating free energies, with two prominent methods featuring prominently in our
work: steered molecular dynamics and thermodynamic integration. These techniques will be
introduced in the following sections.

For a comprehensive understanding of free energy calculation methods, readers are
encouraged to consult refs. 92 and 93.

2.13.1 Steered molecular dynamics

Let us first introduce the concept of the partition function and elucidate its significance in
statistical mechanics.

The partition function is a fundamental concept in statistical mechanics. At its core,
the partition function 𝑍 is a mathematical function that encapsulates all the information
about the possible states of a system. It accounts for the different energy levels and
degeneracies (multiplicities) of these states.

The partition function is typically calculated as the sum or integral over all possible states
of the system, weighted by their Boltzmann factors. For discrete systems, the partition
function is given by:

𝑍 =
∑
𝑖

𝑒−𝛽𝐸𝑖 (2.11)

where 𝐸𝑖 represents the energy of the 𝑖-th state, and 𝛽 = 1
𝑘𝐵𝑇

is the inverse temperature,
with 𝑘𝐵 being the Boltzmann constant and 𝑇 the temperature.

For continuous systems, the partition function is expressed as an integral:

𝑍 =

∫
𝑒−𝛽𝐸 𝑑Γ (2.12)
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where 𝐸 represents the energy of a state, and 𝑑Γ represents the phase space volume
element.

The partition function counts the number of possible microscopic states accessible in
a specific ensemble’s phase space. Each ensemble has its unique partition function,
determined by the macroscopic properties defining that ensemble. It can be shown that
the system’s thermodynamic properties are computed using different partial derivatives
of the partition function.

The use of steered molecular dynamics (SMD) to compute free energy can be summarized
as follows. For a comprehensive discussion, readers are referred to ref. 94, from which
the following formulations have been obtained. The change in free energy between two
states, where 𝜆 = 𝜆0 and 𝜆 = 𝜆1, can be expressed as: Δ𝐴 = Δ𝐴𝜆1 − Δ𝐴𝜆0 = − 1

𝛽 ln 𝑍𝜆0
𝑍𝜆1

,
where 𝑍 is the partition function for the system with the given value of the reaction
coordinate 𝜆, such that 𝑍𝜆1 =

∫
𝑑q exp[−𝛽𝐻(q,𝜆 = 𝜆1)], and the Hamiltonian depends

on the positions of all atoms q and the reaction coordinate 𝜆.

In 1997, Jarzynski demonstrated that this change in free energy between two states can
be precisely related to the ensemble average of the Boltzmann-weighted work performed
in numerous non-equilibrium transformations from initial to final states:

Δ𝐴 = −1
𝛽

ln⟨𝑒−𝛽𝑊 ⟩ (2.13)

where𝑊 denotes the external work executed in changing the reaction coordinate 𝜆 from
𝜆0 to 𝜆1 in a time-dependent manner. The Jarzynski equality only demands that the
initial configurations be drawn from the equilibrium ensemble with 𝜆 = 𝜆0, and it is
worth noting that the final states with 𝜆 = 𝜆1 do not pertain to an equilibrium ensemble.

In SMD simulations, the reaction coordinate is typically not constrained to a specific
value; instead, it is restrained to a particular center (often according to a harmonic
potential of force constant 𝑘) that changes with a constant velocity 𝑣 during a simulation
of the irreversible transformation from 𝜆0 to 𝜆1:

𝑉(q, 𝑡) = 1
2 𝑘[𝜆(𝑡) − 𝜆′(q)]2 (2.14)

where the prime notation denotes the evaluation of the reaction coordinate for a given
microscopic state q of the system, as opposed to the time-dependent value of the reaction
coordinate center, which is 𝜆(𝑡) = 𝜆0 + 𝑣𝑡.

Despite introducing an additional biasing potential to the system, the underlying po-
tential of mean force (PMF) 𝐺(𝜆) can still be recovered using Jarzynski’s equality and
re-weighting estimators similar to the weighted histogram analysis method (WHAM).
Alternatively, if the force constant 𝑘 is sufficiently large (referred to as the stiff-spring
approximation), such that 𝜆′(q) ≈ 𝜆(𝑡), the PMF 𝐺(𝜆) of the system without the presence
of a biasing potential can be approximated by the following relation:
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1
2 (Δ𝐴

′′(𝑡))2𝐺[𝜆 = 𝜆(𝑡)] ≈ Δ𝐴(𝑡) − 2𝑘𝑣2

𝛽
− 𝐴(𝑡) (2.15)

It is noteworthy that, generally, if 𝑘 is large, the higher-order terms in Equation 2.15 be-
come negligible. Conventionally, when invoking the Jarzynski equality, Δ𝐴 is estimated
using the so-called Jarzynski estimator:

Δ𝐴̂ = −1
𝛽

ln 1
𝑁

𝑁∑
𝑖=1

𝑒−𝛽𝑊𝑖 (2.16)

2.13.2 Thermodynamic integration

We first briefly introduce free energy perturbation theory. Let us start by examining how
a system moves from one state to another in terms of its free energy. We denote these
states generally as 𝐴 and 𝐵. At a microscopic level, these two states are characterized
by their potential energy functions, 𝑈𝐴(r1 , . . . , r𝑁 ) and 𝑈𝐵(r1 , . . . , r𝑁 ) respectively. The
Helmholtz free energy difference between states 𝐴 and 𝐵 is straightforwardly expressed
as Δ𝐴𝐴𝐵 = 𝐴𝐵 − 𝐴𝐴. The two free energies 𝐴𝐴 and 𝐴𝐵 can be defined in terms of
their respective canonical partition functions 𝑄𝐴 and 𝑄𝐵. Thus, 𝐴𝐴 = −𝑘𝑇 ln𝑄𝐴 and
𝐴𝐵 = −𝑘𝑇 ln𝑄𝐵. Consequently, the free energy difference is:

Δ𝐴𝐴𝐵 = 𝐴𝐵 − 𝐴𝐴 = −𝑘𝑇 ln
(
𝑄𝐵

𝑄𝐴

)
= −𝑘𝑇 ln

(
𝑍𝐵

𝑍𝐴

)
(2.17)

where 𝑍𝐴 and 𝑍𝐵 represent the configurational partition functions for states 𝐴 and 𝐵,
respectively: 𝑍𝐴 =

∫
𝑑𝑁r exp (−𝛽𝑈𝐴(r1 , . . . , r𝑁 )) and𝑍𝐵 =

∫
𝑑𝑁r exp (−𝛽𝑈𝐵(r1 , . . . , r𝑁 )) .

The approach of free energy perturbation paints a scenario where configurations sampled
from the canonical distribution of state 𝐴 swiftly transition to state 𝐵 by a mere alteration
of the potential from𝑈𝐴 to𝑈𝐵. However, when there is insufficient overlap between states
𝐴 and 𝐵, introducing a series of intermediate states can define an optimal transformation
path, depicting a gradual transition from𝐴 to 𝐵. Thermodynamic integration is an alternate
method where the system smoothly transitions, adiabatically, from 𝐴 to 𝐵.

In this method, an adiabatic path is established, ensuring the system fully relaxes at each
stage. To facilitate this transition, we introduce an external parameter 𝜆 to parameterize
the adiabatic path. This parameter defines a new potential energy function, sometimes
termed a metapotential, represented as:

𝑈(r1 , ..., r𝑁 ,𝜆) = 𝑓 (𝜆)𝑈𝐴(r1 , ..., r𝑁 ) + 𝑔(𝜆)𝑈𝐵(r1 , ..., r𝑁 ) (2.18)

Here, 𝑓 (𝜆) and 𝑔(𝜆) are switching functions, ensuring𝑈(r1 , ..., r𝑁 , 0) = 𝑈𝐴(r1 , ..., r𝑁 ) and
𝑈(r1 , ..., r𝑁 , 1) = 𝑈𝐵(r1 , ..., r𝑁 ). The concept behind this mechanism is akin to an imagi-
nary external control initiating the system in state 𝐴 (𝜆 = 0) and gradually transitioning



32 CHAPTER 2. METHODOLOGICAL FRAMEWORK

it by switching off potential 𝑈𝐴 while activating potential 𝑈𝐵. This process concludes at
𝜆 = 1, with a common choice for 𝑓 (𝜆) and 𝑔(𝜆) being 𝑓 (𝜆) = 1 − 𝜆 and 𝑔(𝜆) = 𝜆.

To compute the free energy differenceΔ𝐴𝐴𝐵, we consider the canonical partition function
of a system described by the potential𝑈(r1 , ..., r𝑁 ,𝜆) for a particular 𝜆:

𝑄(𝑁,𝑉, 𝑇,𝜆) = 𝐶𝑁

∫
𝑑𝑁𝑝𝑑𝑁𝑟 exp

(
−𝛽

𝑁∑
𝑖=1

𝑝2
𝑖

2𝑚𝑖
+𝑈(r1 , ..., r𝑁 ,𝜆)

)
(2.19)

This partition function yields a free energy via: 𝐴(𝑁,𝑉, 𝑇,𝜆) = −𝑘𝑇 ln𝑄(𝑁,𝑉, 𝑇,𝜆). We
have previously demonstrated that derivatives of𝐴with respect to𝑁 ,𝑉 , or𝑇 provide the
chemical potential, pressure, or entropy, respectively. However, what does the derivative
with respect to 𝜆 signify for 𝐴(𝑁,𝑉, 𝑇,𝜆)? According to the above equation: 𝜕𝐴

𝜕𝜆 =

−𝑘𝑇 𝜕𝑄
𝜕𝜆 = −𝑘𝑇 𝜕𝑍

𝜕𝜆 . Computing the derivative of 𝑍 with respect to 𝜆, we get: 𝑘𝑇
𝑍

𝜕𝑍
𝜕𝜆 =

−⟨ 𝜕𝑈𝜕𝜆 ⟩. The free energy difference Δ𝐴𝐴𝐵 can be straightforwardly derived as: Δ𝐴𝐴𝐵 =∫ 1
0

𝜕𝐴
𝜕𝜆 𝑑𝜆, which yields:

Δ𝐴𝐴𝐵 =

∫ 1

0
⟨𝜕𝑈
𝜕𝜆

⟩𝜆𝑑𝜆 (2.20)

where ⟨. . .⟩ 𝜆 denotes an average over the canonical ensemble described by the distribu-
tion exp[−𝛽𝑈(r1 , . . . , r𝑁 ,𝜆)] with 𝜆 fixed at a particular value.

The specific selection of 𝑓 (𝜆) = 1 − 𝜆 and 𝑔(𝜆) = 𝜆 can be easily understood as:

Δ𝐴𝐴𝐵 =

∫ 1

0
⟨𝑈𝐵 −𝑈𝐴⟩𝜆𝑑𝜆 (2.21)

This relationship recalls the connection between work and free energy from the second
law of thermodynamics. If, during the transformation from state 𝐴 to state 𝐵, work
𝑊 is performed on the system, then 𝑊 ≥ Δ𝐴𝐴𝐵, where equality holds solely for a
reversible path. This inequality is referred to as the work–free–energy inequality. Since
reversible work corresponds to a change in potential energy, the above equation serves
as a statistical version of the inequality for the case of equality. It indicates that the free
energy difference is the ensemble average of the microscopic reversible work required to
transition the potential energy of each configuration from 𝑈𝐴 to 𝑈𝐵 along the selected
𝜆-path. Notably, the thermodynamic integration formula, denoted as Equation 2.20,
remains independent of the choice of 𝑓 (𝜆) and 𝑔(𝜆), consistently yielding the reversible
work via the free energy difference. However, the flexibility in selecting the 𝜆-path can
be leveraged to design more efficient adiabatic switching algorithms beyond the simple
choice of f(𝜆) = 1 - 𝜆 and g(𝜆) = 𝜆.

In practice, the implementation of the thermodynamic integration formula involves se-
lecting a set of M 𝜆 values from the interval [0, 1], followed by conducting full molecular
dynamics (or another integrator like Monte Carlo) calculations at each 𝜆k to generate
the average 𝜕𝑈

𝜕𝜆𝑘
. Subsequently, these values are substituted into Equation 2.20, and the
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result is numerically integrated to derive the free energy difference Δ𝐴𝐴𝐵. The chosen
values 𝜆k can be evenly spaced or a set of Gaussian quadrature nodes, depending on the
anticipated variation of 𝐴(𝑁,𝑉, 𝑇,𝜆) with 𝜆 for specific 𝑓 (𝜆) and 𝑔(𝜆).
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Chapter 3333333333333333333333333333333333333333333333333333333333333333333333333
Breakdown of universal scaling for

nanometer-sized bubbles in graphene¶

In this chapter, we report the formation of nanobubbles on graphene with radius of the order of 1
nm, using ultra-low energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a
Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been
established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in
much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend
on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and
trapped element. We interpret these dependencies in terms of the role of the adhesion energies
between the three constituents: graphene, substrate and noble gas atoms.

3.1 Introduction

Owing to its unrivaled elasticity and strength [37, 95], graphene is able to hold matter at
extreme pressures in the form of bubbles with dimensions down to the nanometer scale
[52, 96–98]. These bubbles offer new opportunities to explore chemistry and physics
under the extreme conditions that both graphene and the trapped matter are subject to, for
example, high-pressure chemical reactions [48, 99] and strain-induced pseudomagnetic
fields [100–102]. Similar nanobubbles in other 2D materials such as MoS2 and h-BN are
also being investigated as single photon emitters for quantum communication [103, 104].

While previous research has mostly dealt with bubbles with a radius of few nm and larger,
the sub-nanometer regime remains largely unexplored. Here we report the formation
of graphene nanobubbles with radius down to below 1 nm, filled with He, Ne and
Ar. Delving into the physical mechanisms determining the stability and shape of these
sub-nanometer bubbles reveals that they constitute a fundamentally different regime,
exhibiting extreme aspect ratios and pressures (estimated to exceed 30 GPa). The unique
properties of this sub-nanometer regime open an unexplored ground for applications of
nanobubbles in 2D materials.

¶This chapter contributed to the paper: Breakdown of universal scaling for nanometer-sized bubbles in
graphene. Nano Letters 21, 8103–8110 (2021).

35
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The properties of graphene bubbles with radius of few nm and larger are relatively well
understood on the basis of elasticity theory, graphene’s elastic properties and its van
der Waals attraction to the substrate [52]. In this regime, bubbles have been observed on
various substrates (e.g., Ir, Pt, h-BN, SiO2) with a variety of trapped substances (e.g., water,
noble gases, hydrocarbons) [52, 96, 98, 105, 106], which do not appear to significantly affect
the bubble stability [52, 98]. Substrate and trapped substance do affect key properties,
such as shape (in particular the aspect ratio) and the pressure inside the bubble [52, 98].
This dependence is largely determined by the balance of the adhesion energies: between
graphene and the substrate (𝛾GS), between the substrate and the trapped substance (𝛾Sb)
and between the graphene and the trapped substance (𝛾Gb) [52]. A particularly striking
feature demonstrated for nanobubbles in the few nm regime and larger is that the aspect
ratio exhibits universal scaling:

ℎmax
𝑅

=

(
𝜋𝛾

5𝑐1𝑌

)1/4
,

𝛾 = 𝛾GS − 𝛾Sb − 𝛾Gb ,

(3.1)

where ℎmax is the bubble maximum height, 𝑅 is the bubble radius at the base, 𝑐1 is a
constant (0.7) and𝑌 the Young modulus [52]. Here, by combining scanning tunneling mi-
croscopy (STM) measurements with molecular dynamics (MD) simulations and density
functional theory (DFT) calculations, we show that this universal scaling breaks down at
small 𝑅 (near 1 nm and below). We also observe that the bubble stability is strongly de-
pendent on the substrate. We interpret these dependencies in terms of adhesion energies
(𝛾GS, 𝛾Sb and 𝛾Gb). Moreover, extreme values of pressure inside these sub-nm bubbles
(exceeding 30 GPa) are predicted by our MD simulations.

3.2 Experimental details and basic characterization

Our samples consist of epitaxial graphene grown by chemical vapor deposition (CVD)
on epitaxial Pt(111) and Cu(111) thin films grown on sapphire(0001) substrates [107, 108].
Nanobubbles are formed by implanting noble gas ions (He, Ne and Ar), with a kinetic
energy of 25 eV, with perpendicular incidence with respect to the surface. Bubbles were
found to only form for graphene on Pt(111) (Fig. 3.1), not for graphene on Cu(111) (Fig.
3.2). In the following we will focus on Pt(111), and return to Cu(111) further below when
discussing how the bubble stability depends on the substrate. Ion implantation has been
previously used to form graphene nanobubbles of noble gases [96, 105, 106].

In contrast to the previous studies, where ion beams with energies of 500 eV and higher
were used, our approach is based on ultra-low energy (ULE) ion implantation. Such low
energies are crucial to minimize irradiation-induced damage. Based on our MD simula-
tions, we selected 25 eV (surface normal incidence) as sufficiently high for a significant
fraction of the ions to be transmitted through the graphene layer, but sufficiently low
to minimize carbon atom displacements (i.e., formation of vacancies and related point
defects). While ULE ion implantation has been previously used for doping of graphene
(e.g., with B and N [109–111]) where vacancies are required (which allows for substitu-
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Figure 3.1: STM micrographs showing (a) He, (b) Ne and (c) Ar bubbles in
graphene/Pt(111). STM micrographs (50 × 50 nm2 for (d) and 10 × 10 nm2 for (e)),
with atomic resolution, showing a continuous graphene atomic lattice, in particular, over
the bubble.

tional incorporation of the dopant atoms). Such defects must be avoided in the context
of the present work so that the intrinsic elastic properties of graphene are maintained.

The graphene bubbles observed in our samples are identified as nanometer scale pro-
trusions on the surface of graphene (grown on Pt(111), implanted with the noble gases)
as shown in the STM topographies in Fig. 3.1. The fact that the graphene lattice can
be resolved even over these protrusions confirms that the implanted noble gases are
intercalated (Fig. 3.1e), i.e., that the protrusions are not due to matter deposited on top
of graphene. The fraction of surface that is covered by bubbles (for the same implanted
fluence) was found to vary between implanted noble gas elements (Fig. 3.1a-c). This de-
pendence is likely due to the different transmission and backscattering probabilities for
the different elements. The high structural order of our irradiated samples is supported
by our atomic resolution STM measurements on as-implanted samples (Fig. 3.1e) and by
the integrity of the moiré superstructure in most of the surface with only minor disorder
(Figs. 3.1d,e).

3.3 Breakdown of universal scaling at low radius

The radius and aspect ratio of each bubble, for the different elements (He, Ne and Ar),
are plotted in Fig. 3.3. A clear trend is observed for all three gases. For larger 𝑅 values
(> 1 nm), the aspect ratio tends to converge to a constant value of about 0.2, which is in
agreement with the universal scaling previously observed for bubbles with radius of few
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Figure 3.2: STM topographies of (left) pristine graphene on Cu(111) and helium im-
planted graphene on Cu(111) exhibiting: (middle) bubble/wrinkles in terrace edges and
(right) bubbles trapped in dip-like defects on the Cu surface. These bubbles/wrinkles
are indicated by black ellipses.

nm and larger [52]. However, as 𝑅 approaches the sub-nanometer regime, the universal
scaling breaks down, showing an increase in the aspect ratio and approaching 1 for Ne
bubbles. From the experimental data in Fig. 3.3 we calculated, for each gas (He, Ne,
Ar), an average value for ℎ0

max (from the 10% smallest bubbles) and an average value for
ℎmax
𝑅

���
𝑅≫1 nm

(from the 10% largest bubbles). These values are compiled in Table 3.1.

This breakdown of universal scaling can be explained by the existence of a minimum
value for ℎmax (ℎ0

max), corresponding to one atomic layer of the trapped gas atoms. As
𝑅 approaches this regime, ℎmax becomes a constant value (ℎ0

max), and consequently
ℎmax/𝑅 transits into a ∼ 1/𝑅 dependence. This is illustrated in Fig. 3.3c by the fit to the
experimental ℎmax/𝑅 data with the function (ℎmax/𝑅 = 𝑐/𝑅), where 𝑐 (around 3 to 4
Å) is comparable to ℎ0

max. This ∼ 1/𝑅 fit crosses the value corresponding to ℎmax
𝑅

���
𝑅≫1 nm

(dotted line) around 1-2 nm, above which the universal scaling regime is valid and ℎmax/𝑅
becomes constant, given by equation 3.1.

This behavior is well reproduced by our MD simulations of bubbles with varying number
of trapped atoms (from 800, with 𝑅 of a few nm, down to a few atoms, with 𝑅 below
1 nm - Fig. 3.3). In particular, for the smallest bubbles with a small number of trapped
atoms (of the order of 10), the monolayer-like configuration is clearly observed in our
MD simulations (Fig. 3.4), while for the larger bubbles, the trapped atoms are distributed
over multiple layers of gas atoms (Fig. 3.4). The significant spread in aspect ratio for a
given radius (experimental data points in Fig. 3.3) is likely due to a varying strength of
the adhesion between graphene and the Pt surface (𝛾GS) over the sample surface. Such
non-homogeneity can result from the varying (relative) orientation of the graphene and
Pt lattices (the graphene layers grown on Pt are polycrystalline), as well as possible local
variations in graphene-Pt adhesion due to point defects in graphene.
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Figure 3.3: ℎmax/𝑅 as a function of 𝑅 obtained from STM micrographs as those shown
in Fig. 3.1 (empty circles) and from MD simulations (filled circles), for (a) He, (b) Ne
and (c) Ar bubbles in graphene/Pt(111). Each experimental data point corresponds to
one bubble. The solid line is a fit with the function (ℎmax/𝑅 = 𝑐/𝑅). The dotted line
corresponds to the value of ℎmax

𝑅

���
𝑅≫1 nm

.

Table 3.1: Aspect Ratio and Related Parameters. ℎ0
max and ℎmax

𝑅

���
𝑅≫1 nm

are obtained from
the data in Fig. 3.3. ℎ0

max is the average of ℎmax taken over the 10% smallest bubbles.
ℎmax
𝑅

���
𝑅≫1 nm

is the average ℎmax
𝑅 taken over the 10% largest bubbles. The values inside the

brackets are the standard deviation associated with the respective averages. ⟨Δ𝑧⟩ is the
average 𝑧-motion amplitude obtained from the MD simulations, for the smallest bubbles
(radius of ∼ 6 Å for He and Ne, and ∼ 9 Å for Ar). 𝛾 is calculated using equation 3.1 with
ℎmax
𝑅 given by ℎmax

𝑅

���
𝑅≫1 nm

. 𝑟𝑣𝑑𝑊 is the van der Waals radius (from ref. 112).

element ℎ0
max [Å] 𝑟𝑣𝑑𝑊 [Å] ⟨Δ𝑧⟩ [Å] ℎmax

𝑅

���
𝑅≫1 nm

𝛾 [eV·Å−2]

He 2.9(±0.5) 1.43 0.31 0.24(±0.05) 0.08
Ne 3.5(±0.8) 1.58 0.49 0.27(±0.07) 0.13
Ar 3.1(±0.6) 1.94 0.29 0.17(±0.03) 0.02
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Figure 3.4: Top and side view of examples of large and small He bubbles, simulated
using MD. The He atoms are shown displaced downwards, away from the graphene
layer, for easier visualization. In the small bubble regime, the He atoms are distributed
in a monolayer-like configuration (i.e., without being on top of each other), but still with
a significant out-of-plane motion amplitude (Δ𝑧𝑚𝑎𝑥).

3.4 Dependence on Trapped Element

Let us first consider the 𝑅 ≫ 1 nm regime, where the universal scaling given by equation
3.1 [52] applies and thereby extract 𝛾 (given in Table 3.1) for each gas (He, Ne and Ar).
Although the values of ℎmax

𝑅 for 𝑅 ≫ 1 nm for He, Ne and Ar are different, the spread over
the various bubbles (reflected in a large standard deviation) blurs out these differences.
Nevertheless, the data strongly suggest that this quantity does depend on the trapped
element. Such a scenario can be understood as due to a variation in 𝛾, that is, higher
for Ne (𝛾 ∼ 0.13 eV/Å2) than for He (∼ 0.08 eV/Å2) and Ar (∼ 0.02 eV/Å2). Taking
𝛾GS = 0.25 eV/Å2 for graphene on Pt [113], implies that 𝛾Sb+𝛾Gb is of the order of 𝛾GS for
Ar (giving 𝛾 = 0.02 eV/Å2), but significantly smaller for He and Ne. In other words, in
the bubble configuration, the interaction (of van der Waals nature) of the gas atoms with
the Pt surface or with the graphene layer appears to be more repulsive for Ne compared
to He and Ar.

A similar trend is observed in the low-𝑅 regime, where the Ne bubbles clearly reach
higher ℎ𝑚𝑎𝑥 values than for He and Ar bubbles (Fig. 3.3), and ℎ0

max also being larger
(although with a significant spread over various bubbles) for Ne than for He and Ar
(Table 3.1). This is particularly noteworthy, as it does not follow the same trend as
the van der Waals radius (𝑟𝑣𝑑𝑊 ), which increases from He, to Ne, to Ar (Table 3.1).
Moreover, ℎ0

max values are significantly larger than what one would expect for a rigid
atomic monolayer, that is, the van der Waals radius of the gas atoms (Fig. 3.5). These two
facts can be understood as being a result of out-of-plane motion of the gas atoms, even
for small bubbles (monolayer-like), which is indeed observed in our MD simulations
(Fig. 3.4). The average 𝑧-motion amplitude (averaged over time and over the trapped
atoms) obtained from the MD simulations, for the smallest bubbles (⟨Δ𝑧⟩ in Table 3.1)
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Figure 3.5: Schematics illustrating the relation between the bubble height in the small-
bubble limit (ℎ0) measured with STM, the van der Waal radius of the trapped atoms
(𝑟𝑣𝑑𝑊 ) and the maximum out-of-plane motion amplitude (Δ𝑧𝑚𝑎𝑥): (a) When Δ𝑧𝑚𝑎𝑥 ∼ 0,
ℎ0 ∼ 𝑟𝑣𝑑𝑊 and (b) when Δ𝑧𝑚𝑎𝑥 > 0, ℎ0 ∼ 𝑟𝑣𝑑𝑊 + Δ𝑧𝑚𝑎𝑥 .

follows the trend observed for ℎ0
max, that is, being significantly larger for Ne than for He

and Ar. This out-of-plane motion forces ℎ0
max to be larger than the van der Waals radius

(Fig. 3.5b), that is, larger than that associated with a rigid atomic monolayer (Fig. 3.5a), by
an amount Δ𝑧𝑚𝑎𝑥 that depends on 𝛾Sb and 𝛾Gb. In other words, the weaker the binding
of the trapped atoms to the graphene layer and to the Pt surface, the more the gas atoms
are allowed to move out-of-plane, and therefore the more the sub-nm bubbles deviate
from a rigid atomic monolayer.

3.5 Extreme Pressure

The breakdown of the universal scaling, leading to extreme aspect ratios, is likely to
be associated with other unusual physical properties in these sub-nanometer bubbles.
Although probing such properties is beyond the scope of this letter, it is worthwhile
discussing pressure as an example, in particular since it can be obtained from our MD
calculations. According to the general understanding of surface-induced pressure in
solids, the pressure scales with the ratio of surface area to the volume of the solid phase
[114]. For the bubbles under consideration here, as 𝑅 decreases and the atoms inside
the bubbles become more monolayer-like, the surface-to-volume ratio (∼ Δ𝑧−1) increases
dramatically, since Δ𝑧 → 0. One can therefore expect the pressure to also increase
dramatically in the limit of small 𝑅. Our MD calculations show exactly that (Fig. 3.6),
that is, a diverging behavior with decreasing 𝑅, reaching remarkably high values of up
to ∼30 GPa. These values were obtained using the stress tensor-based method [115], as
recently applied to nanobubbles in graphene [98], with pressure being given by:
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Figure 3.6: Pressure estimated from the MD simulations for He, Ne and Ar bubbles in
graphene/Pt(111), as a function of bubble radius. The lines are guides to the eye.

𝑃𝑣𝑑𝑊 = − <
𝑇𝑟(𝜎)
3𝑉b

> (3.2)

where 𝑃𝑣𝑑𝑊 is the van der Waals pressure, 𝑇𝑟(𝜎) is the trace of the virial stress tensor
and 𝑉b is the volume available to the gas atoms. We note that this method, based on the
virial stress tensor, is more general and more appropriate in the present case compared
to other methods based on membrane theory and plate theory. These methods are based
on elasticity theory, which is valid in the large bubble limit, but tends to overestimate the
pressure for small bubbles [98].

3.6 Stability on Pt versus Instability on Cu

As mentioned above, unlike for Pt, bubbles are not observed on Cu flat terraces. It appears
that only the atoms that are trapped in defects (e.g., dips and terrace edges, as shown in
Fig. 3.2) are immobilized as intercalated species. The remainder is likely to escape via
graphene defects (e.g., holes). This bubble instability for graphene on Cu is confirmed
in our MD simulations: If a bubble configuration (similar to those in Pt) is given as the
initial state, the time evolution shows graphene peeling off the Cu surface, resulting in
the dispersion of the trapped gas atoms. This instability can be easily understood as due
to the much weaker adhesion of graphene to Cu (𝛾GS = 0.045 eV/Å2 [116]) compared to
Pt (0.251 eV/Å2 [113]), that is, the Cu-graphene binding is too weak to sustain the high
pressures associated with the bubbles. In order to assess if the gas-metal adhesion (𝛾Sb)
also plays a role in this stability difference, we used density functional theory (DFT) to
calculate the adsorption energy and the adsorption distance of isolated He, Ne and Ar
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atoms on Pt(111) and Cu(111) surfaces [56]. Although the adsorption energies are indeed
larger for Pt than for Cu when comparing the gas elements one by one, it still does not
explain the observed difference in stability. For example, the adsorption energies of Ar
on Cu (for which bubbles are not stable) are larger than those of He on Pt (for which
stable bubbles are observed). We therefore conclude that bubbles are not stable on flat
Cu terraces due to the much weaker adhesion of graphene to Cu as compared to Pt.

3.7 Simulation parameters for molecular dynamics

We simulated the nanobubbles using molecular dynamics (MD). The simulation system
comprised a graphene sheet spanned over Pt(111) and Cu(111) substrates, between which
a varying number (from 6 to 800 atoms) of noble gas atoms (He, Ne and Ar) were
inserted. The graphene sheet dimensions were 7.5 × 7.5 nm2 and at the beginning, the
middle region of the graphene was manually lifted to form an artificial bubble so that
the trapped atoms could be accommodated. The substrate and the graphene sheet were
modeled using the EAM [117] and Airebo potential [118] while the trapped materials, as
well as the interactions among the substrate, graphene sheet and trapped materials, were
modeled using 12/6 Lennard-Jones (LJ) potential. The LJ parameters were set according
to ref. 119 for the trapped gases, ref. 120 for C and ref. 121 for Pt and Cu, and the cross
parameters were calculated using Kong’s formula [122]. The LJ interactions were cut off
at 10 Å distances.

The system was initially subjected to an energy minimization using conjugate-gradient
algorithm, followed by gradually heating the system from frozen to room temperature
using Nose-Hoover thermostat. Next, the NVT simulation at room temperature was
continued until the system exhibited steady state after which the quantities of interest
were calculated. The MD simulations were carried out using the Lammps package [123]
with Velocity-Verlet discretization of the Newtonian equation of motion and 1 fs time-
step. The average out-of-plane motion amplitudes (⟨Δ𝑧⟩) for the smallest bubbles was
obtained by time-averaging among several states in equilibrium. The pressure inside the
bubbles was calculated using the stress formulation [115].
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3.8 Conclusion

To conclude, using ULE implantation of noble gas ions (He, Ne and Ar), we produced
nanobubbles on graphene with varying radius, from few nm down to sub-nanometer.
These nanobubbles are stable for graphene on Pt, but not for graphene on Cu. While the
bubble aspect ratio behaves differently for the different elements, the universal scaling
behavior (that was previously established for larger bubbles) breaks down in all three
cases, for bubble radius around 1 nm, as the bubble height approaches a minimum
corresponding to about an atomic monolayer. We interpret the observed dependencies
on substrate and trapped element in terms of the adhesion energies between the three
constituents: graphene, substrate and trapped noble gas element.

In addition to providing insight on the spatial distribution of the trapped atoms and its
relation to the bubble morphology and stability, molecular dynamics calculations also
allowed us to estimate the van der Waals pressure inside the bubbles. The extremely
high pressures that we obtained, exceeding 30 GPa for the smallest bubbles, illustrate
the unique characteristics of this sub-nanometer bubble regime (achievable using ultra-
low energy ion implantation) compared to the previously studied nanobubbles. These
unique properties offer new opportunities, for example, to study physical states of matter
and chemical reactions under high (van der Waals) pressure, or electronic phenomena
associated with strain-induced pseudomagnetic fields in graphene.

Since the behavior reported here is largely determined by the adsorption energies be-
tween the three constituents (2D material, substrate and trapped substance), one can
expect similar behavior for other 2D materials (e.g., transition metal dichalcogenides
such as MoS2), which expands even further the range of possible applications. In partic-
ular, since the bubble formation is based on ion implantation, our approach is compatible
with virtually any implanted element, 2D material, and substrate.
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Indentation of graphene nanobubbles¶

In this chapter, we present the results of our molecular dynamics simulations, which are used to
investigate the effect of an AFM tip when indenting graphene nanobubbles filled with a noble gas
(i.e., He, Ne, and Ar) up to the breaking point. The failure points resemble those of viral shells
as described by the Föppl–von Kármán (FvK) dimensionless number defined in the context of
elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in
the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano
bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic
pressure at low temperatures than at room temperature.

4.1 Introduction

Van der Waals heterostructures consist of atomically flat thin materials which adhere to
each other by van der Waals attraction [23]. The presence of contaminants is inevitable
while fabricating these heterostructures. Contaminants may include several materials
spanning from e.g. noble gases to water and hydrocarbons. Strong adhesion between
the layers may squeeze out the contaminants into nano scale bubbles [34, 52, 98]. These
bubbles were regarded as a signature of the adhesion between the layers. They were
used in the investigation of the elastic properties of two-dimensional materials and to
study the properties of highly confined materials [42, 43, 45, 46, 49, 50].

AFM nano indentation has been used to study the mechanics of thin materials including
nano bubbles, as well as viral shells such as protein aggregates [52, 124]. Nano indentation
may also be used to determine the hydrostatic pressure of the materials trapped inside
the bubbles. An important question is: up to which size the bubble response against
indentation can be described by continuum theories?

Here, we use molecular dynamics (MD) simulations to study the nano indentation of
graphene nano bubbles. The noble elements He, Ne and Ar were used as trapped ma-
terials. We found that the bubbles exhibit structural failure upon high indentation. The

¶This chapter contributed to the paper: Indentation of graphene nano-bubbles. Nanoscale 14, 5876–5883
(2022).
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Figure 4.1: Schematic of the nano bubble system. Trapped materials are confined between
the Pt substrate and the graphene sheet. A spheroidal tip was placed above the bubble
which caused deformation of the graphene sheet.

failure deformation points and the linear response regime are well described by contin-
uum theories. Furthermore, the bubbles exhibit resilience against periodic deformations
prior to their failure points. The hydrostatic pressure of the trapped material was found
to be highly sensitive to temperature, which was mostly due to the influence of temper-
ature on the bubbles’ geometry. In contrast to He, Ne and Ar elements show crystalline
structure below their melting pressure at room temperature which is a distinct signature
of the effect of very strong confinement on the properties of the trapped materials.

4.2 Simulation details

The simulated system consists of a substrate made of Platinum (Pt-111), a graphene sheet
above the substrate, and a noble material trapped between the substrate and graphene.
The substrate dimensions was taken to be 10×10×1 nm and the graphene sheet dimensions
are 7.5×7.5 nm. At the start of the simulation, the graphene central region was manually
lifted to form an artificial bubble which was filled by one of the three noble materials:
He, Ne and Ar. A spheroidal surface tip with sphere radius of 2 nm (which corresponds
to the smallest commercial AFM tip) made of silicon was placed above the graphene
bubble. The tip had a FCC atomic structure with a lattice constant of 5.43 Å. Fig. 4.1
shows schematically the simulated system.

EAM [125] and AIREBO [117] potentials were used for the substrate and the graphene,
respectively. The cut-off radii of the AIREBO potential were set to 0.2 nm, which has
been demonstrated to eliminate non-physical strain hardening [126, 127] during strong
stretching in graphene [128, 129]. We examined the potential by stretching a pristine
graphene sheet and observed brittle breaking with a fracture stress of ∼ 107 GPa that
agrees with the experimental results [130]. The trapped materials, as well as the van der
Waals interactions among all elements were modelled using the 12/6 Lennard-Jones (LJ)
potential. The employed LJ coefficients for different materials are summarised in table
4.1, while the cross parameters were calculated using the Lorentz-Bertholet mixing rule.
The van der Waals interactions were cut off at 9.8 Å.
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Table 4.1: Parameters for the interaction potentials

Atom type 𝜎𝑖 (Å) 𝜖𝑖/𝑘𝐵 (K) Ref.
Pt 2.54 7910 121
C 3.41 28 120

He 2.55 10 119
Ne 2.82 32 119
Ar 3.47 114 119
Si 3.33 103 121

The graphene and the trapped materials were initially subjected to an energy minimisa-
tion using the conjugate-gradient algorithm [131]. Then, their temperature was gradually
increased from zero to the desired temperature after which NVT simulation was con-
tinued until the bubbles geometry, namely, its radius and maximum height, exhibited a
steady configuration. Next, the tip was moved down with a constant velocity of 0.2 Å/ps
until the tip touched the graphene and deformed it. We found the tip speed results in a
strain rate of ∼ 9 × 10−4 ps−1 in the graphene bond length (in the area under the inden-
tation), which is typical in MD simulations [132]. During the simulations, we reduced
the tip speed until we observed that further reducing the speed had little impact on the
results. To explore the effect of temperature, we repeated the simulations at two tem-
peratures including room temperature (T = 300K), and a low temperature (T = 5K). The
newtonian equations of motion were integrated using the velocity-verlet algorithm with
a time step of 1 fs. All simulations were carried out using the Lammps [123] package.
Graphical snapshots are created using the Ovito software [133].

4.3 The bubble geometry

Once the bubbles exhibited a steady geometry, we measured the radius and maximum
height of the bubbles filled by He, Ne or Ar at two temperatures: 5K and 300K. Moreover,
to examine different bubble dimensions for each trapped element, the simulations were
performed for two different number of trapped atoms 𝑁𝑡 = 800 and 𝑁𝑡 = 1100. Initially,
the tip was placed sufficiently above the bubbles (more than the LJ cut-off radius) so that
it did not affect the bubbles prior to the indentation. To measure the bubble radius and
height, we plotted the cross section of the graphene sheets and heuristically defined the
radius from the points where graphene started to move out of plane and the height was
defined as the maximum vertical distance of graphene from the plane it defines away
from the bubble.

The results for the bubble radius and maximum height for different trapped materials,
as well as for the two temperatures and 𝑁𝑡 are summarised in table 4.2. In general, the
bubbles seem to follow the universal scaling in their height to radius aspect ratio [52].
It is worth mentioning that the bubbles’ radius are sufficiently larger than 1 nm below
which we recently have shown that a breakdown in the universal scaling is envisaged
[56]. Notice that the aspect ratio values are in quantitative agreement with experiment
(see Table (1) of ref. 56 for the large bubble regime). When comparing the bubbles radius
for the same 𝑁𝑡 , the Ar bubbles have the largest radius, followed by Ne and then He
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Table 4.2: The radius and height of the graphene nano bubbles for different trapped
elements, temperature and number of trapped atoms 𝑁𝑡

T = 300K T = 5K
Gas/𝑁𝑡 R(Å) h(Å) h/R R(Å) h(Å) h/R
He/800 28.60 6.41 0.22 28.10 6.13 0.22
Ne/800 33.50 7.32 0.22 31.89 7.99 0.25
Ar/800 44.61 9.11 0.20 40.99 9.22 0.22

He/1100 33.48 7.33 0.22 33.33 7.42 0.23
Ne/1100 39.70 7.91 0.20 37.18 8.87 0.24
Ar/1100 48.21 9.92 0.21 46.60 10.92 0.23

bubbles. We attribute this to the van der Waals radius of the trapped elements which is
the largest for Ar and the smallest for He (see table 4.1). For the same 𝑁𝑡 and trapped
material, the bubble acquire a larger radius at room temperature as compared to the
low temperature results. This can be related to the higher adhesion energy 𝛾 between
graphene and the substrate at low temperatures. Specifically, when temperature is high,
the graphene atoms have higher kinetic energy with stronger vibrations, thereby having
lower effective adhesion to the substrate. This resembles the effect of temperature in the
standard capillary phenomenon. Therefore, at higher temperatures when the adhesion
between graphene and the substrate (𝛾𝑆𝐺) is lower, the trapped materials could detach
the graphene sheet from the substrate more easily, thereby creating bubbles with a larger
radius.

For the same trapped material and 𝑁𝑡 , the low temperature bubbles exhibit higher
maximum heights. To understand this, we should note that the bubbles boundaries
are not clamped in the simulations, yet it is the interplay between 𝛾𝑆𝐺 and the trapped
materials hydrostatic pressure which determines the bubbles volume. The pressure is in
turn influenced by the adhesion energy [52]. Our calculations show that the hydrostatic
pressure of the trapped materials is surprisingly larger at low temperature than at room
temperature (see the trapped materials: pressure and aggregation state section). Thus,
when the bubbles exert higher pressures on the trapped materials at low temperatures,
and concurrently, exhibit lower radius, it will lead to higher maximum heights as can be
seen in table 4.2. This is especially noteworthy as at higher temperature, one would expect
a higher maximum height because gas atoms have larger mobility and their structures are
more out-of-plane [56]. Nevertheless, pressure induced by enhanced adhesion dominates
such that the maximum height is higher at low temperature.

Further, if we accept that the trapped materials pressure is given by 𝑃 =
4𝜋𝛾

5𝑐𝜈 ℎ𝑚𝑎𝑥 (see Eq.
(23) of ref. 52), where 𝑐𝜈 is a constant (≈ 1.7) which depends on the graphene poisson ratio,
we find that the adhesion energy 𝛾 will be higher at low temperature to the extent that
it compensates for both the higher pressure and maximum height. The latter equation
was obtained by analytically minimizing the total energy of the nano-bubble system with
respect to the bubble radius and maximum height, and empirically correlating the free
parameters to the experimental data [52]. The total energy includes the elastic energy of
the deformed graphene, the free energy of the trapped materials, and the vdW energy
necessary to separate the graphene from the substrate [52].
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Figure 4.2: Schematic of the MD simulation system before the indentation for Ar bubble
with 𝑁𝑡 = 1100. A spheroidal surface tip with sphere radius of 2 nm made of silicon was
placed above the graphene bubble.

Figure 4.3: Schematic of the MD simulation system during the indentation for Ar bubble
with 𝑁𝑡 = 1100. The tip deforms the bubble until the point that the graphene sheet
breaks.

4.4 Indentation force-deformation curves

Once the bubbles have reached their steady geometrical shape, we start moving down the
tip. After touching graphene, the tip deformed the bubble until the point that the bubble
eventually breaks and the graphene sheet ruptures. Snapshots from MD are shown in
Figs. 4.2-4.5 which demonstrate the deformation and failure of the bubble as a result of
the indentation. Fig. 4.6 illustrates the variation of the vertical force applied on the tip as
the tip moves down and deforms the bubble at room temperature. Here, the horizontal
axis is the indentation depth (𝛿) normalised by the corresponding bubble radius (𝑅),
and the vertical axis is the vertical component of the total force on the tip normalised by
(
√
𝜅𝑌). Here, 𝜅 is the bending stiffness and 𝑌 is the two-dimensional Young modulus of

the graphene sheet which at room temperature are equal to 𝜅 = 0.24 nN-nm and 𝑌 = 340
N/m.

As expected, the curves are ascending, that is, the indentation force increases with
increased deformation. It can be seen that the curves are initially linear, and gradually
become nonlinear for higher deformations. At least two partial drops (at 𝛿/𝑅 ≈ 0.06
and 0.13) are discernible in the curves after which the curves become highly nonlinear
followed by a dramatic drop. The partial drops in the curves are associated with the
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Figure 4.4: Schematic of the MD simulation system seen from the bottom for Ar bubble
with 𝑁𝑡 = 1100. The time frame is shown just before the graphene failure. The carbon
bonds are under strong stretch. The substrate atoms are not shown here for a better
illustration.



4.4. INDENTATION FORCE-DEFORMATION CURVES 51

Figure 4.5: Schematic of the MD simulation system seen from the bottom after the
graphene failure for Ar bubble with 𝑁𝑡 = 1100. The substrate atoms are not shown here
for a better illustration.
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Figure 4.6: The force applied on the tip versus the bubbles deformation. The bubbles
break at high deformations. The failure points can be described by Föppl–von Kármán
(FvK) dimensionless number Γ = 𝑌𝑅2

𝜅 . The inset magnifies the region of the partial drops
associated with buckling transitions.

points where the energy of two different shapes of the graphene nanobubble cross each
other which are commonly referred to as buckling transitions in the engineering literature
[134] (see the inset of Fig. 4.6). The dramatic drop of the curves at high deformation are
attributed to the failure of the graphene bubble.

Being similar in nature to pressurised vessels, one can ask oneself whether elasticity
theory of thin shells [135] (TST) is helpful in interpreting the indentation of our bubbles.
One important dimensionless number in TST is the so-called Föppl–von Kármán (FvK)
number Γ = 𝑌𝑅2

𝜅 which for a perfect sphere represents the ratio of the magnitude of the
in-plane stretching to the out-of-plane bending forces. In our problem, 𝜅 and 𝑌 are the
same for all bubbles, so the bubble radius solely determines the FvK number (Γ). Using
the aforementioned values for 𝜅 and 𝑌, the FvK number for our He bubble with 𝑁𝑡 = 800
at room temperature is calculated as Γ = 11,588 (which we will refer to Γ0 hereinafter).
The FvK values for the other bubbles normalised to Γ0 are given as legend in Fig. 4.6.
Interestingly, we see that the failure point of the bubbles can be predicted from their FvK
number: the higher the FvK number the lower 𝛿/𝑅 for bubble failure. This is valid to the
extent that the FvK number of the He bubble with 𝑁𝑡 = 1100 is quite close and slightly
higher than that of the Ne bubble of 𝑁𝑡 = 800, and the He bubble fails for a slightly lower
𝛿/𝑅. Interestingly, this description is similar to what has been reported in experiments
on failure of viral shells [58]. Notice that, the failure force is not affected by the FvK
number but it is affected by the trapped material.

Similar curves are found for low temperature (T = 5K) which is illustrated in Fig. 4.7.
Contrary to room temperature, all the curves fail almost at the same 𝛿/𝑅 ( ≈ 0.27). The
Γ values in the legend of Fig.4.7 were calculated based on the 𝜅 and 𝑌 values at room
temperature. Basically, these material properties depend on temperature, and specially
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Figure 4.7: The force applied on the tip versus the bubbles deformation at T = 5K. The
inset magnifies the region of the partial drops associated with the buckling transitions.

in the case of the bending stiffness, the issue is still under debate and the literature on
it is controversial [136–138]. To further investigate this issue, we examined the local
strain rates of Ne bubbles with 𝑁𝑡 = 800 and 𝑁𝑡 =1100 at room temperature and low
temperature. Figs. 4.8-4.11 illustrate strain rates of the bond length across the graphene
sheet for these four bubbles just before the graphene sheet failed. The maximum local
strain for 𝑁𝑡 = 800 bubbles is larger than for 𝑁𝑡 = 1100 bubbles at both temperatures (see
the maximum strain rate in the colour bars next to the contour plots). While the precise
quantitative values of the local strain rates highly depend on the failure definition, as
well as how often the MD data are extracted, the difference between the maximum local
strain rates associated with the two 𝑁𝑡 numbers is higher at low temperature than at
room temperature. The difference at low temperature is four times larger. Therefore,
at room temperature, bubbles rupture at relatively close deformations, so that when the
deformation rate is normalised with the bubble radiuses (x-axis of Fig. 2), the difference
between bubbles of different diameters (and consequently different FvK numbers) will
be readily apparent. On the contrary, the failures at low temperature occur at different
deformations such that after normalisation, the influence of deformation is canceled out
by the influence of radius, and the curves drop at the same breaking point.

Additionally, it is evident that the maximum local strain rates are higher at low temper-
atures than at room temperatures (Figs. 4.10 and 4.11 compared to Figs. 4.8 and 4.9). It
is in accordance with the fact that fracture stress of graphene increases with decreasing
temperature [139]. In order to explain why the maximum strain rates at room tempera-
ture are close to each other as opposed to the results at low temperatures, we attribute it to
graphene’s increased flexibility at room temperature. By having ripples with enhanced
amplitudes at room temperature, graphene becomes more adaptable, so that the area un-
der stress in both 𝑁𝑡 numbers becomes similar. At low temperature, graphene becomes
rigid and 𝑁𝑡 numbers (and radiuses) begin to show their influence. It is worth noting
that at both temperatures, the influence of 𝑁𝑡 numbers is more pronounced at the bubble
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Figure 4.8: Strain rates of bond length across the graphene sheet for Ne bubble with 𝑁𝑡

= 800 at room temperature.

Figure 4.9: Strain rates of bond length across the graphene sheet for Ne bubble with 𝑁𝑡

= 1100 at room temperature.
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Figure 4.10: Strain rates of bond length across the graphene sheet for Ne bubble with 𝑁𝑡

= 800 at T = 5K.

Figure 4.11: Strain rates of bond length across the graphene sheet for Ne bubble with 𝑁𝑡

= 1100 at T = 5K.
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Figure 4.12: Cross section of the Ne bubble profile at the time frame before the graphene
failure for N𝑡 = 800 and N𝑡 = 1100 at room temperature.

Figure 4.13: Cross section of the Ne bubble profile at the time frame before the graphene
failure for N𝑡 = 800 and N𝑡 = 1100 at T = 5K.
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Figure 4.14: The force-displacement curve for periodic indentation after 50 cycles for a
Ne bubble with number of trapped atoms 𝑁𝑡 = 800 at room temperature. The bubble is
resilient against fatigue. Irreversibility in the curves develops after the partial buckling
transitions resulting in hysteresis in the curves.

edges rather than the stress area (see Figs. 4.12 and 4.13). A quantitative investigation
of how the breaking point is sensitive to the changes of FvK number over a continuous
temperature range is beyond the scope of the current work. Nevertheless, we expect that
the sensitivity gradually decreases from room temperature to a point of insensitivity at
low temperature. It is envisioned that at higher temperatures, the sensitivity will increase
until a saturation asymptote.

Lastly, we investigated the reversibility of the deformations, and whether or not our
graphene nano bubbles are vulnerable against periodic indentations, similar to the con-
cept of fatigue. For this purpose, we applied a cycling back and forth indentation to the
Ne bubble of 𝑁𝑡 = 800 at room temperature until the deformation 𝛿/𝑅 = 0.20 which is
before the bubble failure, yet after the two partial buckling transitions. Fig. 4.14 illustrates
the resulted force-deformation curves after 50 cycling indentations. The bubble indeed
exhibits resilience against fatigue while clear hysteresis can be observed. The hysteresis
starts to develop after the first bucking transition, before which the deformations are
reversible for small indentation. We also examined the fatigue and reversibility for the
same bubble at low temperature. Its graph is similar to Fig. 4.14 and is given in Fig. 4.15.

4.5 Elasticity theory of thin shells (TST)

For small indentations when the relation between the indentation force and the deforma-
tion is still linear, TST predicts the total free energy 𝐻 of a pressurised shell of a perfect
sphere system as
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Figure 4.15: The force-displacement curve for periodic indentation after 50 cycles for Ne
bubble with N𝑡 = 800 at T = 5K.
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where 𝜁 = 𝜁(𝑟) is the indentation profile, 𝜏 the osmotic pressure, and 𝑑𝑆 the surface
differential. Minimizing the energy with respect to the indentation profile yields 𝐹.𝑅 ≈
8
√
𝜅𝑌𝜁 for the case of zero osmotic pressure. This means that the shell acts like a simple

harmonic spring with a spring constant of 𝐾1 = 8
√
𝜅𝑌/𝑅. Nevertheless, by taking into

account the osmotic pressure, two springs in series are formed, one originates from the
shell elasticity and the other from the inside pressure.

Table 4.3 summarises the 𝐾1 values calculated for the four bubbles shown in Fig. 4.6,
as well as the slope of their curve (𝐾𝑀𝐷) before the first buckling transition where the
curves are linear. Comparing the results, we see that TST relatively underestimates the
slope of the curves, however the values are still of the same order of magnitude.

One should note that our nano bubbles are not perfect spheres which violates the initial
assumption of Eq. 4.1. Moreover, the bubbles support hydrostatic pressures of the order
of GPa (see the trapped materials: pressure and aggregation state). Therefore, the
calculated 𝐾1 values from TST, while neglecting the osmotic pressure, are expected to
underestimate the slope of the curves.

Comparing the 𝐾𝑀𝐷 results, we can see that the values for 𝑁𝑡 = 800 are higher than for
𝑁𝑡 = 1100. The low 𝑁𝑡 bubbles have smaller radius, thereby having higher shell spring
constant as is evident in the 𝐾1 formula. Nevertheless, the 𝐾𝑀𝐷 values of the Ne atoms
are clearly larger than for the He bubbles, even comparing the Ne bubble of 𝑁𝑡 = 800 and
He bubble of 𝑁𝑡 = 1100 whose shape were rather identical (refer to table 4.2). We will
show in the followings that, for the same 𝑁𝑡 , the trapped materials hydrostatic pressure
are distinctly larger for the Ne bubbles than for the He bubbles. Hence, the higher 𝐾𝑀𝐷
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Table 4.3: Force-deformation curves slope calculated from MD and continuum theories

𝑁𝑡 800 1100
Gas He Ne He Ne

𝐾𝑀𝐷 (N/m) 88.66 98.23 56.49 82.44
𝐾1,𝑇𝑆𝑇 (N/m) 25.27 21.57 21.58 18.20

𝐾2 = 𝜋𝑃𝑅 (N/m) 13.48 16.69 14.17 16.77

values for the Ne bubbles further emphasises the significance of the spring originating
from the trapped materials hydrostatic pressure.

Alternatively, using the analytical methods of ref. 140, the force-deformation slopes (𝐹/𝛿)
can be estimated as 𝐾2 = 𝜋𝑃𝑅. Values of 𝐾2 for the same bubbles are also summarised in
table 4.3. The latter relation has been obtained by ignoring the shell out of plane bending
energy and we restricted ourselves to the in-plane stretching energy. The length scale
𝜅/𝑌 representing the ratio of the bending to stretching forces is ∼ 0.25 Å for graphene,
which is far below our smallest bubbles maximum heights (6.4 Å). Therefore, ignoring
the bending energy is a reasonable approximation. Arithmetic summation of the 𝐾1 and
𝐾2 values, as two springs in series, would get us closer to the 𝐾𝑀𝐷 values. We conclude
that the TST relations for perfect spheres provides us with a simple interpretation of the
force-deformation slopes for small deformation.

Using TST in interpreting the force-deformation slopes after the buckling transitions
where the curves exhibit highly nonlinear behaviour involves solving the highly non-
linear sets of differential equations known as the Föppl–von Kármán equations . These
equations cannot be solved analytically and necessitates numerical computations such as
finite-element analysis which are beyond the scope of our study. This further points out
the significance of molecular simulations in studying the mechanics of graphene nano
bubbles.

It is worth noting that TST commonly predicts nonlinearity of the force-deformation
curves in deformations beyond the length scale

√
𝜅/𝑌. For our smallest bubble (He

bubble of 𝑁𝑡 = 800), this yields 𝛿/𝑅 ≈ 0.01, while our nano bubbles exhibited linear
behaviour until 𝛿/𝑅 ≈ 0.05 (see Fig. 4.6), which further extends the applicability of the
continuum theory.

4.6 The trapped materials: pressure and aggregation state

Graphene nano bubbles have been known to withstand extreme hydrostatic pressures
[96]. Since the pressure of the trapped materials originates from the van der Waals
adhesion between the graphene sheet and the substrate, it is customary to refer to it as
the van der Waals pressure [52]. Next, we calculate the trapped materials hydrostatic
pressure during the indentation of the bubbles.

The pressure values were calculated using the stress formulation [115] that was found
to be valid for systems even away from either equilibrium or homogeneity. Fig. 4.16
illustrates the values of the pressures for Ne bubbles versus the tip displacement, for
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Figure 4.16: Trapped materials hydrostatic pressure for Ne bubbles as function of tip
displacement for different 𝑁𝑡 and temperatures. The curves are guide to the eye.

different values of 𝑁𝑡 and temperature. The pressure values for He and Ar bubbles are
illustrated in Figs. 4.17 and 4.18. It is worth reviewing how the pressure is calculated
here. Under hydrostatic condition, a simple force balance for an infinitesimal volume
inside the system yields the hydrostatic pressure [115] to be as 𝑃 = 1

3 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)
where 𝜎𝑥𝑥 , 𝜎𝑦𝑦 and 𝜎𝑧𝑧 are the internal normal stress components. The normal stress can
then be determined with the summation of two terms including: the interatomic forces
and the momentum flux due to the inner-diffusion of the atoms.

In the following we will find that the trapped materials of Ne and Ar bubbles are in the
solid state, and exhibit a crystalline structure. For He bubbles they are in the liquid state
with restricted inter-diffusion. Therefore, atomic movements away from their crystalline
lattices are not anticipated, and the bubbles’ pressure stems from the first term of the
normal stress, that is, the interatomic interactions. Comparing the results, we notice that
the pressure of Ne bubbles, for the same 𝑁𝑡 , are larger than for He and Ar bubbles. The
stronger interatomic interaction of Ne atoms as compared to He atoms results in higher
pressure inside the Ne bubbles than He bubbles. Ar bubbles, on the other hand, although
have stronger interactions, acquire much larger volumes which suppresses the effect of
atomic interactions resulting in a lower pressure of Ar bubbles than Ne bubbles.

Surprisingly, the pressure graphs show that the trapped materials have higher pressure at
low temperature than at room temperature. We found in table 4.2 that the bubble radius
is smaller at low temperature. Graphene compresses the trapped materials in the radial
direction more at low temperature than at room temperature, and it is as if a substance
is subjected to an external compression ensuing normal stresses inside the substance.
A possible argument could be that some of the trapped materials are in the solid state,
and therefore the force balance of the stress formulation should involve shear stresses
as well, as solids, contrary to liquids, withstand shear stresses at equilibrium. Our MD
calculations shows shear stresses for all bubbles that are one order of magnitude smaller
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Figure 4.17: Trapped materials hydrostatic pressure for He bubbles as function of tip
displacement for different 𝑁𝑡 and temperatures. The curves are guide to the eye.

Figure 4.18: Trapped materials hydrostatic pressure for Ar bubbles as function of tip
displacement for different 𝑁𝑡 and temperatures. The curves are guide to the eye.
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Figure 4.19: Number density graphs for bubbles at room temperature before and after the
indentation. The trapped materials apparently exhibit a layered structure. Indentation
reduces the number of materials layers by one (a-c). Radial distribution function (RDF)
for each of the three layers of trapped materials before the indentation (d-f) and the two
layers of trapped materials after the indentation (g-i). The He atoms show a liquid state
while Ne and Ar atoms exhibit a more crystalline structure.

than the normal stresses, therefore would have minor influence on the force balance.

The pressure values increase with increased indentation. As expected, with increasing
external force from the tip, the normal stresses inside the trapped material increases, and
consequently the pressure increases. Moreover, we will show in the following that the
indentation increases the trapped materials’ surface to volume ratio, and the pressure in
a solid material is expected to increase with increased surface to volume ratio [114].

To further understand the structure and aggregation state of the trapped materials at
room temperature, we calculated the radial distribution function (RDF) and the number
density distribution of the trapped materials (in the direction perpendicular to the sub-
strate) for times before the indentation and after the indentation in the last time frames
prior to the graphene failure. Fig. 4.19 (a-c) illustrates the number density distributions
before and after the indentation. The graphs exhibit a layered structure. The trapped
material has three distinct layers before the indentation which is reduced to two layers
upon indentation. This explains the increase of the trapped materials surface to volume
ratio.
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Figure 4.20: Radial distribution functions for Ne and Ar gases simulated with Lennard-
Jones (LJ) potential in an isothermal-isobaric (NPT) ensemble (at room temperature and
corresponding bubble pressure) for different system size and MD cut-off radius.

Fig. 4.19 (d-f) illustrates the RDF graphs for each of the three layers of the trapped mate-
rials (identified in the number density graphs) before the indentation. The curves of the
three layers are more or less the same. We depicted the curves for the bottom layers which
contain the majority of atoms in each bubble with thicker lines for a better illustration.
RDF graphs exhibit only a second peak for He atoms while there are additional peaks
for Ne and Ar atoms indicating that He atoms are in the liquid state while Ne and Ar
atoms are in the solid states. A look at our MD trajectories confirm that Ne and Ar form
a stable crystalline structure, while He show a more disordered atomic arrangement yet
with restricted dynamic arrangements. We conclude that Ne and Ar are in the solid state
and He is in the liquid state.

Similarly, Fig. 4.19 (g-i) shows the RDF graphs for the two layers of trapped materials after
the indentation. The curves for each material are similar to those before the indentation
suggesting that the influence of indentation on the trapped materials’ aggregation state
is not that significant. The plotted results are for 𝑁𝑡 = 800, while the results for 𝑁𝑡 = 1100
are very similar.

We compare the trapped materials’ pressure with the solidification pressure of their bulk
condition. Parameterisations of Simon’s law for He [141], Ne [142] and Ar [141] yield
solidification pressure at room temperature of 𝑃𝑠 = 12.09 GPa for He, 𝑃𝑠 = 4.79 GPa for
Ne, and 𝑃𝑠 = 1.35 GPa for Ar. Interestingly, the calculated pressure of Ne and Ar bubbles
(1.59 GPa and 1.14 GPa, respectively) are below their bulk solidification pressure. We
attribute this to the effect of strong confinement which further elucidates the effect of
confinement on the materials properties.

Lastly, in order to verify that the solidification results from the effect of confinement and
not from the LJ model, we performed a few extra simulations. With the same LJ parame-
ters used here, we simulated Ne and Ar gases in an isothermal-isobaric (NPT) ensemble
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(at room temperature and the corresponding bubble pressures) within a periodic box.
The uncertainty in the prediction of melting lines in LJ models can be attributed to the size
effect or the MD interaction cut-off [143]. Therefore, we repeated the simulations with
two different numbers of atoms (1100 and 62500), using 1 nm or 2 nm cut-off distances in
each case. Fig. 4.20 illustrates RDF graphs for different cases showing that the gases are
in the liquid state, so we can infer that the solidification of the trapped materials inside
the bubbles originates from confinement.

4.7 Conclusions

We investigated the effect of nano indentation of graphene nano bubbles using molecular
dynamics simulation. The bubbles structural failure can be predicted from the elastic
properties of graphene and the bubbles radius in terms of the Föppl–von Kármán (FvK)
dimensionless number. The continuum elasticity theory of thin shells qualitatively ex-
plains the linear response of the bubble against the force applied from the indentation
tip. The bubbles do not degrade while being subjected to cycling deformations when
below the failure point. Ne and Ar atoms inside the nano-bubble are ordered into a crys-
talline state for pressures lower than their bulk melting pressure because of the highly
confinement. This study sheds light on the important feature of nano-indentation of
nano-bubbles.
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Flat nanobubbles encapsulated by

hexagonal boron nitride¶

Different-shaped nanoscopic bubbles emerge when encapsulated within two-dimensional hexago-
nal boron nitride (hBN). Within these hBN bubbles, flat islands manifest, corresponding to specific
molecular monolayers. Upon heating, these bubbles rapidly transition from flat to round shapes.
Our experimental findings are supported by molecular dynamics simulations, highlighting the
crucial role of hydrogen bonds in shaping these nanoscopic structures. Furthermore, our study
unveils the chaotic behavior exhibited during heating, showcasing a diverse array of bubble shapes
influenced by the heating rate.

5.1 Introduction

In the synthesis of structures comprising layers of two-dimensional (2D) materials, the
presence of unavoidable environmental impurities becomes trapped between these 2D
layers. Driven by van der Waals attraction among these sheets, these impurities com-
press into microscopic and nanoscopic bubbles. These bubbles have gained considerable
attention in both scientific and technological applications in recent years [53, 57, 144–146].

Within the spectrum of 2D materials, boron nitrides exhibit fascinating thermal, electrical,
and mechanical properties, some of which surpass even those of graphene [147–149].
Previous investigations were predominantly focused on graphene membranes, with less
attention given to boron nitride, an ionic material that is softer and more easily deformable
than graphene. Hence, the exploration of bubbles formed in monolayer hexagonal boron
nitride (hBN) holds significant importance.

The shape of these nanobubbles is intricately influenced by a complex interplay of factors,
including the elastic properties of the 2D materials, the adhesion between the 2D material
and the substrate, and the hydrostatic pressure exerted by the trapped substances [52, 59].
Theoretical and experimental studies suggest that hBN bubbles with a radius smaller than
200 nm tend to adopt a round shape [52]. As these bubbles grow in size, they exhibit

¶The experimental results of this chapter are from the group of Prof. Irina Grigorieva at the University of
Manchester.
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a tendency toward triangular shapes with smooth edges, eventually transitioning into
pyramid formations for bubbles at the microscale [52].

Drawing on the theory of elasticity of membranes, Khestanova et al. [52] demonstrated
that for round-shaped bubbles, the bubble geometry adheres to a universal aspect ra-
tio (height-to-radius). This ratio is influenced by the adhesion energy between the two
crystals and the Young’s modulus of the deformed two-dimensional crystal. Notably,
nanobubbles in monolayer hBN on graphene consistently display an aspect ratio ranging
between 0.10 and 0.15. Through scanning tunneling microscopy (STM) measurements
and molecular dynamics (MD) simulations, however, we have uncovered that the univer-
sal scaling breaks down as the bubble radius approaches 1 nm or less [56]. Nevertheless,
our recent experiments unveil intriguing, previously unobserved results: nanobubbles
formed by a monolayer of hBN on an hBN substrate display small, flat islands at only
two distinct heights (∼0.4 nm and ∼0.8 nm). When subjected to heat, these flat bubbles
transform into round shapes.

In this chapter, we briefly introduce some experimental observations, followed by pre-
senting the results of our molecular dynamics simulations to delve into the underlying
physics of these phenomena. It is revealed that, in addition to the previously mentioned
criteria, the distribution of hydrogen bonds between the atoms of the trapped substances
and the nitride acceptors within the hBN sheets plays a pivotal role in determining bubble
shapes. Additionally, the influence of heating on altering bubble shapes is found to be
chaotic, with different shapes envisioned based on the speed at which the heating occurs.

5.2 Experimental Setup and Procedures

Bubbles formed by a monolayer of hexagonal boron nitride hBN on an hBN substrate
exhibit small, flat islands at only two distinct heights (approximately 0.4 nm and 0.8 nm)
across various standard samples. These heights correspond to one and two monolayers
of trapped molecules (see Fig. 5.1). Furthermore, when subjected to heat, these flat
bubbles undergo a transformation into round shapes. Specifically, at 160 °C, the height
abruptly shifts from approximately 0.4 to 0.9 nm (see Fig. 5.2).

5.3 Molecular Dynamics Simulations

5.3.1 Methodology and Parameters

We employ molecular dynamics simulations to investigate the geometry of nanobubbles
formed within hexagonal boron-nitride (hBN) heterostructures. The trapped materials
within these nanobubbles are simulated using decane (𝐶10𝐻22) hydrocarbon molecules.
Additionally, for comparative analysis, we conduct simulations involving nanobubbles
composed of graphene sheets or containing water molecules.

The literature reports varying values for the static charges on boron and nitrogen atoms
in hBN sheets, ranging from 0 to 1.05e [150–154]. The ambiguity arises from challenges in
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Figure 5.1: Small, flat islands showcasing two characteristic heights in hBN bubbles.

Figure 5.2: The transition from flat to round bubbles observed after baking at 160 °C.



68
CHAPTER 5. FLAT NANOBUBBLES ENCAPSULATED BY HEXAGONAL BORON

NITRIDE

distinguishing electron densities between atoms of different elements. In our simulations,
we adopted a mid-value of 0.42e for static charges. Importantly, we verified that our
primary findings exhibit consistency across the range of static charges.

To simulate the bonds, angles, and dihedrals of the decane molecules, Optimized Poten-
tials for Liquid Simulations (OPLS) [155] have been used. The water molecules were also
simulated using the SPC/E model. An optimised Tersoff potential [156] has been used for
hBN or graphene sheets. We calculate non-bonded interactions using the Lennard-Jones
(LJ) formula for van der Waals and the point charge electrostatic formula for electro-
static interactions. The parameters for the non-bonded interactions between all of the
species, including the inter-layer interactions between hBN and graphene sheets are set
as gathered by ref. 157. The Lorentz-Berthelot mixing rules are used to calculate cross
parameters.

We utilized the particle-particle particle-mesh (P3M) algorithm [158] to accurately com-
pute long-range electrostatic interactions in k-space with a precision of 1 × 10−4. The
SHAKE algorithm was employed to maintain the rigidity of water molecules. The sim-
ulations were conducted employing LAMMPS [123], utilizing the velocity-Verlet dis-
cretization of the Newtonian equation of motion with a time step of 1 fs.

5.3.2 Results and Discussion

5.3.3 Room Temperature Simulations

Our molecular dynamics investigations proceeded as follows. Initially, we simulated 150
decane molecules confined between two hBN sheets at room temperature. Fig. 5.3 shows
the cross section of the nanobubble profile. With one layer of hydrocarbon molecules
and a height of 0.49 nm, the bubble profile exhibits a predominantly flat morphology.

We extended our simulations to investigate a nanobubble filled with 1000 water molecules
at room temperature (see Fig. 5.4). Similar to the hydrocarbon-filled bubble, this config-
uration also reveals a flat profile with only one layer of trapped materials, measuring a
height of 0.39 nm.

Comparing this water-filled bubble with its counterpart formed between graphene layers,
which is anticipated to have an aspect ratio of approximately 0.15 [52], the hBN-encased
bubble stands out for its distinctly flat profile. Further exploration involved repeating the
simulation with the atomic charges of the hBN atoms turned off. In this case, the bubble
adopted a spherical shape with a height of 0.87 nm and a radius of 4.79 nm (aspect ratio
of 0.18, as expected; see Fig. 5.5).

This observation leads us to hypothesize that the partially negatively charged nitride
atoms in the hBN sheets serve as acceptors, forming hydrogen bonds with the hydrogen
atoms of the water molecules. This configuration allows the water cluster to arrange
itself to maximize the interface with the hBN sheets, resulting in a one-atomic-layer
bubble. When atomic charges are turned off, a spherical bubble shape emerges due to
the interplay between van der Waals attraction between sheets, pressure from trapped
materials, and the elastic properties of the sheets [52, 59].
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Figure 5.3: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of decane hydrocarbon molecules, denoted by large
(carbon) and small (hydrogen) circles.

Figure 5.4: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of water molecules, denoted by large (oxygen) and
small (hydrogen) circles.
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Figure 5.5: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of water molecules, denoted by large (oxygen) and
small (hydrogen) circles. In the hBN layers, atomic charges are artificially turned off.

As an additional demonstration, we conducted simulations of a bubble containing 1000
water molecules at room temperature. However, in this case, instead of hBN sheets, two
graphene sheets constituted the bubble. As anticipated, the result is a spherical bubble
(see Fig. 5.6) with a height of 0.73 nm and a radius of 5 nm (aspect ratio of 0.15).

In another scenario, we simulated an intermediate situation where a bubble, filled with
1000 water molecules at room temperature, consists of an hBN sheet on the top and a
graphene sheet on the bottom (see Fig. 5.7). Once again, the observed profile is flat, with
a single layer of water molecules measuring 0.4 nm in height. This outcome suggests that
hydrogen bonds with only one layer are adequate to maintain the flattened structure of
the bubble.

Having established the crucial role of hydrogen bonds, we investigated whether a similar
scenario arises with bubbles filled with decane hydrocarbon molecules. Given that the
hydrogen atoms of decane molecules also form hydrogen bonds with the nitride acceptors
of hBN sheets, we repeated the simulation of the aforementioned bubble (150 decane
molecules) between two hBN layers, with artificially turned-off atomic charges (see Fig.
5.8). Interestingly, the resulting bubble profile remains flat, in contrast to our observations
with water. To further explore this phenomenon, we replicated the simulation for 150
decane molecules between two graphene sheets (see Fig. 5.9) and between a top hBN
sheet and a bottom graphene sheet (see Fig. 5.10), all conducted at room temperature.

All the aforementioned bubbles exhibit flat profiles with a consistent height of 0.49 nm.
This prompts the question: why do bubbles containing water differ in behavior from those
containing decane molecules? We attribute this distinction to the hydrostatic pressure
exerted by the trapped materials inside the bubble. Qualitatively, pressure is proportional
to 𝜌𝑇/𝑀, where 𝜌 denotes density, 𝑇 is temperature, and 𝑀 represents molecular mass.
Given that decane has lower density and much higher molecular mass than water, the
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Figure 5.6: Cross-section of the nanobubble profile with top and bottom layers made of
graphene. The trapped material consists of water molecules, denoted by large (oxygen)
and small (hydrogen) circles.

Figure 5.7: Cross-section of the nanobubble profile with the top layer made of hBN and
the bottom layer made of graphene. The trapped material consists of water molecules,
represented by large circles (oxygen) and small circles (hydrogen).
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Figure 5.8: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of decane hydrocarbon molecules, denoted by large
(carbon) and small (hydrogen) circles. In the hBN layers, atomic charges are artificially
turned off.

Figure 5.9: Cross-section of the nanobubble profile with top and bottom layers made of
graphene. The trapped material consists of decane hydrocarbon molecules, denoted by
large (carbon) and small (hydrogen) circles.
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Figure 5.10: Cross-section of the nanobubble profile with the top layer made of hBN and
the bottom layer made of graphene. The trapped material consists of decane hydrocarbon
molecules, denoted by large (carbon) and small (hydrogen) circles.

bubble containing decane at room temperature is expected to have lower hydrostatic
pressure than its water-filled counterpart. This can be attributed to the heavy decane
molecules exhibiting less inertia and weaker collisions with the boundary layers, leading
to a lower pressure generation compared to water, as per kinetic theory. Consequently,
bubbles containing decane have a reduced tendency to overcome the elastic response of
the bubble layer and gain height compared to bubbles containing water.

5.3.4 Annealing Simulations

Considering the relevance of baking procedures in pertinent experiments, we explored
the effects of increasing the temperature, starting with bubbles filled with water. At an
elevated temperature of 170 °C, we simulated a bubble with both top and bottom layers
consisting of hBN sheets containing 1000 water molecules (see Fig. 5.11). Intriguingly, the
previously flat profile transformed into a spherical bubble (compare Figures 5.4 and 5.11).
With the rise in water temperature inside the bubble, the associated increase in hydrostatic
pressure overcame the influence of hydrogen bonds, resulting in a taller bubble [59]. The
aspect ratio of the bubble (radius to height) is 0.17. Subsequently, we gradually decreased
the temperature back to room temperature. Surprisingly, the bubbles maintained their
spherical shape, and this profile closely resembled that observed at 170 °C (not shown
here).

In the subsequent phase, we conducted simulations for bubbles containing 1000 water
molecules placed between two graphene sheets (see Fig. 5.12) and between a top hBN
sheet and a bottom graphene sheet (see Fig. 5.13). In both scenarios, as anticipated, the
bubbles exhibited a spherical shape at 170 °C. Upon gradually cooling the bubbles back
to room temperature, the spherical profile persisted (not shown here). Notably, all of
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Figure 5.11: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of water molecules, denoted by large (oxygen) and
small (hydrogen) circles. The temperature has been raised to 170 °C.

these bubbles maintained a consistent height of around 0.9 nm.

Subsequently, we investigated hydrocarbon-filled bubbles at an elevated temperature.
Specifically, we increased the temperature of the bubble containing 150 decane molecules
between hBN layers to 170 °C. Intriguingly, we observed different bubble shapes depend-
ing on the rate of heating. For instance, using a Nose-Hoover thermostat damping factor
of 0.2 ps (200 times the MD time-step), a flat bubble akin to room temperature (see Fig.
5.3) was maintained (see Fig. 5.14). However, with a faster heating rate of 0.1 ps damping
factor, the bubble profile doubled in height, forming two layers of hydrocarbon molecules
(see Fig. 5.15). This latter bubble had a height of 0.89 nm, and even after cooling it back
to room temperature, the same two-layer configuration persisted. It is noteworthy that
in Fig. 5.15, the bubble’s profile is not smoothly spherical; rather, it exhibits a distinct
two-layer structure with flat edges on both layers.

In our exploration, we delved into the effects of even faster heating on the hydrocarbon-
filled bubble. For this, we repeated the simulation with a thermostat damping factor
reduced to 0.05 ps. Interestingly, the resulting profile once again exhibited a flat, one-
layer configuration similar to that observed in Fig. 5.14. This underscores the highly
chaotic nature of the system, where nonlinear responses are expected.

Our overarching conclusion is that the system’s behavior is sensitive to the heating con-
ditions, leading to both single-layer and two-layer hBN bubbles containing hydrocarbon
molecules after the baking process. The intricate interplay of non-bonded attractions be-
tween sheets, hydrostatic pressure exerted by trapped materials, the elastic response of
bubble layers, and hydrogen bonding between hydrogen atoms of hydrocarbon molecules
and nitride acceptors of the hBN sheets is highly sensitive to initial conditions, determin-
ing whether a single or two-layer configuration of the hBN bubble is realized.
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Figure 5.12: Cross-section of the nanobubble profile with top and bottom layers made of
graphene. The trapped material consists of water molecules, denoted by large (oxygen)
and small (hydrogen) circles. The temperature has been raised to 170 °C.

Figure 5.13: Cross-section of the nanobubble profile with the top layer made of hBN and
the bottom layer made of graphene. The trapped material consists of water molecules,
denoted by large (oxygen) and small (hydrogen) circles. The temperature has been raised
to 170 °C.
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Figure 5.14: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of decane hydrocarbon molecules, denoted by large
(carbon) and small (hydrogen) circles. The temperature has been raised to 170 °C with a
thermostat damping factor of 0.2 ps.

Figure 5.15: Cross-section of the nanobubble profile with top and bottom layers made of
hBN. The trapped material consists of decane hydrocarbon molecules, denoted by large
(carbon) and small (hydrogen) circles. The temperature has been raised to 170 °C with a
thermostat damping factor of 0.1 ps.
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In our final exploration, we sought to understand if substituting smaller hydrocarbon
molecules would yield different results. Therefore, we conducted a comprehensive set
of simulations, repeating all the aforementioned scenarios but replacing the 150 decane
molecules with 240 hexane (𝐶6𝐻14) molecules—maintaining an equivalent total number
of atoms. Remarkably, the results for hexane molecules were nearly identical to those
observed for decane molecules.

5.4 Conclusion

The prevalence of hydrogen bonding imparts a greater tendency for hBN bubbles to
maximize the interface with trapped materials compared to graphene nanobubbles. The
kinetic movements and higher hydrostatic pressure of water-filled bubbles make them
more prone to deviate from a single-layer conformation compared to hydrocarbon-filled
bubbles. Notably, when water is present, baked bubbles exhibit a consistent spherical
shape. In contrast, the presence of hydrocarbons introduces a chaotic element, and
depending on the rate of heating, both single-layer and two-layer configurations have
been observed, underscoring the nonlinear and sensitive nature of the system.
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Cation controlled permeation of charged

polymers through nano-capillaries¶

Molecular dynamics simulations are used to study the effects of different cations on the permeation
of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that,
despite being monovalent, Li+, Na+, and K+ cations have different effects on polymer permeation,
which consequently affects their transmission speed throughout those capillaries. We attribute
this phenomenon to the interplay of the cations hydration free energies and the hydrodynamic
drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different
surface versus bulk preferences in small clusters of water under the influence of an external electric
field. This study presents a tool to control the speed of charged polymers in confined spaces using
cations.

6.1 Introduction

Charged polymers are prevalent in nature and industry. They can be produced when
polyelectrolytes dissociate. Polyelectrolytes have ionizable functional groups. Upon
dissolution of polyelectrolytes in water, the ionizable groups will dissociate, and while
dispersing counter-ions in the water, polyelectrolytes will turn into charged polymers.
DNA and most proteins are examples of these macromolecules [159]. The highly solvable
characteristics of charged polymers make them beneficial to a wide range of industrial
applications, including drug delivery [12–14], nano reactors [15, 16], and cell biology
[17, 18].

Experiments have revealed entropically driven movement of polyelectrolytes when they
tend to become unstructured which motivates the study of charged polymers inside con-
finement [160]. Furthermore, through the translocation inside nanoscale spaces, charged
polymers can be detected, processed, and sequenced [22, 61–63]. Nanocapillaries at
molecular scales have been made possible due to recent advances in fluidics fabrication
[1–11]. The slit pores of few molecular diameters provide enhanced control over confine-
ment [60]. Due to this, they have attracted a lot of attention. In highly confined capillaries,

¶This chapter contributed to the paper: Cation-controlled permeation of charged polymers through
nanocapillaries. Physical Review E 107, 034501 (2023).
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how the polymer attempts to permeate the capillary might have just as much influence
on its transmission as the behavior of the polymer inside the capillary itself. Earlier
studies conducted on macromolecules’ translocation where mostly limited to spaces of
the order of 10 nm and beyond [161–163]. Here we investigate a very different regime
with polymer transmission in narrow capillaries below 2 nm.

Conventional theories such as the de Gennes regime [164], the Odĳk regime [165], Man-
ning [166] and Poisson−Boltzmann [167] might not be applicable in strong confinements,
and furthermore they do not consider the details of ionic interaction and the specifity of
counterions. Molecular simulations do not have those restrictions. We used molecular
dynamics (MD) simulation to investigate how different cations of Li+, Na+, and K+ in-
fluence the permeation of a charged polymer through a capillary with a 1.8-nm height.
Since C and H atoms are ubiquitous constituents of charged polymers, we used a hydro-
carbon molecule (C10H22) with artificial electrical charge on its atoms as a representative
of a charged polymer. This particular polymer molecule was chosen in order to have a
characteristic size comparable and smaller than the capillary size so that it will not feel
an entropic barrier when it is permeating through the capillary. Interestingly, we found
that the aforementioned cations, although being monovalent, had different influences
on the polymer permeation. This, in turn, affected the dynamics of the polymer when
transmitted inside the capillary. Our study shows that the permeation and transmission
speeds of charged polymers in confined capillaries can be modulated by varying the type
of cation.

6.2 Simulation details

The simulation system is schematically shown in Fig. 6.1. The system consists of two
reservoirs connected by a narrow capillary made of two graphene sheets. The reservoirs
are filled with water with a bulk density of 1000 kg/m3. KCl, LiCl and NaCl are used
as electrolytes which are dispersed inside the reservoirs. The polymer initially was put
in the corner of the feed (left) reservoir. The reservoirs’ dimensions are 5.3 nm × 5.3 nm
× 5.0 nm assuring enough space to accommodate ample ions up to 1M concentration.
The capillary length is 6.3 nm having a height of 1.8 nm. Periodic boundary condition is
applied along the z direction.

Each polymer atom was given an artificial electric charge of -0.5e. The system atoms
feel an applied body force proportional to their charge, which is similar as in the case
of a uniform electrical field. When the polymer is exposed to the electric field, it starts
permeating through the capillary. The direction of the electrical field was set such that it
pulls the negatively charged polymer into the capillary and the permeate (right) reservoir.

The simulations were carried out using the LAMMPS package [123]. The water molecules
were modeled using the SPC/E model. The ions were considered point-charged parti-
cles. Van der Waals interactions were modeled using the Lennard-Jones (LJ) potential,
and the OPLS [155] force field was used to describe the bond, angle, and dihedral poten-
tials of the hydrocarbon molecule. Table 1 summarizes the LJ coefficients, while for cross
parameters Lorentz-Bertholet mixing rules were applied. Van der Waals interactions
were cut off at 9.8 Å, and the long-range electrostatic interactions were calculated by
utilizing the particle-particle particle-mesh (pppm) algorithm in k-space [158]. To accel-
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Figure 6.1: Schematic of the simulation setup. The feed and permeate reservoirs are
connected by a narrow flat capillary. External electrical field is applied on the charged
particles pulling a negatively charged polymer from the feed reservoir into the capillary
and subsequently it diffuses into the permeate reservoir. Cyan and orange particles
represent cations (K+, Na+, Li+) and anions (Cl−), respectively. For ease of illustration,
water molecules are depicted as tiny points.

erate the simulations, bonds and angles constraints were applied to the water molecules
according to the Shake algorithm [168, 169]. The Newtonian equations of motion were
discretized by using the velocity-vervet algorithm with a time-step of 0.5 fs. Using Nose-
Hoover’s thermostat (with 20 fs damping parameter), time integrations were performed
in canonical ensemble (NVT) at room temperature. The initial coordinates of the particles
were generated using the VMD [170] and Packmol [171] packages. The schematic of the
simulation system (Fig. 6.1) was produced using the Ovito software [133].

The bulk versus surface solvation of a cation (K+ or Li+) within a spherical cluster of
water composed of 186 molecules was investigated using steered molecular dynamics
(SMD). Free energy is calculated as described in ref. 172 and ref. 67. The cation is bonded
to a simple harmonic spring with a constant of 49 kcal/mol.Å. The spring equilibrium
distance from the center of mass of the cluster was gradually increased in intervals of 1
Å so that the cation gradually moved from the center to the surface. In each interval, the
system is initially relaxed for 50 ps, and then an NVT simulation is performed for 5 ns at
room temperature, and the average force felt by the spring is calculated. The free energy
can be calculated by numerically integrating the force versus the distance.

The simulations were repeated using two models, one non-polarisable and one polar-
isable. For the non-polarisable model, a simple point charge model is used for water
(SPC/E) and cations (similar to that used for the main results), together with LJ and
Coulomb forces. The polarisable model is based on the ReaxFF parameterised for elec-
trolyte solutions together with the standard Qeq charge distribution. The cut-off radius
for SMD simulations is taken large i.e. 10 nm. To avoid evaporation of water molecules
from the surface of the cluster, an illusory spherical wall with a radius of 1.4 nm was
considered around the cluster, interacting only with water molecules according to the LJ
formula (with oxygen parameters). However, the energy contributions from the inter-
action with the wall are not included in the calculation of energy. The other simulation
details are similar to those for the main MD simulations.
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Table 6.1: Parameters for the interaction potentials

Atom type 𝜎𝑖 (Å) 𝜖𝑖 (kcal/mol) × 103 Ref.
C (decane) 3.50 65 155
H (decane) 2.49 30 155
O (water) 3.12 169 173
H (water) 0 0 174

C (graphene) 3.41 55 120
K 3.31 99 175

Na 2.58 99 175
Li 1.51 166 175
Cl 4.40 99 175

6.3 Results and discussion

Figs. 6.2(a-d) show the time-displacement curves of the polymer center of mass for
four different applied electrical fields, which are equivalent to applying voltages of,
respectively, 5V, 12V, 25V, and 50V across the entire system. For each case, calculations
were performed with five different KCl concentrations. Note that the polymer encounters
a barrier when trying to permeate through the capillary. For instance, for the lowest
voltage (5V) we observe that for all KCl concentrations, the polymer moves towards
the capillary mouth but is not able to enter the capillary. In the following, we will
examine the origins of such an entry barrier. For larger voltages, the KCl concentration
within the reservoirs influences the polymer transmission considerably: the smaller the
KCl concentration, the larger the polymer entry probability, and the faster the polymer
transmission.

The probability of permeation and transmission speed are higher for larger voltages,
as one would expect (see Fig. 6.2). However, it is intriguing that polymer transmission
speed correlates inversely with reservoir ion concentration. This is similar to what occurs
in DNA translocation through nanopores with heights of about 10 nm [64]. Therefore, we
may hypothesize that the counter-cations (K+ here) which have settled on the polymer
surface reduced its effective charge and in doing so reduces the effective force acting on
the polymer.

In order to explore further, additional simulations were performed using LiCl and NaCl
electrolytes as well. The time-displacement curves of Li+ and Na+ as cations are de-
picted in Figs. 6.3 and 6.4, respectively. Li+ and Na+ cases also exhibit suppression of
transmission at higher concentrations, although the curves for different cations are not
the same. Note that similar result were observed earlier in DNA experiments, showing
that although potassium, lithium, and sodium are all monovalent cations, their impact
on transmission is different [64].

Fig. 6.5 illustrates the polymer transmission mean velocities for different electrolytes
and concentrations at 25V and 50V. The mean velocity of polymer was found by fitting a
line to the time-displacement curves when polymer is inside the capillary. Interestingly,
different cations result in different polymer transmission velocities with the largest for
lithium and the smallest for potassium. The trend is in contrast to the observation of
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Figure 6.2: Time evolution of the polymer center of mass for five different KCl ion
concentrations subjected to different voltages across the system: 5V(a), 12V(b), 25V(c)
and 50V (d).

Figure 6.3: Time-displacement curves for the polymer centre of mass for five different
LiCl ion concentrations subjected to different voltages across the system: 5V(a), 12V(b),
25V(c) and 50V (d).
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Figure 6.4: Time-displacement curves for the polymer centre of mass for five different
NaCl ion concentrations subjected to different voltages across the system: 5V(a), 12V(b),
25V(c) and 50V (d).

DNA translocation in nano-pores, where translocation was slowed when potassium ions
were replaced by lithium [64].

To investigate further, we examined the time-displacement curves for three different cases
including systems without solute ions, systems with ions, and systems with ions fixed at
certain positions (generated initially at random), thus, not able to move. The latter case
was investigated to determine whether ions’ influence was solely due to their attachment
to the polymer surface, or if they would also produce an electrophoretic barrier. Fig. 6.6
shows the time-displacement curve for potassium (a-c) and lithium (d-f) for the three
mentioned cases. For each cation, the three columns from left to right, are related to ion
concentrations of 0.5M, 0.75M and 1M, respectively. Notice that the x-axis is restricted
to the capillary length. Clearly, when lithium is present, all three curves are relatively
close to each other, whereas for potassium, the curves of the systems with moving ions
are separated from the other two.

In both potassium and lithium electrolytes, the fixed ion curves are very close to the
curves in the absence of any ions. This is sufficient to conclude that adhesion of the
cations to the surface of the polymer and consequently the reduction of its effective
charge dominate the polymer dynamics. Nevertheless, the next question is: why is there
such a clear difference in potassium and lithium solutions? Is this related to what is
happening inside the capillary or does it originate from what is happening prior the
polymer enters the capillary?

Fig. 6.7(a) shows the number of cations within the capillary for both potassium and
lithium electrolytes at 50V versus time. The start of the time was set to when the polymer
started moving. The bold curves are averaged over the last 2.5 ps and are depicted for the
time interval when the polymer resided inside the capillary. It is apparent that in potas-
sium electrolyte, the number of cations inside the capillary, and consequently the number
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Figure 6.5: Polymer mean velocity inside the capillary versus the cation concentration
for KCl, NaCl and LiCl electrolytes at 25V (left) and 50V (right). The curves are guide to
the eye.

Figure 6.6: Polymer time-displacement curves for three different systems including:
without ions, with ions and with ions frozen at particular positions. The upper and
lower row, respectively, are for KCl and LiCl electrolytes, and the columns from left to
right are for 0.5M, 0.75M and 1M solutes concentrations.
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of cations settling on the polymer surface are higher than in lithium electrolyte. Thus, it
is understandable why the polymer velocity was lower with potassium electrolytes (see
Fig. 6.5). Another important point to note is that the polymer in potassium electrolyte
enters the capillary much later than that in lithium electrolyte. Therefore, one can con-
clude that the main reason for the difference in the systems’ behavior is the pre-entering
of the polymers into the capillary. Fig. 6.7(b) illustrates the time-displacement curves of
the same two cases as Fig. 6.7(a), emphasising the capillary mouth. The polymer enters
the capillary quite smoothly in lithium electrolyte, whereas in potassium electrolyte, the
polymer experiences a barrier before entering the capillary.

To describe these effects, we hypothesize that the aforementioned barrier is present
in both potassium and lithium electrolytes; however, in potassium electrolyte, from the
beginning of the polymer movement until it reaches the capillary mouth, a higher number
of cations have settled on its surface than in lithium electrolyte. According to our MD
trajectories, at the capillary mouth, five K+ ions stick to the polymer in case of potassium
electrolyte, while three Li+ ions stick to it for lithium electrolyte. Therefore, the polymer
in potassium electrolyte has a lower effective charge, so the applied electrical force is
less to overcome the barrier. It is for this reason that the polymer enters the capillary
noticeably later in the presence of the potassium electrolyte. This delay at the capillary
mouth, in turn, causes even more cations to settle on the surface of the polymer, and
eventually, the polymer enters the capillary with a higher number of cations and a lower
velocity. The reason why a higher number of K+ ions stick to the polymer before it
enters the capillary than Li+ ions can be attributed to the higher hydration strength of the
lithium ions (hydration enthalpy of -520 kJ/mol for lithium as opposed to -322 kJ/mol
for potassium [176]). If the ions are to settle on the polymer surface, they need to be
dehydrated (at least partially), which is more likely for potassium ions.

In order to examine this hypothesis, we repeated the simulations for two different capil-
lary heights of 1.4 nm and 2.4 nm where we expect higher and lower entrance barriers,
respectively. Fig. 6.7(c) depicts the number of cations for the 1.4 nm capillary. For both
electrolytes, the number of cations inside the capillary is about the same, and the polymer
enters the capillary almost simultaneously. Fig. 6.7(d) illustrates the time-displacement
curves of the 1.4 nm capillary emphasising the capillary mouth. Contrary to the 1.8 nm
capillary, here, the barrier is also pronounced for the lithium electrolyte. Due to the nar-
rower capillary, the barrier will be even larger causing the polymer in lithium electrolyte
also to be held up at the capillary mouth for some time, and eventually its dynamics
will be close to the case of potassium electrolyte. Our MD trajectories show that at the
capillary mouth, six cations stick to the polymer for both electrolytes.

Fig. 6.7(e) and 6.7(f) illustrate the number of cations inside the capillary and the time-
displacement curves emphasising the capillary mouth for the 2.4 nm capillary, respec-
tively. The capillary is wider this time, and the barrier is not pronounced for any of the
systems (see Fig. 6.7(f)). This is the reason why in Fig. 6.7(e) the polymer enters the
capillary almost simultaneously for both electrolytes. Despite this, Fig. 6.7(e) shows that
a larger number of Li+ ions are present in the capillary. The MD trajectories indicate
that those are dispersed ions that enter the capillary due to the capillary’s large height
(we did not detect them in 1.4 nm and 1.8 nm capillaries). At the capillary mouth, three
cations stick to the polymer for both electrolytes. There is still a possibility that some of
the dispersed ions inside the capillary may stick to the polymer. The number of such
cations is higher in potassium electrolytes, again due to its lower hydration energy. This
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Figure 6.7: (a) Number of cations inside the capillary of height 1.8 nm for potassium and
lithium electrolytes versus time. The curves at the time intervals in which the polymer
resides inside the capillary are bolded. (b) Time-displacement curves. The capillary
gave a bias to lithium electrolyte in a way that the polymer in potassium electrolyte felt
a barrier when entering the capillary. Panels (c, d) and (e, f) are the same quantities as
(a, b), respectively, for capillaries of height 1.4 nm and 2.4 nm. In the 1.4 nm capillary
the polymer felt a barrier in both cases while for the 2.4 nm capillary there is no entrance
barrier.
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Figure 6.8: Time-displacement curves inside the capillary region for potassium and
lithium electrolytes in the capillary of height 1.4 nm. The corresponding curves for the
capillary height of 1.8 nm are also shown for comparison.

is why the polymer stays in the capillary much longer for potassium electrolyte than for
lithium electrolyte (see Fig. 6.7(e)).

Figs. 6.8 and 6.9 illustrate the time-displacement curves of the polymer for the 1.4 nm and
2.4 nm capillaries. For both figures the corresponding profiles of the 1.8 nm capillary are
also shown for comparison. For the 1.8 nm capillary, where the capillary mouth barrier
gave a bias to one of the cation types, the curves are diverging, while the curves for the
1.4 nm and 2.4 nm capillaries are rather close to each other.

Using the interplay of ions’ hydration energies and capillary mouth barriers, one could
design a system for controlling polymer velocity. Unlike the standard capillary effect,
where the fluid diffuses into the capillary due to adhesion, the polymer here had to cross
a barrier in order to enter the capillary. The capillary mouth barrier is attributed to
hydrodynamic drag caused by the water inside the capillary. Indeed, when we modeled
the same system without water molecules, the polymer was in a vacuum inside the
geometries and moved unimpeded towards the right reservoir. Considering the very
short characteristic length of the capillary, the dynamics of water inside the capillary
can readily be classified as the standard creeping flow regime (Reynolds number << 1).
The drag force on the moving object can then be approximated by the Stokes relation
(𝐹 = 6𝜋𝑟𝜇𝑣), where 𝑟 and 𝑣 refer to the radius and velocity of the object, respectively,
and 𝜇 is the fluid’s dynamic viscosity. Deviation from the perfect sphere geometry can
be compensated using correction coefficients. Thus, we are able to identify the direct
effect of the viscosity of water on the drag force felt by the polymer. Water within highly
confined capillaries has been shown to exhibit solid-like properties with a three-fold
increase in viscosity compared to bulk water [177, 178]. Therefore, it is expected for the
polymer to encounter a noticeable barrier when permeating through the capillary. At
this point, we are able to explain the contradiction between our results and the DNA
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Figure 6.9: Time-displacement curves inside the capillary region for potassium and
lithium electrolytes in the capillary of height 2.4 nm. The corresponding curves for the
capillary height of 1.8 nm are also shown for comparison.

experiment [64] concerning the trend for cations’ influences. In the DNA experiment, the
molecule does not experience a significantly enhanced hydrodynamic drag at the pore
opening as compared when inside the reservoir. Furthermore, given the experiment’s
timescale (milliseconds), the cations had ample time to bond with the DNA, so they could
simply be regulated based on their interaction strength, which is considerably larger for
lithium than potassium (See Table 1 in the Methods section below).

At this stage, we believe we should pay particular attention to the solvation of the cations.
The hydration enthalpies discussed above are in fact the results of experiments involving
the dehydration of ions in infinite amounts of water. In the present study, the cations are
surrounded by small clusters of water. Therefore, results obtained with infinite solvents
may not be valid. Additionally, in infinite solvent experiments or continuum theories
of dielectrics, the free energy of dehydration is largely assumed to come from enthalpic
contributions, and entropy is virtually always ignored [179–181]. In dielectric theory,
Born’s model estimates that entropy contributes only about 0.5 percent of the enthalpy
contribution [182, 183]. However, in studying ions interface solvation in small clusters
of water, the entropic contribution is indeed found to be of the same order of magnitude
as the enthalpy contribution [66]. It has even been proposed that the bulk hydration of
small halides like F− is driven by entropy [67].

Moreover, the water model used here is a simple charge model (see Methods section) that
cannot accommodate induced polarisations, while an accurate study of ionic solvations
requires polarisation capabilities for both water and ions. For our purpose, which is to
compare the hydration energies of K+ and Li+ cations, one appropriate approach would
be to examine the surface versus bulk preferences of the cations in a cluster of water
under conditions similar to our problem. Surface solvation analysis is useful in that it
could reveal how cations prefer to sit at the interface of water and polymer [66].
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In the past, interface solvation has been extensively studied, but its conclusions have
changed substantially over time. A large dipole moment was initially recognised as
critical [68]. Later, it was determined that induced polarisation, coupled with the size
and sign of ions, was the major cause of surface solvation [66]. Eventually, the absence of
a single explanation for the solvation of various ions was identified [67]. Nevertheless,
what is commonly concluded in the literature for alkali cations is that they all favour
bulk solvation [69, 180], and their hydration is entirely determined by enthalpy with a
negligible contribution from entropy [67]. As a result, we may draw two conclusions.
First, the energetics analysis is sufficient to compare the dehydration of potassium and
lithium in our problem. Secondly, our simple charge water model (see Methods section)
is adequate for this energetic purpose. If the problem was related to large halide ions,
which are believed to favour surface solvation, a simple charge water model might result
in qualitative and quantitative inaccuracies [66].

Despite these, we cannot still conclude that our model is completely reliable. In our
problem, there is a strong external electrical field (3 V/nm equivalent to 50 V for the
problem geometry). This strong field, although not yet large enough to make the water
conductive, would profoundly alter the solvation and screening properties; even making
differences specific to different ions. As far as we are aware, interface solvation has not
been fully investigated in the literature in the presence of an external electric field. There-
fore, we conducted a steered molecular dynamics (SMD) investigation for the solvation
of K+ and Li+ cations within a spherical cluster of water (with 1.1 nm radius) containing
186 water molecules, the same order of magnitude as the ratio of the amount of water
to the amount of cations found in our reservoirs (See Methods section for details about
the simulations). Simulations were conducted for two different situations, without an
electric field and with an electric field of 3 V/nm. Each case is repeated for two water
models: the non-polarisable simple charge SPC/E model [184] (similar to our other sim-
ulations), and the ReaxFF model [185, 186] which is capable of polarising both water and
cations.

The results are shown in Fig. 6.10. The figures display the free energy (potential of
mean force) and potential energy of the system as function of the distance between the
cation and the cluster’s center of mass. During SMD simulations, a canonical ensemble
(NVT) has been sampled, which indicates that the Helmholtz free energy represents
the thermodynamics potential. Details of calculating the free energy are described in
the Methods section. The potential energy is determined by summing the van der
Waals, electrostatic, and polarisation energies of all species. By neglecting the changes in
the system’s kinetic energy, the potential energy represents the system’s total energy. By
subtracting the curves, we can calculate the entropic contribution𝑇𝑑𝑆(𝑟) = 𝑑𝑈(𝑟)−𝑑𝐹(𝑟).
As water molecules are electrically neutral, the external electric field will not impose any
pressure gradients within the system. Additionally, the simulations are performed at
a constant temperature. Therefore, we assume that discussing the problem within the
framework of equilibrium thermodynamics is relevant.

In the absence of an electric field, as expected, both K+ and Li+ cations favour bulk
solvation as predicted by both polarisable and non-polarisable models. Additionally, the
free energy and energy curves are close to each other, suggesting a subtle role for entropy,
as expected. Furthermore, Li+ has a higher solvation energy than K+ when the cations
are moving away from the cluster. Continuing the free curves to larger radiuses (for
example, r > 2.5 nm), the curves would approach plateau horizontal behaviour, which
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would express the total free energy of desolvation, which is larger for Li+ than for K+.
More importantly, for either the absence or the presence of electric field, the results of
the polarisable and non-polarisable models are quite similar. Therefore, we expect that
our simple charge SPC/E model has been reliable for this study.

An interesting observation from the curves when an electric field is present is that
potassium favours surface solvation while lithium does not. In turn, this strengthens our
hypothesis that K+ cations are more readily dehydrated than Li+ cations and settle on
the surface of the polymer. As a result, K+ cations are more easily dehydrated than Li+
cations, not only due to their lower hydration energy, but also because of a weakening
and partial un-occupation of the hydration shells, which occurs for potassium, but not for
lithium, due to strong electric fields [187]. These results indicate that alkali cations exhibit
different surface versus bulk preferences when an electric field is present, depending on
their interactions with the solvent species. It is similar to the behaviour of cations in
dimethyl sulfoxide (DMSO) solvent [188], in which the hydration of larger alkalis, which
bond less strongly to the solvent, weakens more than the hydration of small ions when
present in strong electric fields (same order of magnitude as in our study).

Potassium’s surface solvation has occurred in such a manner that its energy curve still
continues to increase monotonously. This indicates that it is entropy that has brought the
cation to the surface. Since both polarisable and non-polarisable models exhibit the same
behaviour, this suggests that surface solvation does not result from polarisation (as has
been established for large halides [66, 67]), but rather from the alignment of the dipoles
of the water molecules in the direction of the electric field and the perturbation of the
hydrogen bond network [187]. When all dipoles are parallel, the entropy of the system
is minimal (similar to the concept of freezing in dielectrics [66]). When the K+ cation is
located close to the center of the cluster, its dipole will also orient itself according to the
dipoles of the water molecules. As the K+ cation approaches the surface, it feels agile
and perturbs its surrounding dipoles and hydrogen bonds, resulting in an increase in
entropy. Due to the strong bond between the Li+ cation and water, its freedom will not
increase that much when it comes to the surface, so no substantial increase in entropy is
observed.

In addition, we analysed a hypothetical scenario using our simple charge SPC/E model
for potassium in the presence of an electric field, changing the partial charges of the
water atoms in order to increase the dipole of the molecule from 2.35D (as per the SPC/E
model) to 2.6D. The obtained free energies were almost unchanged, indicating that it is
not the magnitude of the dipoles but their alignment that drives the K+ cation to the
surface. With a simple comparison of the hydration enthalpies of potassium and lithium,
we were able to accurately assess the true trend to build our hypothesis. Nevertheless,
calculating the free energy still strengthens the hypothesis. This is analogous to the
pure energetics analysis for interface solvation of halides (with a polarisable force field),
which, although quantitatively not quite precise, can qualitatively predict surface versus
bulk preference [66].

We have employed ReaxFF parameterised for electrolyte solutions (available in the sup-
plementary information of ref. 189) with the standard Qeq charge distribution model
[190]. Considering that even the simple charge model has similar predictions as the
polarisable model (see Fig. 6.10), the method of charge polarisation should not have
a significant impact. In the presence of an external electric field, Qeq may impose an
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Figure 6.10: Free energy (solid lines) and internal energy (dashed lines) as a function
of cation distance from the water cluster center of mass for two cations, K+ and Li+. In
the upper panels, there is no external electric field, while in the lower panels, there is an
external electric field of 3 V/nm. Panels on the left show results for the non-polarisable
model, while panels on the right show results for the polarisable model.

unphysical charge distribution due to its global charge transfer across the simulation
domain [191]. It has been shown that atom-condensed Kohn-Sham density functional
theory (DFT) approximated to second-order (ACKS2) is able to overcome the shortcom-
ings of Qeq [191]. Nevertheless, the unphysical gradient of charge density in a NVT MD
simulation with Qeq for a water cluster is several orders of magnitude smaller than that of
our problem of attracting cations to the polymer by electrostatic forces [191]. Therefore,
we have used the widely used Qeq charge distribution for which ReaxFF has already
been examined for electrolyte solutions.

We performed a few additional simulations to investigate whether, in addition to the
hydrodynamic drag, there is also an energy barrier in front of the polymer when it
enters the capillary. Additionally, we were also able to gain a direct understanding
of the changes in hydrodynamic drag, confirming predictions based on an increase in
viscosity. This may be more straightforward than calculating the viscosity because, on
the one hand, the passage of the polymer inside the capillary causes the problem to
be mechanically non-equilibrium, preventing equilibrium calculation of the viscosity.
Taking a non-equilibrium approach to the problem, on the other hand, it is unclear
whether the liquid with the polymer inside will behave as a Newtonian fluid so that a
shear flow can be applied externally and the velocity gradient measured. The polymer
was placed into the left reservoir horizontally along the capillary axis. Then, we moved
the polymer towards the capillary mouth at a constant velocity of 2 Å/ps, and calculated
the horizontal component of the force exerted on the polymer, as well as the potential
energy of the system (see Fig. 6.11). At the capillary mouth, the force increases clearly,
illustrating the existence of a hydrodynamic drag barrier. As expected, this increase is
the largest for the 1.4 nm capillary and the smallest for the 2.4 nm capillary. The potential
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Figure 6.11: Horizontal force applied on the polymer, as well as the system’s potential
energy when the polymer moves towards the capillary. Force values show an increase at
the capillary mouth, whereas potential energy curves maintain almost constant values,
suggesting a hydrodynamic barrier in front of the polymer and no energy barrier at the
capillary mouth.

energy curves are nevertheless nearly uniform, indicating that there is no energy barrier
in front of the polymer as it enters the capillary.

Further, one can compare the free energy (𝐹 = 𝐸−𝑇𝑆) of the polymer inside the reservoir
and inside the capillary. The energy curves (Fig. 6.11) represent the enthalpic contribu-
tion (𝐸), which is nearly equal for the reservoir and capillary provided that the polymer
is horizontal. This is the case for our application, as the polymer was horizontal at the
capillary mouth when it attempted to penetrate the capillary. We estimate the polymer’s
entropy (S) as 𝑘𝐵 𝑙𝑛𝑁 , where 𝑘𝐵 is the Boltzmann constant and 𝑁 is the number of con-
figurations it can adopt [192]. In an in-line configuration, the polymer length is around
14.2 Å (plus 3.4 Å for C-C distances on both sides. See Table 1 in the Methods section
below). Furthermore, its gyration radius can be estimated as 4.22 nm, which can be cal-
culated discretely as the root mean square distance of the polymer atoms (weighted by
particle mass) with respect to the polymer center of mass ([Σ𝑛

𝑖=1𝑚𝑖𝑟
2
𝑖
/Σ𝑛

𝑖=1𝑚𝑖]1/2, 𝑚𝑖 and
𝑟𝑖 being the particle mass and the particle distance to the center of mass, respectively).
In comparison to the channel height (1.8 nm), it is not inconceivable to envisage as many
plausible configurations for the polymer inside the capillary as inside the reservoir. Con-
sequently, the polymer enters the capillary with no free energy barrier, and thus the total
contribution is attributed to the hydrodynamic drag.

As a result of the applied electrical field, the entire simulation domain will become
polarised. Polarisation decreases the strength of the electrical field, which depends
on the amount of added ions and may vary as the polymer moves. It was necessary
to examine the capillary’s ability to sort out different ions, giving some preference over
others, at this stage in order to determine whether the effect of polarisation in the different
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Figure 6.12: The number of cations that penetrate the capillary from the permeate reser-
voir (dashed lines). K+ ions are penetrating slightly more. The number of cations
remaining inside the capillary (dash-dotted lines). There are slightly more Li+ ions in-
side the capillary. They return to the capillary from the feed reservoir, upon reaching a
steady state. The number of cations added to the feed reservoir (solid lines). A larger
number of K+ ions in the feed reservoir leads to a partial increase in the potassium elec-
trolyte’s polarization voltage.

electrolytes was significant. Hence, we simulated the same system with the 1.8 nm wide
capillary without the polymer and at our highest voltage (50 V) and ions concentration
(1 M).

While Cl− anions did not exhibit any noticeable differences in permeation between potas-
sium and lithium electrolytes, K+ cations tended to penetrate into the capillary from the
permeate reservoir slightly more than Li+ cations (see Fig. 6.12). Additionally, Li+ ions
are slightly more abundant inside the capillary than K+ ions. This is because once the
system has reached a steady state, the Li+ ions tend to return to the capillary more readily
from the feed reservoir than the K+ ions. Due to these two events, the number of K+ ions
is partly larger in the feed reservoir than Li+ ions (see Fig. 6.12).

We estimated the electric potential induced by polarisation assuming that the ions were
located at the center of the reservoirs (see Fig. 6.13). Inset (right side) illustrates the
difference between the voltages of the two electrolytes. The induced voltage for potassium
electrolyte is partially larger, but the difference between the voltages is around 1.36 V.
From the beginning of the polymer’s movement until it reaches the capillary mouth, the
polarisation voltage is in the range from 4-6 V with a 1.3 V difference (see inset on left),
which is the most relevant part of the polymer movement for us.

The same analysis is carried out with the polymer present. With the polymer at the
capillary mouth, the difference between the induced voltages of the two electrolytes was
0.6 V larger than without the polymer (similarly with a higher voltage for the potassium
electrolyte). This can also be attributed to the tendency of cations to adhere to the polymer
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Figure 6.13: Potential difference generated by polarization in KCl and LiCl electrolytes.
The inset on the left shows the initial instances until the polymer reaches the capillary
mouth. The right inset shows the difference between the induced voltages of the two
electrolytes. Compared to the field voltage (50 volts), the induced voltages by the polar-
ization can be neglected.

(with K+ ions slightly more). Eventually, when compared with the field voltage (50 V),
the induced voltages caused by polarisation can be ignored in the interpretation of the
main results.

Radial distribution function (RDF) can be used to better understand ionic and polymer
solvation, as shown in Fig. 6.14. In the main figure, RDF graphs are shown for potassium-
oxygen and lithium-oxygen, each for two cases of inside the reservoir and inside the
capillary. There is almost no difference between the two graphs, indicating that the
capillary (here 1.8 nm) is not too thin to tear off the hydration shells of the cations. The
first minimum for lithium is almost zero for a considerable distance, which implies that
its first hydration shell is still present [193]. The coordination number of potassium and
lithium (up to the first minimum of the RDFs) is 6.3 and 4, respectively, consistent with
the literature [194]. Therefore, our LJ model, in conjunction with electrostatic forces,
appropriately models their hydration (see inset at left).

The other three curves shown in the left inset along with their corresponding RDF graphs
(right inset) represent the polymer solvation (polymer-O), as well as the distance between
the polymer’s heavy atom (here C) and the cations (polymer-K and polymer-Li). It is
apparent from the location of the first peak in the RDF graphs (right inset) or alternatively
from the point at which coordination numbers begin to rise (left inset) that the cations
have penetrated well into the polymer’s first hydration shell. This also demonstrates the
partial dehydration of the cations.

Lastly, we address the water structure near the hydrophobic graphene walls. We calcu-
lated the number density of oxygen and hydrogen atoms next to the capillary wall with
and without the polymer inside (see Fig. 6.15). The number density of hydrogen in half
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Figure 6.14: Radial distribution functions (RDF) for potassium-oxygen and lithium-
oxygen inside the reservoir and inside the capillary. The capillary (1.8 nm) is not too thin
to rip off the hydration shells of the cations. Coordination number and RDF graphs for
ionic and polymer solvation are shown in the insets.

Figure 6.15: The number density of oxygen and hydrogen atoms close to the capillary
wall with and without the polymer. Number density of hydrogen is shown in half value.
The water molecules next to the capillary wall are evenly populated between dangling
OH groups and when two hydrogen atoms are facing the wall.
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value is shown in the figure. As the first peak value for hydrogen is almost coincidentally
1.5 times larger than for oxygen, we can deduce that the structure of water molecules
near the graphene is almost evenly populated between dangling OH groups and the two
hydrogen atoms facing the wall, indicating moderate hydrogen bonds among the water
molecules. The graphs indicate that the polymer has little impact on the water structure,
although slightly denser water molecules are found close to the wall when the polymer
is present.

6.4 Conclusion

We studied the permeation of a charged polymer driven by an external electrical field
through a graphene capillary. The polymer encounters a hydrodynamic barrier while
going through the capillary. In the presence of cations inside the feed reservoir, some
cations adhere to the surface of the polymer. As a result, the polymer’s effective charge
decreases. This weakens its ability to overcome the barrier and to enter the capillary.
Interestingly, the monovalent cations of Li+, Na+, and K+ show a different influence in a
way that the polymer entering occurs more likely, and the transmission speed is faster,
when lithium electrolyte is present, followed by sodium and then potassium electrolytes.
This phenomenon is explained by the different hydration free energies of the cations.
Based on their interaction strength with the solvent, different alkali cations exhibit differ-
ent surface versus bulk preferences in small clusters of water when exposed to a strong
external electric field. This study shows that by exploring the interplay between the
hydrodynamic barrier resulting from confinement and the electrolyte conditions, one
can control the polymer transmission in nm-scale capillaries.
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Capillary condensation of water in

graphene nanocapillaries¶

Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly ac-
curate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory
behavior of the solid-liquid interfacial free energy. In this chapter, we demonstrate thermodynamic
and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we
ascribe its validity at nanoscale confinement to the effect of disjoining pressure. To substantiate
our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer
and wetting properties. Our assessments unveil a breakdown in the previously established pro-
portionality between the work of adhesion and the Kapitza conductance at capillary heights below
1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy.
Alternatively, the peak density of the initial water layer can effectively serve as a parameter to
probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of
adhesion entropically unfavorable.

7.1 Introduction

When a narrow, open-ended capillary tube is immersed in a container of liquid, the
liquid rises or falls inside the tube to a level that is different from the position of the
liquid surface in the container. This difference in height is determined by equating the
weight of the liquid column to the force exerted by the capillary pressure. Capillary
pressure is essentially the pressure difference across the interface of the liquid and its
vapor above it.

However, what happens if the scale of the experiment is comparable to the molecular
distances, i.e., nanoscale? The aforementioned force balance should, in this situation,
also take into account the difference in the vapor pressure at the surface of the container
and at the surface of the tube. This pressure difference, which varies vertically like the
change of atmospheric pressure with altitude, can be neglected for macroscale devices.
Thomson (Lord Kelvin) showed in 1870 that the ratio of vapor pressure above the tube

¶This chapter contributed to the paper: Capillary Condensation of Water in Graphene Nanocapillaries.
Nano Letters 24, 18, 5625–5630 (2024).
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𝑃𝑟 to that above the liquid surface 𝑃∞ can be expressed as 𝑃𝑟 = 𝑃∞𝑒𝑥𝑝( 𝑀𝑟

𝜌𝑙𝑅
1
𝑇

2𝛾
𝑟 ) where

𝑀𝑟 is the molecular mass of vapor, 𝜌𝑙 is the density of the fluid, 𝑅 is the universal gas
constant (8.314 𝐽𝑚𝑜𝑙−1𝐾−1), 𝑇 is temperature, 𝛾 is the liquid surface tension and 𝑟 is the
curvature of the liquid surface in the tube. This equation is known as the Kelvin equation
[195, 196]. If the capillary system is placed in an environment whose relative humidity
exceeds the ratio of vapor pressure given by the Kelvin equation, the vapor above the tube
becomes oversaturated, starts to condense, and the tube starts to fill with liquid. This
phenomenon is called capillary condensation. It is customary for the Kelvin equation to
directly use relative humidity rather than the ratio of vapor pressure (see Equation 1 in
ref. 70). Capillary condensation typically occurs under large negative pressure, which
makes its study very important for e.g. the design of microelectromechanical systems
[71, 197–199].

Recent experiments investigated capillary condensation of water inside extremely narrow
capillary tubes of less than 1 nm height, made of graphene and mica [70]. Surprisingly, the
Kelvin equation was found to be valid for these thin geometries. The experiments found
condensation near the predictions of the Kelvin equation with additional oscillations for
capillary heights below 1 nm (see Fig. 7.1). In this chapter, we demonstrate that this
observation can be explained by the disjoining pressure

7.2 Evaluating the hypothesis on oscillatory interfacial en-
ergies

We start with the hypothesis of ref. 70. According to this hypothesis, the Kelvin equation
can be rewritten based on Young’s equation (𝛾𝑠𝑣 − 𝛾𝑠𝑙 = 𝛾𝑐𝑜𝑠(𝜃), 𝛾𝑠𝑣 and 𝛾𝑠𝑙 being
the solid-vapor and solid-liquid interfacial free energies, respectively, and 𝜃 the contact
angle) resulting in 𝑃𝑟 = 𝑃∞𝑒𝑥𝑝[−2𝑀𝑟(𝛾𝑠𝑣 − 𝛾𝑠𝑙)/ℎ𝑅𝑇𝜌𝑙]. If it is assumed that 𝛾𝑠𝑣 and 𝜌𝑙
are independent of confinement, then the effect of confinement can only manifest itself
in 𝛾𝑠𝑙 . The effect of capillary height (ℎ) on 𝛾𝑠𝑙 can be expressed as Δ𝛾 = 𝛾𝑠𝑙(ℎ) − 𝛾𝑠𝑙(∞),
which should approach zero for sufficiently wide capillaries. Therefore, the Kelvin
equation should be modified with the term 𝑒𝑥𝑝[2𝑀𝑟Δ𝛾/ℎ𝑅𝑇𝜌𝑙] to account for the effect
of confinement.

To compute Δ𝛾 as a function of ℎ, ref. 70 considers a graphene nanochannel submerged
in water. Then, the nanochannel is gradually narrowed and the potential energy of the
system is computed at each channel height. The changes in the potential energy of the
system relative to the width of the channel are interpreted as changes in 𝛾𝑠𝑙 . Molecular
dynamics (MD) simulations in ref. 70 were performed with rigid graphene sheets. Due
to the commensurability effects of water, the system potential energy and consequently
the corrected Kelvin equation show fluctuating behavior in small channel heights (see
Fig. 2 of ref. 70).

It was suggested that if the elastic flexibility of the graphene sheets is taken into account,
the fluctuations will be reduced and the corrected Kelvin equation may agree well with
the experimental results [70]. Here, we performed similar MD simulations with both
rigid and flexible graphene sheets. It is found that the wall flexibility indeed diminishes
the fluctuations in the results, although for very small channel heights, the decrease is
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Figure 7.1: The revised Kelvin equation, attributing capillary pressure to disjoining pres-
sure, exhibits excellent agreement with experimental data (cf. ref. 70). The predictions
from the original Kelvin equation with water-graphene contact angles of 75° and 85° are
also presented. The oscillatory behavior of the structural term in the disjoining pres-
sure, distinct from Laplace pressure, enables the revised equation to accurately capture
the oscillations observed in the experimental data. Small disparities in higher channel
heights arise from additional terms in the disjoining pressure (beyond van der Waals
and structural terms), as well as from the onset of Laplace pressure due to the meniscus
formation in the liquid profile as the capillary widens.
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small.

We conducted molecular dynamics (MD) simulations to investigate the hypothesis pre-
sented in ref. 70. A water pool with dimensions of 92 × 83 × 55 Å was utilized in our
simulation. Inside this pool, a graphene nanochannel was embedded, comprising four
layers as the top wall and four layers as the bottom wall, each layer measuring 61 × 55 Å
(see Fig. 7.2). While the outermost graphene layers remained fixed, the inner six layers
were subjected to either fixed positions (solid walls approach, similar to the simulation
in ref. 3) or allowed movement (flexible walls approach).

The initial channel height was set at 20 Å and progressively decreased in 0.2 Å intervals.
At each channel height, the system underwent an equilibration phase in the canonical
ensemble (NVT) using the Nose-Hoover thermostat (with a damping factor of 20 fs) for
1 ns. Subsequently, we computed the potential energy of the system, including that of
the water molecules alone, for each channel height. This allowed us to calculate the
changes in the potential energy of the system at each height with respect to the potential
energy at the initial height (20 Å), represented by (Δ𝛾 = 𝛾𝑠𝑙(ℎ) − 𝛾𝑠𝑙(∞)). These changes
are interpreted as alterations in the solid-liquid interfacial free energy due to varying
channel heights.

The outcomes are depicted in Fig. 7.3. The original Kelvin equation is represented
by the green solid line. Multiplying the original Kelvin equation by the correction
factor—introduced in the main text as 𝑒𝑥𝑝[2𝑀𝑟Δ𝛾/ℎ𝑅𝑇𝜌𝑙]—resulted in open blue circles
(for the solid walls approach) and filled purple circles (for the flexible walls approach).
Notably, the flexible walls alleviate oscillations, although their impact is minor in very
small channel heights.

However, a crucial observation is that this type of calculation does not accurately provide
us with changes in the interfacial free energy. The inset also displays the changes in
potential energy when only the group of water molecules, specifically for the solid walls
approach, is considered. The results are nearly identical to when the energy of the entire
system is taken into account. Minimal differences emerge only at very small heights
when the upper and lower walls reach their MD cut-off, contributing to the total energy.
Therefore, this examination is more influenced by changes in the state of the bulk water
rather than the interface (whose contribution essentially embodies the interfacial free
energy).

Nevertheless, we argue that this method might not estimate 𝛾𝑠𝑙 accurately. First, altering
the nanochannel height impacts not only the interface but also the state of the bulk water.
Consequently, the calculated energy difference might not solely represent the contribu-
tion arising from the change of the interface state. When computing the energy difference
solely for water molecules, the resulting outcome closely resembles that obtained when
calculating the entire system’s energy (see the inset of Fig. 7.3). The difference becomes
evident only when the upper and lower walls fall within the MD cut-off distance (9.8 Å).

Second, in estimating the free energy, only the potential energy is considered while the
entropy contribution is disregarded. Specifically, for the water-graphene interface, the
entropy contribution to the work of adhesion (𝑊𝑠𝑙 = 𝛾𝑠𝑣 + 𝛾 − 𝛾𝑠𝑙) has been estimated
to be approximately one third [200]. However, this value pertains to bulk water. Here,
the water is confined, and in the subsequent discussion, we will demonstrate that the
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Figure 7.2: Schematic of the molecular dynamics simulation system. The graphene
nanochannel thickness is gradually reduced, and the potential energy of the system is
calculated at each channel height. Cf. Fig. 7.5 in the main text for color indications.

entropy contribution is comparable to the energy contribution and may even dominate
at times.

Third, the validity of Young’s equation under high confinement is questionable. In a
very narrow capillary, when the capillary contains perhaps as few as only two layers of
water, either when the capillary is being filled or when the water profile has settled, the
velocity profile of water is not expected to be anything other than the plug flow profile.
If then, in equilibrium, the column of water is axially raised by an infinitesimal amount
𝛿𝑥, the contribution of the energy change from the interfaces will be 𝛾𝑠𝑙𝛿𝑥 and −𝛾𝑠𝑣𝛿𝑥.
However, the vapor-liquid interface (contribution from 𝛾) has no area change. Therefore,
Young’s equation cannot be derived. Another conclusion can also be reached here. If the
energy of bulk water remains unchanged due to the displacement, equilibrium requires
𝛾𝑠𝑙 to approach 𝛾𝑠𝑣 (which is nearly negligible), which is implausible. Therefore, the
energy of the column of water, which varies with displacement, needs to be significant.
This is the film energy 𝑃(ℎ). This was expected because for high confinement, there
is a considerable repulsive force between the capillary walls, which induces disjoining
pressure (derivative of the film energy Π(ℎ) = −𝑑𝑃/𝑑ℎ).

7.3 Revising the Kelvin Equation

Let us now revisit the Kelvin equation. The term 2𝛾/𝑟 is essentially the pressure difference
across the liquid-vapor interface, according to the Young-Laplace equation. Although
the validity of the Young-Laplace equation has been demonstrated at the nanoscale [201],
this is only so when at least the shape of the curvature is preserved. The smallest scale for
the liquid shape and the Young-Laplace equation to remain valid has been estimated to
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Figure 7.3: The macroscopic Kelvin equation (𝑅𝐻𝐾 , represented by the green line) and
the adjusted Kelvin equation, accounting for variations in 𝛾𝑠𝑙 concerning channel height
for solid (depicted as open blue circles) and flexible (shown as purple filled circles)
nanochannel walls. Inset: Depictions of the system’s potential energy variations con-
cerning the channel height for both rigid and flexible walls. Additionally, the potential
energy of water molecules (for the solid walls approach) is illustrated.

be about 3−4 molecular diameters (𝜎) with 𝜎 being 0.5 nm [202]. In the situation of plug
flow profile, where there is no meniscus, it is better to disregard the Laplace pressure and
attribute the entire contribution of the capillary pressure to the disjoining pressure. It is
worth noting that this replacement in the term of pressure difference does not invalidate
the derivation of the Kelvin equation [196, 203]. The other quantities can be obtained
by equating the grand potential functions of the liquid and gas sides (or heuristically
by writing the hydrostatic pressure drop of the water and gas columns in a Jurin-like
experiment [196, 203]) and do not depend on the confinement.

The disjoining pressure, in turn, can be expressed as the sum of van der Waals (vdW) and
structural terms. There are some other contributing terms, but the main contribution is
from the two mentioned terms [19, 73]. The vdW contribution to the disjoining pressure
can be estimated as:

𝑃𝑣𝑑𝑊 = 𝐴𝑣𝑑𝑊/6𝜋ℎ3 (7.1)

with 𝐴𝑣𝑑𝑊 being the Hamaker constant for water-graphite interaction (1.15 × 10−19𝐽)
[19, 73, 204]. The structural term in the disjoining pressure for hard spheres confined in
a 2D slit pore can be expressed as:

𝑃𝑠𝑡𝑟 = −(1/𝜎3)𝑘𝐵𝑇𝑐𝑜𝑠(2𝜋ℎ/𝜎)𝑒𝑥𝑝(−ℎ/𝜎) (7.2)
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Figure 7.4: Predictions of Laplace pressure and disjoining pressure that are close to each
other at ℎ around 1 nm.

with 𝑘𝐵 being the Boltzmann constant and 𝜎 being the molecular diamater (3.16 Å)
[19, 205].

To gain a better understanding, we show in Fig. 7.4 the predictions of disjoining pressure
(sum of vdW and structural terms) and what the Laplace pressure would predict (for
a water-graphene contact angle of 85°). Notice that the predictions are coincidentally
close to each other for ℎ values that are relevant to us (around 0.8 to 1.3 nm). We
hypothesize that it is the negative disjoining pressure that causes the vapor above the
water column to condense at a lower pressure than would be required for condensation
over a flat surface, and the vapor pressure ratio is quantitatively consistent with the Kelvin
equation. The only term in the Kelvin equation capable of accounting for fluctuating
relative humidity is the pressure difference term. It is especially noteworthy that the
disjoining pressure demonstrates this fluctuating behavior through the cosine function of
its structural term, while the Laplace pressure does not. Drawing from this hypothesis, we
compare the predictions of the revised Kelvin equation with experimental data sourced
from ref. 70 (see Fig. 7.1). The remarkable agreement between theoretical predictions
and experimental observations underscores the capacity of the revised Kelvin equation
to precisely capture capillary condensation at the nanoscale.

7.4 The prevalence of disjoining pressure

We argue that more solid evidence is needed to confirm that the capillary pressure, at
least in small channel heights, is fluctuating. Let us examine the fluid flow in a narrow
capillary, whose driving force is the capillary pressure and the resisting force is the
viscous friction. It is worth noting that the gradient of hydrostatic pressure is much
smaller than the negative capillary pressure, obviating the need to consider the viscous



106
CHAPTER 7. CAPILLARY CONDENSATION OF WATER IN GRAPHENE

NANOCAPILLARIES

pressure drop along the water column.

Due to the very small characteristic length (and Reynolds number), we may assume that
the flow is steady and fully developed both hydrodynamically and thermally. Therefore,
unlike some studies of decelerating flow [206], we may assume that the material derivative
of the velocity field in the flow direction is zero, and simplify the momentum conservation
equation to ∇.𝑇 = −∇𝑃, where 𝑇 is the viscous pressure tensor and 𝑃 is the hydrostatic
pressure [207]. Moreover, we avoid expressing the shear stress in terms of the velocity
gradient and reasoning based on the Poiseuille relation (unlike ref. 208) because although
water is Newtonian and the flow (of a few layers of fluid) could be regarded as laminar
(such that the fluid deformation can be estimated as the velocity gradient), the gradient of
velocity at the fluid-wall interface would be undefined. We thus directly reason based on
the shear stress, which has also been recognized as the key factor for the flow properties
[206]. Therefore, if capillary pressure is going to fluctuate, then shear stress also needs
to fluctuate.

Let us assume that the Reynolds analogy is valid. It means the shear stress is proportional
to the heat flux toward the wall. Considering the flow as a few fluid layers moving in
parallel, it conforms to laminar flow. Consequently, the heat flux at the wall interface
can be interpreted as molecular conduction, defined by Fourier’s law ( ¤𝑞 = −𝑘 𝑑𝑇

𝑑𝑦
), and

the shear stress by Newton’s law of viscosity (𝜏𝑤 = 𝜇 𝜕𝑢
𝜕𝑦 ). In these formulas, ¤𝑞 represents

heat flow, 𝜏𝑤 is shear stress, 𝑘 is thermal conductivity, 𝜇 is viscosity, 𝑇 is temperature, 𝑢
is velocity, and 𝑦 refers to the direction perpendicular to the wall. Thus, the ratio of heat
flow to shear stress is expressed as:

¤𝑞
𝜏𝑤

= − 𝑘
𝜇
𝑑𝑇

𝑑𝑢
(7.3)

𝑘/𝜇 can also be written based on the Prandtl Number and specific heat capacity as 𝑐𝑝/𝑃𝑟.

Now, our focus is to evaluate ¤𝑞/𝜏𝑤 at the wall interface, specifically examining whether
the slight (sub-angstrom) variations in capillary width, causing commensurability effects,
impact this ratio. Assuming both velocity and temperature profiles resemble plug flow,
we anticipate 𝑑𝑇/𝑑𝑢 to remain unaffected by commensurability. While fluid properties
might fluctuate due to confinement (as discussed in the main text regarding the oscilla-
tory behavior of surface tension), for our assessment at the wall interface, the structure
of the initial fluid layer adjacent to the wall remains constant and unaffected by commen-
surability. Hence, it suggests a proportionality between heat flow and shear stress. In
the context of our study, if one displays oscillation, the other is likely to do so too.

This argument can also be approached equivalently. Given the flow conditions, we
assume that the boundary layer approximations govern the Navier-Stokes equations for
both momentum and energy, which read:

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2 (7.4)

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦
=

𝜈
𝑃𝑟

𝜕2𝑇

𝜕𝑦2 (7.5)
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Figure 7.5: Schematic illustrating the molecular dynamics simulation system. Within this
setup, calculations for Kapitza conductance, peak density of the initial water layer, and
work of adhesion are conducted. The graphene sheets (6.1 nm × 5.5 nm) are represented
with orange and the water molecules with blue (oxygen) and red (hydrogen) atoms.

where 𝑢 and 𝑣 denote the velocity components in the 𝑥 and 𝑦 directions respectively, and
𝜈 represents the kinematic viscosity.

Assuming fully developed flow (both hydrodynamically and thermally), the x-derivative
terms can be disregarded. By dividing the above equations (and assuming the second
derivative terms for velocity and temperature are equally small and can be simplified
by each other), one can infer that 𝑑𝑢/𝑑𝑇 is proportional to the Prandtl number, thereby
supporting the earlier argument. Regarding the validity of boundary layer equations,
it is worth mentioning that we are not going to select an infinitesimal control volume
within the fluid and examine the spatial stress and heat flux vectors, so we do not need
to worry about the effects of discontinuity. In essence, as the parameters at the wall
interface are our focus, the control volume can encompass the entire capillary width.

The temperature profile will also have a plug flow profile (no temperature gradient), thus
the heat flux can be attributed to the Kapitza conductance (𝐺𝐾) at the interface. Now,
𝐺𝐾 can be computed using MD simulations. From the literature, it is generally accepted
that the Kapitza resistance (𝑅𝐾 = Δ𝑇/𝐺𝐾 , interface temperature jump divided by the
Kapitza conductance) is independent of the fluid thickness (see refs. 209 and 210 for
fluid thickness down to 1 nm and 2 nm, respectively). However, what has been reported
is for fluid thickness with variations of 1 nm interval. What happens if 𝐺𝐾 is examined
in intervals of e.g. 0.2 Å? To the best of our knowledge, such an investigation of 𝐺𝐾 has
not been done to date. We therefore calculate 𝐺𝐾 for water confined between graphene
sheets with the channel height ranging from 10.05 Å to 16.75 Å, corresponding to two to
four graphene spacers in relevant experiments [70, 208].

For each value of ℎ, the number of water molecules is adjusted to yield the bulk density
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Figure 7.6: Variations of the Kapitza resistance with the number of graphene layers.
Number of graphene layers has little effect on the Kapitza resistance. The solid line is a
guide to the eye.

for the channel geometry, as density has been found to change little with confinement
[208]. Fig. 7.5 shows a snapshot of the simulated system. It is worth noting that the
impact of the number of graphene layers on 𝑅𝐾 is a contentious matter in the literature
[209, 210]. Having established the MD simulation framework for computing 𝐺𝐾 , we seek
to address this contentious issue.

Alexeev et al. [209] demonstrated a strong correlation between 𝑅𝐾 and the number of
graphene layers, observing a decrease in 𝑅𝐾 that stabilizes at an asymptotic value as
the layers increase. Conversely, Alosious et al. [210] proposed a minimal decrease in 𝑅𝐾
with an increased number of graphene layers, suggesting that the Kapitza length remains
largely unaffected by the number of layers.

Here, we constructed a sufficiently wide nanochannel (3 nm height) and computed 𝑅𝐾 for
nanochannel walls comprising four, six, eight, and ten graphene sheets on each side. The
results depict only a slight reduction in 𝑅𝐾 with the number of graphene layers (see Fig.
7.6). Therefore, we propose that the number of graphene layers does not significantly
impact 𝑅𝐾 . This subtle decline can be attributed to the increased number of permissible
phonon modes in graphene [210]. It appears that the utilization of the Tersoff potential
[156] can induce mechanical instability in graphene sheets, potentially altering the initial
density peak and consequently affecting 𝑅𝐾 . Hence, we suggest employing the Airebo
potential [117] (despite increased computational costs) or implementing a methodology
similar to the constrained approach in ref. 210 by resetting the center of mass of each
graphene sheet to its initial position after every MD step.

𝑅𝐾 has been known to inversely scale with the magnitude of the density peak of the first
water layer adjacent to the interface (𝜌𝑚) [209, 210]. On the other hand, 𝐺𝐾 has been
recognized to be directly proportional (linear relationship without y-intercept) to 𝑊𝑠𝑙

[75]. Therefore, in addition to 𝐺𝐾 , we also calculate 𝜌𝑚 and 𝑊𝑠𝑙 so that we can examine
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Figure 7.7: Normalized work of adhesion (𝑊𝑠𝑙) for solid and flexible graphene walls
(shown with square and circle symbols respectively, with solid lines provided as a guide
to the eye), Kapitza conductance (𝐺𝐾) and first density peak (𝜌𝑚). The normalization
for each quantity is performed by dividing by their respective mean values. Direct
proportionality of work of adhesion and Kapitza conductance holds true down to channel
height of 1.3 nm. For very narrow channels, the parameterized first density peak can
provide an accurate estimate of the work of adhesion.

all quantities together. 𝜌𝑚 is extracted from the same simulation system used for 𝐺𝐾 . It
is worth noting that for our study with only two to three layers of water and almost no
temperature gradient across the channel height, the temperature jump at the interface
was the same for different channel heights. Therefore, we directly discuss 𝐺𝐾 rather than
𝑅𝐾 and expect a linear relationship between the 𝐺𝐾 and 𝜌𝑚 .

In the literature, estimations of 𝑊𝑠𝑙 are mostly based on the assumption that it scales
with 1 + 𝑐𝑜𝑠(𝜃), where 𝜃 is either computed directly or, when it is ill-defined, assumed
to linearly scale with the Lennard-Jones energy parameter of the interface interactions
[211, 212]. Here, we calculate𝑊𝑠𝑙 directly using its definition from the interfacial energies.
This is useful when considering the previously mentioned concerns about the validity of
Young’s equation, as well as for testing whether𝑊𝑠𝑙 still maintains a direct proportion to
𝐺𝐾 in the case of confined water. To calculate the work of adhesion, we employ a modified
version of the so-called phantom-wall method [213, 214], relying on thermodynamic
integration. In the following, we elaborate on the phantom-wall method and outline our
modifications to it.

The results for𝑊𝑠𝑙 , 𝐺𝐾 and 𝜌𝑚 are shown in Fig. 7.7, each normalized by their respective
mean values, across channel heights ranging from 10.05 Å to 16.75 Å. Interestingly,
all quantities are fluctuating. Therefore, we conclude that the capillary pressure is
fluctuating and the disjoining pressure dominates.

When the capillary pressure is dominated by the cosine function of the disjoining pres-
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sure, there are certain values of film thickness for which the curvature of the film energy
is negative. In these regions, the film is dawnwardly unstable and would tend to break
into two films of larger and smaller thicknesses, which coexist with the same film tension
(𝑃(ℎ) + ℎΠ(ℎ)) [215]. It is beyond the scope of this study, but it would be interesting to
investigate the interplay of the tendency to increase the film thickness with the flexibility
of the graphene walls, as well as the filling of the channel as a result of the tendency to
decrease the film thickness.

7.5 breakdown of proportionality between kapitza con-
ductance and work of adhesion

As shown in Fig. 7.7, the normalized 𝑊𝑠𝑙 and 𝐺𝐾 coincide consistently over a consider-
able variation in channel height, indicating the validity of the direct proportionality for
the confined water-graphene interface. However, this correlation weakens for channel
heights below 1.3 nm, and when the heights are less than 1 nm, 𝐺𝐾 even fails to predict
the extremum points of 𝑊𝑠𝑙 . On the other hand, 𝜌𝑚 accurately predicts the extremum
points. Through the addition of an arbitrary constant to 𝜌𝑚 (while preserving its lin-
ear relationship), it achieves reliable estimations of 𝑊𝑠𝑙 , even in the narrowest channels.
Therefore, when empirically parameterized, 𝜌𝑚 proves highly effective in probing 𝑊𝑠𝑙 .
Unlike some studies in the literature [174, 216], our calculation of the work of adhesion
with rigid solid walls did not produce favorable outcomes (blue squares). Therefore, we
recommend using simulations involving flexible walls for determination of𝑊𝑠𝑙 .

Even though𝐺𝐾 displays oscillating behavior, the amplitude of these oscillations remains
within 10 percent. Thus, the qualitative independence of 𝑅𝐾 on the fluid thickness
persists. [209, 210]. The oscillation amplitude of 𝑊𝑠𝑙 reaches approximately 20 percent.
Considering that 𝛾𝑠𝑙 for the water-graphene interface is estimated to be only around five
percent of the surface tension of water [200], it is improbable for 𝛾𝑠𝑙 to exhibit an oscillation
amplitude a few times larger than its value. Therefore, the anticipation is that 𝛾 oscillates
due to confinement, despite the notion of surface tension as an intrinsic property of water
valid down to the nanoscale [201]. This is another instance demonstrating the impact
of confinement on material properties, a phenomenon we have previously explored in
other examples [59].

One pertinent question arises: in a scenario where commensurability induces fluctuating
behaviors across all quantities—especially capillary pressure as the driving force and
shear stress at the wall as the resisting force—does the flow velocity relative to the
channel height also exhibit fluctuations? Specifically, following the Poiseuille relation,
would 𝑢/ℎ2 (where 𝑢 represents the flow axial velocity, or 𝑢/ℎ with boundary slip
assumptions) demonstrate oscillations? Our consideration suggests that this could be
the case, provided that viscosity remains constant.

There is an anticipation of reduced viscosity near hydrophobic walls [202, 217, 218].
Following an extensive literature review, Wu et al. [218] estimated the interface region
(where viscosity is significantly affected) to extend approximately 0.7 nm for the water-
graphene interface. Consequently, for channels less than 1.4 nm in height, it is anticipated
that the reduced viscosity within the interface region spans the entire height. This 1.4 nm
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Figure 7.8: Normalized Kapitza conductance for hot and cold surfaces. The Kapitza
conductance is higher at the cold surface up to a capillary height of 1.3 nm, below which
the hot surface exhibits a higher Kapitza conductance. The dashed curves are guide to
the eye.

channel height notably aligns with the channel height at which a substantial enhancement
in flow rate is observed (refer to Fig. 3b of ref. 208).

It deserves special attention that while explaining the flow enhancement, Radha et al.
did not account for spatially varying viscosity (compare Equation 1 in ref. 208 with
Equation 7 in ref. 218). Instead, they attributed the flow enhancement to the summation
of Laplace pressure and disjoining pressure within the Poiseuille relation. As a result,
their hypothesis could only predict a flow enhancement of up to 2-3 times, whereas their
experiment exhibited around a 10-fold increase (compare the main panel of Fig. 2b in
ref. 208 with its inset). Estimating viscosity as in a real experiment, however, is not trivial
by MD, because besides the structure of water, the gas nucleation near the hydrophobic
walls plays a role in viscosity reduction as well [217]. To sum up, within capillaries of
molecular heights, the pronounced variations in viscosity adjacent to hydrophobic walls
are likely to override any induced oscillatory patterns in flow velocity.

Let us explore why 𝐺𝐾 has lost its direct proportionality with 𝑊𝑠𝑙 . In non-equilibrium
studies of 𝑅𝐾 , whether 𝑅𝐾 is higher at the hot or cold surface is controversial [209, 210,
212, 219–221].

In the study conducted by Alexeev et al. [209], they observed a Δ𝑇 at the cold surface
with nearly equivalent heat flux for both surfaces (inferred from the gradient of their
reported temperature profile), leading to an elevated 𝑅𝐾 for the cold surface. This trend
is similarly reported by Alosious et al. [210] Ramos-Alvarado et al. [212] reported an
almost identical Δ𝑇 with approximately 10 percent higher heat flux at the hot surface,
resulting in a higher 𝑅𝐾 at the cold surface. In contrast, Kim et al. [219] as well as
Barrat and Chiaruttini [220] reported higher Δ𝑇 and 𝑅𝐾 at the hot surface. Murad and
Puri [221] observed a higher 𝑅𝐾 at the cold surface, despite their temperature profile
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Figure 7.9: Variations of the work of adhesion with temperature. The ascending trend
indicates a reduction in entropy resulting from the separation of water from the graphene
wall. The dashed lines are guide to the eye. Inset: At very narrow capillaries, entropy
dominates the work of adhesion.

indicating a higher Δ𝑇 at the hot surface and higher heat flux at the cold surface. It is
worth noting that in their study, heat flux was not calculated using MD but was derived
using Fourier’s law and correlating equations for the thermal conductivity of the water
substance, a method that might need more examination at the nanoscale.

What we showed in Fig. 7.7 was the average of the hot and cold surface. Fig. 7.8 illustrates
𝐺𝐾 separately for the hot and cold surfaces (normalized by their mean value). 𝐺𝐾 at the
cold surface is higher for channel heights down to 1.3 nm, while for narrower channels,
the hot surface displays a higher 𝐺𝐾 . In wider channels, the fluid demonstrates a more
ordered arrangement at low temperature, yielding enhanced heat transfer. However,
in very narrow channels, the fluid is highly confined and ordered, displaying similar
characteristics on both surfaces. Consequently, higher temperatures induce thermal
movement of particles, leading to improved heat transfer. Interestingly, this 1.3 nm
height corresponds to the point at which the dominance in 𝑊𝑠𝑙 shifts from energy to
entropy, resulting in 𝐺𝐾 losing its proportionality with𝑊𝑠𝑙 .

To investigate further, we study the effect of temperature on𝑊𝑠𝑙 . We select four channel
height values according to Fig. 7.7: the first minimum (ℎ = 10.85 Å), the first maximum
(ℎ = 11.85 Å), second curvature change (ℎ = 12.85 Å), and the second minimum (ℎ =

13.85 Å), and calculate𝑊𝑠𝑙 across temperatures ranging from 280 K to 330 K (see Fig. 7.9).
For each ℎ,𝑊𝑠𝑙 is normalized to its value at 300 K (same data of Fig. 7.7). By fitting a line to
the data, we can distinguish the enthalpy and entropy contributions (𝐴Δ𝛾 = Δ𝐻 −𝑇Δ𝑆).
Surprisingly, the curves are ascending (Δ𝑆 < 0). This contradicts the entropy increase at
the graphene with bulk water interface as the effect of the phantom wall [200].

The slopes of the lines decrease with increasing channel height. The inset of Fig. 7.9
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Figure 7.10: Number density profile of water atoms before and after the separation of
water from the graphene wall. Inset: Ratio of the peak number density values after and
before the separation of water from the graphene wall. The separation process leads to
an increased order in water molecules.

shows the ratio of 𝑇Δ𝑆 (at 𝑇 = 300𝐾) to Δ𝐻. Interestingly, the entropy and enthalpy
contributions are of the same order of magnitude, and for the two narrower channels,
entropy holds a significant dominance. The observation of changing the trend of hot and
cold surfaces in 𝐺𝐾 at ℎ ∼ 1.3 nm, as well as the dominance of entropy in𝑊𝑠𝑙 at the same
height, which is remarkably the same height at which 𝐺𝐾 loses its agreement with 𝑊𝑠𝑙 ,
leads us to conclude that the direct proportionality is a consequence of proportionality
between the energy transfer and adhesion energy at the interface.

To further investigate the unexpected increase in𝑊𝑠 𝑙 with temperature (see Fig. 7.9), we
plot the number density profile of water for ℎ = 11.85 Å before and after the influence
of the imaginary wall (see Fig. 7.10). Evidently, the initial density peak appears higher
following the impact of the imaginary wall. This contrasts with the behavior observed in
bulk water [200]. It seems that the presence of a graphene wall on one side is sufficient
to induce a well-layered structure in the water, resulting in lower entropy.

7.6 Modified phantom-wall method for calculating inter-
facial free energy

In this section, we will elaborate on the modified version of the so-called phantom-wall
method [213, 214], which we use to calculate the work of adhesion.

Efforts to calculate interfacial free energies have a significant presence in the literature
[222–230]. One pivotal work was conducted by Kirkwood and Buff [222], establishing a
link between surface free energy and stress anisotropy at the interface. Originally devised
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for fluid-fluid interfaces, this research was subsequently expanded upon by Navascués
and Berry [223] to address solid-liquid interfaces, treating the solid as a time-independent
external field at the interface with the fluid.

The method, termed the mechanical route, relies on spatially integrating the system’s
stress anisotropy, as outlined by Sikkenk et al. [231]. For this integration to be well-
defined, it is critical that the anisotropy disappears at the integration limits. While
this criterion is easily met when both phases are fluids, the presence of a solid phase
introduces complexities. Size effects can only be nullified if the solid extends infinitely in
space [214]. However, when dealing with actual solids, which often have limited spatial
extent, calculating free energy at their surfaces becomes challenging. The interfacial
region encompasses a substantial portion of the solid, causing ambiguity and a prevalence
of size effects [213]. Additionally, it is important to note that stress calculations within
the solid are primarily governed by inter-molecular forces rather than inter-diffusion,
making these computations highly reliant on the force fields used to describe the solid
[214].

The so-called phantom-wall method, introduced by Leroy et al. [213, 214], addresses
these limitations. Instead of directly calculating the absolute interfacial free energy
for a specific structured solid, this method first computes the interface free energy for
a reference system. Subsequently, the interface free energy of the actual surface is
determined relative to the reference system through thermodynamic integration.

The reference system comprises the interface of the identical liquid with a perfectly flat
two-dimensional wall, referred to as the imaginary wall. This approach simplifies the
system’s stress anisotropy, reducing it to the stress distribution within the liquid. This
distribution can be obtained using the mechanical route.

The transition from the reference system to the actual system occurs in stages: Firstly, the
imaginary wall is placed within the real solid, running parallel to the genuine interface.
It exclusively interacts with the liquid particles, devoid of any interaction with the solid
particles. Positioned initially at a considerable distance from the liquid—beyond the MD
cutoff distance—the imaginary wall ensures no interaction between the liquid and itself.

Afterward, the imaginary wall incrementally approaches the interface while remaining
parallel, thereby influencing the liquid’s behavior. This gradual movement persists until
the imaginary wall creates separation between the liquid and the authentic surface. Ulti-
mately, the liquid is positioned at a significant distance from the real surface, interacting
solely with the imaginary wall. This transformation facilitates the conversion of the
actual system into an imaginary system, enabling straightforward calculation of stress
anisotropy using the mechanical route.

The conversion between the two systems needs to occur gradually to prevent imposing
macroscopic temperature or pressure gradients on the system. This step ensures the
process maintains thermodynamic reversibility, avoiding the introduction of sources of
irreversibility (entropy generation). Consequently, the alteration in the system’s free
energy throughout the process equals the difference between the interfacial free energies
of the actual and reference systems.

Moreover, it is evident that the alteration in the system’s free energy equates to the work
conducted by the imaginary wall throughout its operation (for an analytical proof, see
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213). This work can be readily obtained by integrating the force-displacement behavior
of the imaginary wall.

Leroy et al. [213, 214] conducted MD simulations employing the phantom-wall method
within the isobaric-isothermal (NPT) ensemble, utilizing the Gibbs free energy as the
thermodynamic potential. As a result, part of the system’s free energy change during
the surface conversion can be attributed to the 𝑃Δ𝑉 term (readily obtainable), while the
remaining component reflects the alteration in interfacial free energies.

Our modification to the phantom-wall method is as follows: when simulating the system
in the NPT ensemble during MD, the volume and configuration of the fluid change.
However, this approach is not suitable for studying the interfacial free energy in confined
systems. In our method, the system is simulated in the canonical (NVT) ensemble,
preserving the structure of the capillary.

In our method, as the imaginary wall shifts slightly into the fluid domain, the confining
wall moves away from the fluid at an identical rate to the imaginary wall. This simulta-
neous movement effectively substitutes the solid-fluid interface with the phantom wall
while preserving the structure of the confined fluid. However, a limitation of our mod-
ification arises from the complete confinement of the fluid, where the stress anisotropy
in the reference system does not necessarily vanish. As a result, the mechanical route
cannot be applied.

Nevertheless, if the phantom wall is designed to be purely repulsive, the fluid-phantom
wall interface is equivalent to the interface between the fluid and its vapor [200]. As a
result, the work done by the imaginary wall is equal to (𝛾 − 𝛾𝑠𝑙), which, when neglecting
𝛾𝑠𝑣 [232, 233], equals the work of adhesion.

With temperature and specific volume, both intensive thermodynamic properties, main-
tained constant in our system, we anticipate the thermodynamic state of our system to
remain constant throughout the process. This means that Δ(𝑃𝑉) is constant, and the
overall alteration in the system’s free energy can be attributed solely to the difference
in interfacial free energies between the actual and reference systems. This requires the
convergence of Gibbs and Helmholtz free energies, similar to the assumption made in
the work by [200], where internal energy and enthalpy were considered equal.

7.7 Conclusion

Recent experiments have surprisingly shown that the macroscopic Kelvin equation ac-
curately predicts capillary condensation for capillaries as thin as 1 nm. We therefore
employed molecular dynamics simulations to analyze and understand the mechanisms
behind the capillary condensation of water in graphene nanocapillaries.

We identified weaknesses in the hypothesis from previous literature that suggested
commensurability-induced oscillations in liquid-solid interfacial free energy were re-
sponsible for this phenomenon. Found weaknesses include inaccuracies in estimating
the liquid-solid interfacial free energy, neglecting the entropic contributions in free en-
ergy assessments, and the improper application of Young’s equation in the absence of
a meniscus in the liquid film. Instead, we proposed an alternative hypothesis, namely
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that the condensation occurs due to the disjoining pressure whose value is close to the
Laplace pressure at the relevant channel height. This leads to the occurrence of capillary
condensation at relative humidity levels close to the predictions of the Kelvin equation.

To support our hypothesis, we assumed the Reynolds analogy, as well as leveraged the
previously established direct proportionality between Kapitza heat conductance and the
work of adhesion. These steps enabled us to assess the capillary pressure by determin-
ing interfacial heat transfer and calculating the work of adhesion directly based on the
definitions of interfacial energies. In these assessments, we discovered that commen-
surability induces oscillatory behavior in all quantities, including Kapitza conductance,
work of adhesion, and the first density peak of confined water. We found that the direct
proportionality between the work of adhesion and Kapitza conductance remains valid
in confined liquid circumstances, but it breaks down in very narrow capillaries where
the work of adhesion is dominated more by entropy than by energy. In contrast to bulk
water conditions, for strong confinement, separating water and graphene requires over-
coming both the adhesion energy and the decrease in entropy. Nevertheless, the work
of adhesion can be accurately predicted by empirically parameterizing the first density
peak of water, even in the narrowest capillaries.

Finally, we investigated a controversial issue in the literature regarding the influence of the
number of graphene layers on Kapitza resistance and found that it is practically unaffected
by the number of graphene layers. All together, our study provides a thorough account
of the fundamental principles governing the capillary condensation in nanocapillaries,
and offers fresh perspectives on interfacial bonding and thermal transport in ultimately
constrained systems.
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Comment on “Misinterpretation of the

Shuttleworth equation”¶

In a published paper (Scripta Materialia, 2012, 66, 627–629), it is concluded that the so-called
Shuttleworth equation holds no implications for the relationship between surface tension and
surface energy. In this chapter, we provide clarifications to demonstrate that this conclusion is not
valid.

In Ref. 234, Makkonen asserts that the so-called Shuttleworth equation ‘reduces to the
definition of surface tension derived from mechanics’ and that ‘it does not provide an
additional law of surface physics.’ We respectfully disagree with Makkonen’s interpre-
tation.

Shuttleworth (1949) demonstrated [77] that ‘the surface tension of a crystal face is related
to the surface free energy by the relation

𝛾 = 𝐹 + 𝐴(𝑑𝐹/𝑑𝐴) (8.1)

where 𝐴 is the area of the surface’, 𝛾 is the surface tension, and 𝐹 is the specific surface
free energy, with 𝐹 = 𝐻/𝐴, 𝐻 being the total Helmholtz free energy.

Since then, numerous claims both in support [78–82] and criticism [83–88] of this equa-
tion’s derivation and its consistency with Hermann’s mathematical structure of thermo-
dynamics have been raised. We do not intend to stir these discussions further; rather,
our aim is to challenge Makkonen’s viewpoint as presented in Ref. 234.

Let us first clarify the terms surface tension and surface stress. In the literature, there are
cases where surface tension is defined as the reversible work required to create a surface
per unit area, similar to Gibbs’ introduction [80]. Nevertheless, when Shuttleworth states
‘the surface tension is the tangential stress,’ he is specifically referring to surface stress
within the surface layer in his equation and discussions.

Let us now explore Makkonen’s perspectives. Makkonen defines surface stress as the
strain derivative of the total free energy, i.e.

¶This chapter contributed to the paper: Comment on “Misinterpretation of the Shuttleworth equation”.
Scripta Materialia 250, 116186 (2024)
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𝛾 =
𝜕𝐻

𝜕𝐴
(8.2)

This definition is certainly accurate but not aligned with Makkonen’s intended use.
Expanding the differential 𝑑𝐻 as 𝐴𝑑𝐹 + 𝐹𝑑𝐴 indeed yields Eq. 8.1. However, there
are a few considerations to note here. Makkonen claims that Eq. 8.2 is the definition
of stress ‘in mechanics’, but this is not accurate. Rather, it is the definition of stress
in the thermodynamics of deformation [235]. The definition of stress in mechanics is
typically based on Cauchy’s stress principles, representing the surface force per unit
area (or line) that tends to return the deformed mass to its mechanical equilibrium state.
This understanding of stress predates the introduction of free energy. When discussing
surface stress, it is essential to consider the excess stress (either positive or negative)
in surface atoms compared to bulk atoms, necessary to keep surface atoms in their
positions as if they were in the bulk. While the interpretation of excess properties dates
back to the era of Gibbs, it extends beyond free energy and can relate to any extensive
thermodynamic property. Therefore, the definition of surface stress is not contingent
upon the interpretation of free energy. Shuttleworth effectively discusses excess stress
without directly referring to Gibbs’ formulation.

Shuttleworth interprets an infinitesimal elastic change in the surface of a solid in terms
of both mechanics and thermodynamics, which lead, respectively, to the left and right
sides of his equation. Makkonen, on the other hand, solely relies on thermodynamic
evaluations and asserts that the Shuttleworth equation is trivial. This approach over-
simplifies the matter. To draw a parallel in fluid dynamics, it is akin to defining the
components of the velocity field for an incompressible flow as derivatives of the stream
function (𝑢 = 𝜕𝜓/𝜕𝑦, 𝑣 = −𝜕𝜓/𝜕𝑥) and concluding that the law of continuity holds
no additional implication and essentially reduces to the definition of velocity (since it
inherently satisfies itself when defined through the stream function). It is also analogous
to stating that the Young-Laplace equation, which estimates the pressure difference over
a curved interface, is essentially a result of static equilibrium and basic geometry. We
agree with Makkonen in acknowledging that the Shuttleworth equation is not a ‘law of
surface physics’ but rather an equation, as initially asserted by Shuttleworth himself.

Additionally, Makkonen states, ‘the evaluation of surface stress should be based on
its mechanical definition, as outlined by Gurtin and Murdoch [236] and Wolfer [237].’
Gurtin and Murdoch’s work does not directly reference free energy, and Wolfer defines
surface stress as 𝜕𝐹/𝜕𝜖 (𝜖 being the strain, similar to the Gibbs formulation). Deriving
Eq. 8.2 from 𝜕𝐹/𝜕𝜖 requires keeping 𝐴 constant, or essentially neglecting 𝐹𝑑𝐴 in contrast
to 𝐴𝑑𝐹. This essentially brings Makkonen’s arguments back to Gutman’s objections to
Shuttleworth [83], which have been thoroughly discussed by Kramer and Weissmüller
[80]. While thermodynamic properties need to be interpreted in their unstrained state,
this does not imply that, in an Eulerian derivation where measurements are taken in a
deformed state (similar to Shuttleworth’s approach), one could neglect 𝑑𝐴 meanwhile
the derivation.

To sum up, is Eq. 8.2, as used by Makkonen, incorrect? No, but referencing 𝜕𝐹/𝜕𝜖
introduces unnecessary confusion regarding the proper definition of specific free energy
[80]. A simpler and more appropriate formulation could be to simply relate the work
required for infinitesimal deformation to the differential of the extensive total free energy,
similar to Shuttleworth’s approach. It is still appropriate for Makkonen to use 𝐹 =
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𝐻/𝐴 (similar to Shuttleworth), in contrast to several other works that use 𝐹 = 𝜕𝐻/𝜕𝐴
[85, 87, 238], as with the latter definition it is impossible to derive Eq. 8.1 from Eq. 8.2.

Now, what are the implications of the Shuttleworth equation? The Shuttleworth equation
is designed specifically for properly defined elastic strains and should not be interpreted
beyond its intended scope. For instance, Gutman’s arguments [83] concerning the move-
ment of atoms from the bulk to the surface, as in the case of liquids, are not appropriate,
because Shuttleworth explicitly hedged ‘provided the deformation is reversible’.

Regarding liquids, although 𝑑𝐹/𝑑𝐴 is zero, which simplifies the Shuttleworth equation
to 𝛾 = 𝐹 (making it trivial for liquids), it should not be applied in this context. This is due
to the pressure gradient at the surface relative to the bulk, which introduces a source of
irreversibility. Even though the Shuttleworth equation coincidentally describes the end
state of this process correctly, its derivation is not suitable for liquids. It would have been
better if Shuttleworth had stated this explicitly.

Kramer and Weissmüller simply illustrate how the surface energy of solids may change
without causing surface stress [80]. A broader discussion is available in Ref. 76, where
it is elaborated how solids may have more than one stress-free configuration. Therefore,
one excellent application of the Shuttleworth equation could be in wetting problems.
In these scenarios, the surrounding thermodynamic conditions, such as interfacial free
energy, can alter the stress distribution within the solid without changing its mechanical
response.
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CHAPTER 8. COMMENT ON “MISINTERPRETATION OF THE SHUTTLEWORTH

EQUATION”



Chapter 9999999999999999999999999999999999999999999999999999999999999999999999999
Conclusions and outlook

This comprehensive thesis is structured into six meticulously investigated segments, each
examining different aspects of nanomechanics and interfacial physics. The initial section
challenges a previously accepted universal aspect ratio, revealing substrate-dependent
stability and aspect ratio in nanometer-sized bubbles on graphene. The exploration then
extends to the indentation of graphene nanobubbles, uncovering failure points similar
to those of viral shells, and investigating phase transitions of encapsulated noble gases.
The third segment examines the formation of anomalous shapes in flat nanobubbles
encapsulated by hexagonal boron nitride, highlighting the influence of heating rates
and hydrogen bonds. The investigation proceeds to the cation-controlled permeation
of charged polymers through nano-capillaries, uncovering distinct effects of monovalent
cations on polymer transmission speed. The ability to control permeation is attributed to
the varying surface versus bulk preferences of different alkali cations, particularly in the
presence of an external electric field. The fifth segment critically examines the accuracy
of the Kelvin equation in nanoscale capillaries, challenging conventional explanations
and proposing a revised understanding based on disjoining pressure. Finally, the con-
cluding segment provides critical commentary on the Shuttleworth equation, rectifying
misconceptions and contributing to a comprehensive understanding of interfacial ther-
modynamics. Collectively, this thesis offers nuanced insights into the intricate interplay
between confinement, material properties, and interfacial thermodynamics, significantly
advancing our understanding of these complex phenomena.

While this research represents a significant advancement, it does not mark the conclusion
of our efforts. In the study of nanobubble morphology, a notable oversimplification is
the exclusive focus on pure energetics analysis, neglecting the critical role of entropy.
Specifically, when calculating the adhesion energy between the trapped materials and
the respective crystals, it is essential to consider the variation in the system’s free energy
during the separation of the materials at the interface, known as the work of adhesion.
As discussed in chapter 7, for the interface of graphene with bulk water, the entropy
contribution to the work of adhesion constitutes approximately one-third of the energy
contribution. Moreover, we demonstrated in chapter 7 that for the same interface, when
water is confined, the entropic contribution is of comparable magnitude to the energy
contribution. In very narrow confinements, entropy even predominates.

Furthermore, as elucidated in chapter 4, we discovered that in small bubbles, the trapped
materials undergo solidification at room temperature, even at pressures lower than the
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predicted melting pressure based on their phase diagram. Given the likely solidification
and crystalline structure of the trapped materials, neglecting entropy can lead to mislead-
ing conclusions. Another critical aspect in evaluating interfacial free energy is its impact
on the mechanical response of crystals interfacing with fluids. As discussed in chapter 8,
the thermodynamics of the surroundings may alter the thermodynamics of the stresses
in the solid, but not their mechanical response. Therefore, the study of interfacial free
energies in the nanobubble system is of significant importance. This aspect is notably
absent in the existing literature and constitutes a primary objective for future research.

Nanobubbles also hold significant potential in facilitating chemical reactions within them,
making the study of heat transfer inside nanobubbles critically important. Given the very
small length scales of these bubbles, heat transfer is expected to be governed by interfa-
cial thermal resistance, known as Kapitza resistance. In chapter 7, we demonstrated how
confinement-induced commensurability inside nano-capillaries can influence Kapitza
resistance. Additionally, within nanobubbles, the trapped materials experience extreme
hydrostatic pressure, typically on the order of tens of gigapascals (see chapter 3). High
pressure is expected to impact Kapitza resistance. There is a significant gap in the liter-
ature regarding the investigation of thermal resistance at interfaces within nanobubbles,
underscoring the importance of this aspect in future research.

Future research should also aim to evaluate the solid surface free energy (𝛾𝑠𝑣) for the
deformed crystal and the substrate. Utilizing the phantom-wall method (see chapter 7)
provides 𝛾−𝛾𝑠𝑙 , which equals the work of adhesion only when 𝛾𝑠𝑣 is disregarded. While
this disregard may be valid for the graphene-bulk water interface, it is not applicable to
the nanobubble system, necessitating the evaluation of 𝛾𝑠𝑣 . Extensive thermodynamic
properties of a solid film, including its free energy, exhibit an excess value at the surface
compared to their bulk value. Specifically, the solid surface undergoes strain proportional
to 𝛾𝑠𝑣/𝑌, where 𝑌 represents its two-dimensional Young’s modulus, influencing the
electronic properties of the crystal. Therefore, studying 𝛾𝑠𝑣 in the nanobubble system
holds great significance and represents another primary objective for future research.
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