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Preface

The problem of perception is not just a scientific one, it is deeply philosophical. It raises pro-

found questions about the nature of reality, consciousness, and the relationship between our

minds and the external world. These are obviously not questions that I will be able to answer in

my doctoral thesis—the questions that I did set out to investigate are demanding enough—yet

they provide a captivating context in which the following scientific findings can be viewed.

In the Critique of Pure Reason, Immanuel Kant introduces the metaphysical theory of transcen-

dental idealism. He poses that there lies a deep chasm, an impassable one, dividing ‘truth’ and

the representation of that ‘truth’ in our minds. Kant describes two worlds. There is the world of

things in themselves, the ‘noumenal’, that exist beyond the limitations and capabilities of our

senses. Then there is the ‘phenomenal’, the world of appearances, a crude map of the real world

that our mind and senses produce so that we can attempt to navigate it.

In other words, we do not have direct access to the world as it is. Rather, we experience the

world that we infer from our eyes, ears and mental faculties. This implies that there exists a

limit to our knowledge and comprehension of reality; an understanding line. In the same way

that a cat will never understand a reality TV show, we may never be able to understand the

fabric of existence, simply because it exceeds the hardware that we have available to detect and

process it. We have, after all, not evolved to measure the fabric of existence; we are designed to

recognise which fruits are poisonous and which aren’t.

To me this is a humbling thought. It emphasises the importance of human experience, the

subjective, over objective truth, as objective truth is by definition out of our reach. That is,

of course, not to say that the objective should be dismissed and thrown out of the window.

As researchers, we develop models of reality; simplifications and approximations, laden with

assumptions. Many of such models have been paramount to human progress, but I believe that

Kant’s point of view helps us remain wary to not fall into that trap of arrogance, of thinking that

we fully understand something. It leaves the door ajar for new discoveries and interpretations.

In this thesis, there will be many parallels with this dichotomy; the ‘truth’ versus the ‘perceived’.

Bayesian inference, a key concept explored in this work, takes the subjective experience into
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consideration. It explains why the exact same sensory information can elicit varying responses

among individuals when the prior beliefs and expectations of those individuals are not the same.

In the end, what I have developed is a model for the problem of dynamic sound localisation. It

is only a small component of the larger phenomenon of multisensory perception, but it is this

connection to the broader human experience that has truly inspired me.

With all of that said, I would finally like to introduce this thesis with a personal favourite quote

by Nietzsche that is not only relevant to the subject of perception, but to the scientific method

in its entirety: “There are no facts, only interpretations”.

Antwerp, Belgium, 18/06/2024 Glen McLachlan
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Abstract

While the human auditory system is proficient on its own at discerning the direction of incoming
sounds, it operates in concert with other sensory modalities to reach accurate spatial awareness.
Many studies have investigated the integration of auditory and visual information, but much less
attention has been given to the importance of proprioceptive and vestibular information in the
localisation process. The vestibular and proprioceptive systems aid in discerning self-motion
from source motion and, through this, can stabilise perception and provide additional cues for
sound localisation.

The aim of this PhD thesis was to better understand how head movement and position esti-
mation affects sound localisation. To this end, an ideal-observer model, based on Bayesian
principles, was developed as a tool to predict dynamic sound localisation in humans and to test
how performance is affected by the available information.

Behavioural experiments were conducted in conjunction with model simulations to determine
the acoustic cues and head motions that are relevant to dynamic sound localisation. The results
from the psychoacoustic experiments were found to be in general agreement with the model
output, though some quantitative differences indicated that dynamic sound localisation may
involve processes that can be considered non-ideal.

These studies offer valuable insights for the field of psychoacoustics and for auditory engineer-
ing applications in modern technologies such as hearing aids and virtual or augmented reality.

Keywords: Dynamic Sound Localisation, Spatial Hearing, Head Movement, Bayesian Infer-

ence, Behavioural Experiments, Statistical Models.
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General Introduction

It may appear a trivial task to determine the location of a sound; in daily life we constantly make
estimates of objects in our perceived environment without consciously paying much attention
to them. However, the ability of humans to accurately infer the three-dimensional location of
objects based solely on auditory cues is nothing short of astonishing.

The information transmitted from our sensory organs to our brain is typically noisy and ambigu-
ous, which leads to variability and inaccuracies in perceptual responses. This noisiness depends
on both external factors (e.g., environmental noise and reverberation) and internal factors (e.g.,
neuronal noise). To deal with this, the brain requires an internal model capable of representing
sensory uncertainty.

Moreover, the auditory system does not allow for the intrinsically spatial representation of sen-
sory information that the visual and somatosensory systems benefit from. Instead of a topo-
graphical mapping at the sensory level, spatial information is encoded in acoustic cues as a
function of frequency and time, which the auditory system then needs to somehow decode.

Motivation

Studies and models of sound localisation typically only consider the acoustic cues available to
humans under static conditions, where neither the source, nor the head undergoes any move-
ment. However, real-life environments are dynamic, where both the listener and the objects
around them are capable of movement. The assumption of a stationary setting and listener
therefore lacks ecological validity and fails to account for numerous crucial factors that influ-
ence sound localisation.

First, in addition to acoustic information, a model for dynamic sound localisation needs to pro-
cess vestibular and proprioceptive information. Despite our own movement, we perceive the
external world as stable. For the auditory system to account for this, there must be a coordinate
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transformation from the head-centred auditory cues into a stable, world-centred frame of ref-
erence, which requires positional information about the head (Vliegen et al., 2004). Vestibulo-
proprioceptive information is also necessary to disambiguate the motion of a source from appar-
ent motion that results from head movements, which would in theory produce similar acoustic
cues (Wightman and Kistler, 1999).

Second, the dynamic acoustic cues obtained from self-motion have been proven beneficial for
sound localisation and externalisation (Wallach, 1940; Perrett and Noble, 1997a; Brimijoin
et al., 2013; Thurlow and Runge, 1967; Jiang et al., 2019). Their major contribution is in
eliminating front-back confusions (FBCs), although they can improve elevation estimation un-
der certain conditions too. Head movements are particularly useful when the listener localises
under poor acoustic conditions, e.g. in reverberant (Giguère and Abel, 1993) or virtual environ-
ments (Perrett and Noble, 1997a).

Third, head motion control requires its own movement model, as the head is limited to certain
anatomical and behavioural constraints. Humans show trends in e.g. the magnitude and ac-
celeration profile of head rotation (Kim et al., 2013a) and the common axes around which the
head is rotated (Thurlow et al., 1967). A framework that implements head movements can also
help investigate ‘closed-loop’ listening strategies during sound localisation, in which the type
of head movement depends on the acoustic input received. For example, specific movement
strategies may be applied to ‘triangulate’ a source, to decrease interference from reverberation,
or to attend to a single (moving) source in a complex listening environment.

The development of binaural hearing aids and virtual and augmented reality technologies is
generating an increasing need to better understand the complex dynamic processes that underlie
auditory perception (McAnally and Martin, 2014; Carlile and Leung, 2016). The principal aim
of the current work is therefore to expand on existing sound localisation research by examining
and modelling the role of head movement. This not only leads us to a broader understanding
of sound localisation, but also of the interconnected systems that are responsible for human
multisensory perception.

Scope

Sound localisation can be subdivided into several categories (see Fig. 1). First there is the
distinction between static and dynamic localisation, which exclude and include any form of
movement, respectively. Within dynamic localisation, there are the separate problems of source
motion and self-motion. Within this manuscript, localisation using self-motion is used inter-
changeably with the term ‘active’ sound localisation. Finally, self-motion can be divided into
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Fig. 1 Subcategories of sound localisation. The scope of the project is aimed at small open-loop
head rotations.

open-loop and closed-loop listening. These are terms borrowed from control theory. Motion
is considered closed-loop when the listener adjusts the head movements in response to the per-
ceived sound in a feedback loop, e.g., rotating the head to better understand a speaker. Open-
loop motion is movement that is made regardless of the incoming source signal, e.g., movements
made while walking. The scope of this project was limited to open-loop self-motion, as this is
the first significant step to integrating acoustic and proprioceptive information. More specifi-
cally, the types of movement investigated were small rotations (< 10◦), as they are most relevant
from an ecological perspective (i.e., most abundant) and from an application perspective (i.e.,
large rotations may involve more complex processes). Furthermore, localisation is restricted to
directional localisation, leaving distance perception out of consideration.

Acoustic cues for sound localisation

The human anatomy allows for several acoustic cues to be retrieved from an incoming acoustic
signal. These cues are complementary in the sense that they are most informative under different
conditions, and their reliability varies depending on the characteristics of the sound and the
acoustic environment. The acoustic cues can be divided into binaural and monaural cues, which
help localisation along the lateral (left/right) and polar dimensions (up/down and front/back),
respectively. See Fig. 2 for a visualisation of the lateral-polar coordinate system.

Binaural cues, which result from the spatial separation of the two ears and the acoustic shadow
created by the head, play a crucial role for the localisation of the lateral position of a sound
source. Directional information is obtained through the interaural time difference (ITD) and
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Fig. 2 Lateral-polar coordinate system, as used in the rest of this thesis. Lateral angles range
between ±90◦, polar angles range between ±180◦. The lateral angle of 0◦ describes sources
located on the median plane. The polar angle of 0◦ describes sources located on the horizontal
plane at eye level. Figure obtained from Paper A.
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the interaural level difference (ILD). Fig. 3 shows that, at 10◦ azimuth, the ITD is smaller than
0.1 ms. It is quite remarkable that humans can perceive such small differences in time and
infer directional information from them. However, the binaural cues do not provide enough
information for accurate localisation beyond the horizontal plane.

Monaural cues, which result from the filtering properties of the outer ear, head and torso, carry
additional information on the polar position of the source. The direction-dependent character
of this filtering is often expressed as a set of head-related transfer functions (HRTFs) in the
frequency domain or as head-related impulse responses in the time domain. An HRTF dataset
is derived from acoustic measurements of filter characteristics of the listener’s ears, typically
obtained with recordings from two microphones placed at the entrance of the ear canals while a
broadband probe sound is presented from systematically varying locations. HRTFs are subject-
dependent and, for that reason, high-resolution audio reproduction for virtual environments
requires the use of HRTFs recorded from a listener’s own ears, although the use of simulated
or non-individualised HRTFs is also actively investigated. A further description of the acoustic
cues for sound localisation is given in Chapter A.

Bayesian observer models

The ‘inverse problem’ or ‘under-determination problem’ describes the long standing challenge
of understanding how the sensory system achieves a unique and stable percept of the true state of
the world (the distal stimulus) from ambiguous sensory signals (the proximal stimulus) (Pizlo,
2001). In the context of sound localisation, this translates to the observer using the available
acoustic cues and vestibulo-proprioceptive information to infer the true location of a sound
source.

As a possible solution, Von Helmholtz (1867) posed the idea of perception as ‘unconscious
inference’, by which he proposed that the brain resolves sensory ambiguity through built-in
knowledge of the scene and the sensory organs, and uses this knowledge to automatically and
unconsciously infer the properties of objects.

Bayesian theory formalises this process of inference into an elegant framework, where prior
knowledge about the world is combined with new sensory observations, while taking into ac-
count the individual uncertainty of each contributing factor. This is done in an optimal manner,
i.e., by minimising a predefined loss function. An additional advantage of this approach is that
a Bayesian model does not just predict a response, but also predicts the uncertainty on this
response.
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Fig. 3 Impulse responses in the time-domain (above) and magnitude spectra in the frequency-
domain (below) of the measured left and right ear HRTFs for source direction (az, el) =
(10◦, 26◦).
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Numerous studies have reinforced the notion that humans operate akin to Bayesian observers,
offering invaluable insights into multisensory integration (Angelaki et al., 2009; Ernst and
Bülthoff, 2004; Ernst, 2007; Kayser and Shams, 2015), causal inference (Beierholm et al., 2007;
Ma and Rahmati, 2013; Körding et al., 2007) and motor control (Körding and Wolpert, 2004).
As a ‘holy grail’, we might eventually describe the overarching concept of auditory scene anal-
ysis (Bregman, 1994), by which the auditory system organises sound into perceptually mean-
ingful elements, as a Bayesian process (Hambrook et al., 2017).

Bayes’ rule
Fundamentally, the Bayesian observer is defined by two key components. First, the prior dis-
tribution, p (ψ), which is the probability of a hypothesis ψ to be true, prior to any observations
made. Priors are constrained by natural or learned stimulus statistics (Wei and Stocker, 2015).
As this is a probability distribution, each value of ψ has a corresponding probability p (ψ).
This represents the observer’s belief about how frequently a certain stimulus value will occur.
Second is the likelihood function, p (y|ψ), which is the probability of making observation y,
given the hypothesis ψ. This captures the encoding accuracy in the sensory representation of
the observer.

For sound localisation, the prior p (ψ) represents the probability of encountering a particular
source direction, independent of the current sensory information. Which translates to the belief
that the possible location of an object is not necessarily uniformly distributed over space. The
likelihood p (y|ψ) represents the probability of perceiving particular acoustic input y, given the
source direction ψ.

Through Bayes’ theorem, the prior and likelihood functions are combined to compute the pos-
terior distribution p (ψ|y), which quantifies how much the observer should believe ψ after con-
sidering the observed acoustic information y:

p (ψ|y) = p (ψ) p (y|ψ)
p (y)

(1)

where p (y) is a normalisation constant so that
∫
p (ψ|y) dψ = 1. This equation assigns a

probability to every direction on the sphere, which makes the posterior a probability density
function (PDF).

Besides including prior knowledge, Bayesian processes can help understand how different cues
within one modality, or cues between two different modalities, combine into a single estimate
(Seilheimer et al., 2014; Ernst, 2006).
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Fig. 4 Bayes’ rule. The green curve represents a Gaussian prior and the red curve represents the
likelihood, obtained from sensory information confounded by Gaussian noise. The resulting
posterior, represented by the blue curve is then also Gaussian.

To combine cues the observer needs to weigh one cue against the other. Calculating this opti-
mally in a Bayesian way means that the weighting will depend on the relative uncertainties in
the cues. In order to do this, the observer makes (a priori) assumptions about the distribution
of the errors on the sensory signals. In the most simple case of two independent cues A and B,
confounded with Gaussian noise with variances σ2

A and σ2
B, the optimal Bayesian observer will

multiply cue A with weight wA and cue B with weight wB = 1− wA:

wA =
1/σ2

A

1/σ2
A + 1/σ2

B

. (2)

Decision rules
To obtain a point estimate from the posterior PDF, the Bayesian observer requires a loss func-
tion. The loss function L

(
ψ, ψ̂

)
outputs a single value which quantifies the loss the observer

will sustain by choosing the target estimate ψ̂ instead of the targets’s true value ψ, i.e., it repre-
sents the cost associated with the prediction errors. An optimal decision rule is one where the
observer minimises the loss on average over a set of responses. Note that the definition of the
loss function will influence the observer’s decision.

A common and very straightforward decision strategy is the maximum a-posteriori (MAP)
rule (Bassett and Deride, 2019). This is an ‘all or nothing’ approach, which leads the observer
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to always select the maximum of the posterior PDF, in the form:

L
(
ψ, ψ̂

)
=

0, if ψ̂ = ψ,

1, otherwise,
(3)

Ideal-observer model for static sound localisation
This research builds upon the work of Reijniers et al. (2014), who proposed a Bayesian ideal-
observer model for two-dimensional static sound localisation, i.e., without source or head move-
ment.

By determining the posterior using Bayes’ rule and taking into account possible probabilistic
dependencies between the cues, the ideal-observer model functions as a ‘ceiling’ to human
sound localisation performance and provides a benchmark to which behavioural data can be
compared. Hence, any degradation in performance is solely due to the absence of the relevant
spatial information in the received acoustic signals and in the a priori information available to
the listener.

The model predictions were shown to be qualitatively in good agreement with the actual human
localisation performance in a static setting, as assessed in a meta-analysis of many localisation
experiments. Note, however, that accordance with an ideal observer’s performance does not
mean that the brain functions as a Bayesian observer. Bayesian modelling in psychophysical
research is aimed at predicting and systematising performance, not on the mechanism that gives
rise to the performance (Colombo and Seriès, 2012).

In the work by Reijniers et al. (2014), all spatial information was considered to be encoded by
the ITD and by the two monaural spectra received at each ear. This may not necessarily cor-
respond with the true information processing inside the auditory system, but the model frame-
work specifically enabled exploration of the spatial information that might be lost by omitting
or reshaping particular cues, along with their respective noise models, rather than the original
acoustic signals received at both ears.

In this work, the static localisation model was enhanced on two important fronts. First, the input
was no longer a single, static binaural measurement, but the model was extended such that it
can deal with a sequence of binaural measurements. Second, the model was extended to process
information on the orientation of the head and the uncertainty on this orientation.
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Thesis Outline
In paper A, the state of the art in modelling dynamic sound localisation was reviewed, with a
particular focus on Bayesian inference. Then, a theoretical Bayesian framework for dynamic
and active sound localisation in a static environment was introduced. As a proof of concept,
the results from two simplified numerical simulations were presented. This paper served as the
foundation on which the subsequent work was built.

The goal of paper B was to investigate which acoustic cues are utilised by human listeners
to localise sounds using small head movement. To this end, a dynamic sound localisation
experiment was conducted, in which seven subjects performed a localisation task under four
different stimulus conditions and three different movement conditions. The main finding in this
study was that human listeners do not process dynamic changes in the monaural spectral cues
to localise sounds when utilising small head movements, as conflicting spectral cues during
movement did not affect performance. Furthermore, it was shown that (small) pitch rotations
do not affect localisation performance, as was predicted by the dynamic localisation model in
paper A.

Paper C presented a sensitivity analysis of the Bayesian model for dynamic sound localisation,
in order to better understand the direction-dependent effect of each individual noise parameter.
The insights gained from this study were used to identify possible problems or limitations in
the presented model. These insights assisted in the analyses conducted in the following paper.

Paper D brought together all previous work in a spatial comparison between the dynamic lo-
calisation model and extensive data obtained from a second localisation experiment. Most im-
portantly, the model parameters were set a priori, based on results from various psychoacoustic
and proprioceptive studies, i.e., without any post-hoc parameter fitting to behavioral results. The
model output matched the behavioural data on several localisation metrics, which showed that
the model parameters corresponded with internal processes and could be derived and estimated
experimentally. Further, specific effects of the sampling rate, the spatial prior and sizes of var-
ious model uncertainties were tested. This revealed a number of interesting effects, providing
new insights on modelling the human integration of acoustic and proprioceptive information
during sound localisation.

Finally, paper E addressed the topic of head movement behaviour during localisation tasks. The
experiment conducted in this work investigated the differences and similarities in head move-
ments made by different subjects, with the purpose of finding and proposing a general head
rotation model. It was found that subjects generally adhered to the same laws of movement,
with the roll component of the rotation vector a linear function of the combined yaw and pitch

11



components. Substantial differences were found between subjects in the slope of these lin-
ear relationships, but a statistical test revealed that including these individual differences in a
movement model did not significantly improve it.

Thesis Contributions
This thesis provides several contributions to dynamic sound localisation research. We present
these contributions here.

Bayesian model for dynamic sound localisation. The cornerstone of this thesis is the model
for dynamic localisation, which is the first sound localisation model to include head position
information and uncertainty. As it integrates information over time, it can be used in the future
to model the temporal aspects of sound localisation as well. The structure of the model allows
the user to easily test different settings, such as different noise parameters, spatial priors or
decision rules. To this end, the code is well documented for further use. The MATLAB code
for the model is publicly available in the Auditory Modeling Toolbox as mclachlan2024
(Majdak et al., 2022). The AMT is available at www.amtoolbox.org.

LocaDyn test platform. We developed an application under the name LocaDyn within the
custom software framework ExpSuite, which aids researchers to set up dynamic localisation
experiments for various types of stimulation (multi-channel via loudspeakers or binaural via
headphones). It allows for control of visual interfaces via virtual reality and for head movement
to be tracked. This application was used for two of our localisation experiments and is publicly
available on SourceForge (Majdak and Mihocic, 2022).

Experimental data. The data from papers B, D and E has been formatted and documented for
replicability and further research. This data includes measured HRTFs, dynamic localisation
data for several different stimulus and movement conditions, and head tracker data. The data
from D contains a high number of repetitions per subject, per source direction, which allows for
elaborate spatial statistics. The study from E provides additional head tracker and torso tracker
data.

Spatial analysis and plotting tool. For paper D, the localisation data was visualised and anal-
ysed spatially. This has been done in the past for static data, though with a lower number of
repetitions per direction (Carlile et al., 1997). The source code for the plotting tool was ob-
tained from the Spak library (Leong and Carlile, 1998), and was modernised and integrated
into the AMT (Majdak et al., 2022) as plot mclachlan2024. The plotting tool allows for
visualisation of the biases, distributions and reversal errors of responses for source directions
over the full sphere around a listener. This tool was then used to evaluate direction-dependent
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localisation performance.

Sensitivity analysis and model validation. In our work, the output of the dynamic localisation
model was tested in two ways. First, in paper C, a sensitivity analysis provided insights on
the relationships between the model’s various noise parameters on its localisation performance.
Second, in paper D, the parameter values were selected a priori, derived from psychouacoustic
and kinaesthetic experiments, and the results were compared to the localisation data that we
obtained through localisation experiments. These results showed good agreement between the
model output and the behavioural data, thereby validating the model.

Future Work
While the findings in this Ph.D. thesis offer significant new insights into dynamic sound lo-
calisation, they also highlight several interesting avenues for further investigation. Below are
suggestions for future research that can build upon the work presented here.

Acoustic feature space. While it is well-established that humans use ITD and spectral cues to
localise sound, it is not fully understood to what extent they are used under different conditions.
Thus, the feature space assumed in the present model is by no means definitive. For example, it
has been suggested that humans solely use binaural cues for lateralisation and spectral cues for
polar estimation through separate neural pathways (Hofman and Van Opstal, 1998; Ege et al.,
2018). The information retrieved from the spectral content of the source can also be different
from the assumed cues in this work. For example, previous work found that some neurons in
the dorsal inferior colliculus of cats are sensitive to the positive spectral gradient of incoming
sound, rather than center frequencies of peaks and notches (Reiss and Young, 2005). This was
tested in a model for localisation on the sagittal plane and led to plausible model predictions
(Baumgartner et al., 2014).

Closed-loop localisation. As described in the scope, the majority of the research in this thesis
was restricted to small open-loop head movements. This is an appropriate first step to inves-
tigating active sound localisation. However, it does not include the possibility for different
task-dependent localisation strategies. For example, it was found that the movements made
by hearing impaired listeners differ substantially from those made by normal hearing listen-
ers Brimijoin et al. (2010). It is also not self-evident that localisation performance remains
the same for larger head movements or for different time scales. In other words, we cannot
confidently assume that the outcome of a large head rotation equals the sum of a series of
smaller rotations. It is well established that auditory information is integrated across several
timescales, but the windows of each timescale and the conditions they apply to are not fully
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understood (De Boer, 1985). Several studies suggest a sliding temporal window of integration
of 150–200 ms (Yabe et al., 1998; Shinozaki et al., 2003). On the other hand, for interaural dif-
ferences, a much higher temporal resolution is required to detect minute changes. For example,
previous findings suggest that ILD sensitivity depends on binaural integration within a much
smaller 3 ms temporal window (Brown and Tollin, 2016). Integrating over longer periods of
time for such rapidly changing cues may not be beneficial to human listeners.

Complex acoustic environments. The problem of dynamic sound localisation is twofold: there
is the effect of head movements and the effect of source movement Carlile and Leung (2016).
The present work assumed single, stationary sound sources. Natural environments will often
contain several sources that cannot always be assumed to be motionless. Extending this work
to multiple sources and source movement increases the dimensionality of the problem signifi-
cantly. The model will not only have to estimate the source’s location, but also its movement
direction, velocity and acceleration. These new variables will also have their own sets of prior
distributions (such as the slow motion prior Senna et al. (2015)), which will require more be-
havioural research to reliably quantify.

Pointing error. A significant part of the errors measured in localisation experiments may be
due to a response or ‘pointing’ error (Majdak et al., 2010). Pointing errors are likely not uni-
formly distributed over space, but it is difficult to differentiate between errors resulting from
the auditory system and from the response method. Previous work found a progressive increase
in horizontal errors with azimuth, a negative horizontal bias for rear locations, and a negative
vertical bias for sources located at high elevations (Bahu et al., 2016). The prevalence of these
trends depended on the pointing method. Pointing errors have been addressed to some extent
in previous models for sound localisation (Baumgartner et al., 2014; Barumerli et al., 2023),
though a uniform distribution was assumed.

Visual information. The present research only considers acoustic and proprioceptive informa-
tion. Of course, information from the visual system is a very important factor in the context
of multisensory perception, both for source localisation (Van Wanrooij et al., 2010) and for
causal inference (Shams and Beierholm, 2010; Mendonça et al., 2016). For example, there are
differences in spatial biases between the visual and auditory system. In the horizontal plane,
for visual stimuli, biases were found towards the centre of the visual field. For auditory stim-
uli, biases were directed towards the periphery instead (Odegaard et al., 2015). Furthermore,
higher weights have been found in general for visual information, when compared to auditory
information (Battaglia et al., 2003a).

Non-ideal observers. Because human perception is limited by both the nature of internal
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computations and its physiological hardware, significant departures from optimality may be
expected. Nevertheless, Bayesian ideal observer models are an excellent benchmark against
which human performance in any well defined perceptual task can be compared, and provide a
first approximation to human performance that has been surprisingly effective (Kersten et al.,
2004; Ernst and Banks, 2002; Helbig and Ernst, 2007). Moreover, the instances where modelled
and behavioural results differ can be used to identify our limits and find the situations where
humans specifically function sub-optimally (Stengård and Van den Berg, 2019).
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PAPER A

Towards modelling active sound
localisation based on Bayesian
inference in a static environment

Glen McLachlan1, Piotr Majdak2, Jonas Reijniers1, Herbert Peremans1

1 Department of Engineering Management, University of Antwerp, Belgium
2 Acoustics Research Institute, Austrian Academy of Sciences, Austria

Abstract - Over the decades, Bayesian statistical inference has become a staple tech-
nique for modelling human multisensory perception. Many studies have successfully
shown how sensory and prior information can be combined to optimally interpret our
environment. Because of the multiple sound localisation cues available in the binaural
signal, sound localisation models based on Bayesian inference are a promising way of
explaining behavioural human data. An interesting aspect is the consideration of dy-
namic localisation cues obtained through self-motion. Here we provide a review of the
recent developments in modelling dynamic sound localisation with a particular focus on
Bayesian inference. Further, we describe a theoretical Bayesian framework capable to
model dynamic and active listening situations in humans in a static auditory environ-
ment. In order to demonstrate its potential in future implementations, we provide results
from two examples of simplified versions of that framework.
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A.1 Introduction

Sound localisation is a primary function of the human auditory system. Besides its well estab-
lished evolutionary advantages (Avan et al., 2015), it is a crucial process for attention control
and self-orientation. Proper understanding and implementation of the cues responsible for lo-
calisation is relevant for a range of modern audio applications, such as binaural hearing aids and
three-dimensional audio displays for augmented or virtual reality (Blauert and Braasch, 2020).

The binaural nature of the auditory system is of high importance for localisation of the lateral
position (Fig. A.1) of a sound source (Blauert, 1997). Humans obtain information about the
source through the interaural differences in time of arrival (interaural time difference, ITD) and
level (interaural level difference, ILD). However, the ITD and ILD cues do not provide enough
information for accurate localisation beyond the horizontal plane, as several source locations
will give rise to nearly the exact same binaural cues in the so called ‘cones of confusion’ (Tobias,
2012). Monaural spectral cues, which result from the filtering properties of the outer ear, head
and torso, carry additional information on the polar position of the source (Fig. A.1). This
spectral information aids in resolving the ambiguity in the binaural cues (Wightman and Kistler,
1997).

The aforementioned ITD, ILD and spectral cues can be considered ‘static’, as they are usually
obtained in a situation where neither the source, nor the head undergoes any movement. How-
ever, in addition to these static cues, the auditory system can also utilise ‘dynamic’ cues, which
are obtained by either sound source or head movement. Thus, dynamic cues can be defined as
the changes in static cues during motion. Dynamic cues are beneficial during sound localisa-
tion, especially for resolving front-back confusions (e.g. Perrett and Noble, 1997a). They aid
localisation in some way, but their importance relative to static cues is still an active point of re-
search. Furthermore, dynamic cues obtained from self-motion, e.g., head movements, bring the
additional challenge of processing vestibulo-proprioceptive information. As a result, the major-
ity of state of the art models for sound localisation do not include the use of head movements
(Kim et al., 2013a).

There are many available models, which each focus on a specific aspect of binaural localisation,
such as processing of binaural cues (Macpherson, 1991; Willert et al., 2006), spectral cues
(Baumgartner et al., 2014; Reijniers et al., 2014), or reverberant environments (Braasch, 2002).
Over the past decade, machine learning techniques have also been applied to the modelling
problem (e.g. May et al., 2010; Ma et al., 2017). Despite promising results, these techniques
require substantial amounts of training data and can be difficult to understand due to their black-
box nature (Kothig et al., 2019).
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Bayesian inference is a method to optimally combine information about a multivariate system,
when relying on noisy observations only. Bayesian inference has often been shown to take
place not only in human multisensory perception (Alais and Burr, 2004; Battaglia et al., 2003b;
Ernst and Banks, 2002; Knill and Pouget, 2004; Shams et al., 2005) but also human perception
based on multiple cues within a single modality (Jacobs, 1999; Bülthoff and Mallot, 1990;
Landy et al., 1995). Because of the multiple sound localisation cues available in the binaural
signal, sound localisation models based on Bayesian inference seem to be a promising way of
explaining behavioural human data. Temporal integration and learning can be modelled through
recursive Bayesian estimation, where probabilities and estimates are updated recursively over
time with incoming measurements (Cox and Fischer, 2015; Zonooz et al., 2018).

This article has two main purposes. First, we review the relevance of dynamic cues and their
role in existing models of sound localisation, with a particular focus on the implementation
of Bayesian inference. Second, we describe a recursive theoretical framework for dynamic
listening through Bayesian inference. This framework aims at modelling dynamic listening
situations which involve stationary sound sources in combination with head movements.

A.2 Static listening

A.2.1 Acoustic features and perceptual cues
Sound source localisation consists of determining the position of a source in three dimensions
comprising two angles and the distance. In the interaural-polar coordinate system, the two an-
gles are defined as the lateral and polar angles relative to a single pole passing through the two
ears, i.e., the interaural axis. The interaural-polar system as used in (Majdak et al., 2010; Baum-
gartner et al., 2014; Barumerli et al., 2020) with a fixed distance between the listener and the
source is illustrated in Fig. A.1. The static physical acoustic cues for localisation are captured
by the (binaural) head-related transfer functions ( HRTFs), which describes the filtering of the
sound for a given direction by the listener’s anatomy as recorded at the two ear drums.

For sound-source localisation along the lateral angle, the two main cues are the ITDs and the
ILDs which are caused by the wave propagation time difference and the shadowing effects of
the head, respectively (Blauert, 1997). ITD as a function of lateral angle roughly follows a
sine shape, with zeroes on the median plane and maxima on the interaural axis (Shaw, 1974).
This means that small displacements around the median plane produce larger changes in ITD
than the same displacements at the lateral sides of the head. The ILD calculated for a spherical
head model does not show maxima on the interaural axis, but for locations 45◦ on either side
of that axis (Shaw, 1974). For narrowband sounds, the ILD cues are dominant at the middle
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to high-frequency range of human hearing, and the ITD cues are particularly important for low
frequencies (Rayleigh, 1907). This is known as the duplex theory of sound localisation. For
broadband sounds, which encompasses most natural signals, both cues have substantial weight,
but ITD dominates for most listeners (Macpherson and Middlebrooks, 2002).

Fig. A.1 Interaural-polar coordinate system as used in Majdak et al. (2010); Baumgartner et al.
(2014); Barumerli et al. (2020). The lateral angle of 0◦ describes sources located on the median
plane. The polar angle of 0◦ describes sources located on the horizontal plane at eye level.
Note that in this system, the lateral angle increases to the left, providing the advantage that for
sources located at eye level, the lateral angle coincides with the azimuth angle of the widely
used spherical coordinate system.

ITDs and ILDs produced by a sound at one location are ambiguous cues as they can also be
produced by a sound at any location on the surface of a cone centred on the interaural axis, an
effect known as the ‘cone of confusion’ (Blauert, 1997). Thus, in addition to these interaural
broadband cues, the asymmetric and convoluted shape of the outer ears functions as a direction-
dependent filter by causing frequency-dependent interference before sound waves reach the ear
drums. The spectral cues introduced at each ear provide spatial information along the sagittal
planes that helps to disambiguate the cones of confusion (Wightman and Kistler, 1997) which
results in smaller elevation errors and a reduced so-called quadrant error rate, i.e., rate of confus-
ing the spatial quadrant of the source direction, including the confusions between front and back
and top and bottom (Middlebrooks, 1999; Majdak et al., 2010). Thus, the interaural-polar co-
ordinate system provides a simple but complete representation of all sound directions from the
perceptual perspective (Morimoto and Aokata, 1984), in which the lateral angle depends mostly
on interaural cues and polar angle depends mostly on monaural spectral cues (see Fig.A.1).

Despite the varying contributions from different spectral regions, incoming sound must com-
prise sufficient energy in the relevant frequency region to make use of the spectral cues by the

19



auditory system (King and Oldfield, 1997; Zonooz et al., 2019). The human pinna’s most promi-
nent spectral notch related to the sound’s polar angle falls within the 6 to 9 kHz band, which
varies systematically and monotonically with polar angle (Zonooz et al., 2019). Acoustic fea-
tures above 9 kHz still dependent on the polar angle, but they vary in a much more complex way.
As a general upper limit, frequencies up to l6 kHz are evaluated by the auditory system in order
to localise the direction of a sound (Hebrank and Wright, 1974). As for the lower frequency
limit, sounds below 4 kHz have wavelengths that are too large to be affected by the dimensions
of the pinnae and, thus, the resonances are direction independent (Jiang et al., 2019). Addi-
tionally, the effectiveness of monaural cues is highly listener specific, due to individual head
and ear morphology (Wenzel et al., 1993). This is a prominent issue in 3D auditory displays
for sound presentation over headphones (McAnally and Martin, 2014) as such systems require
listener-specific HRTFs to reproduce the spectral cues with full accuracy.

Note that in this article we focus on the direction, and put less attention on the third dimension,
the distance. On the one hand, distance perception is closely linked to sound reverberation (Za-
horik et al., 2005). On the other hand, our proposed framework is expandable to consider
additional variables and more complex problems. For example, in the near field (distances
below 1 m), ILDs become a significant cue for the disambiguation of source location (Shinn-
Cunningham et al., 2000) and this information could be used to extend our considerations to
more complex localisation scenarios. Also, auditory motion parallax can be exploited to assess
the relative distances of two sound sources (Genzel et al., 2018).

A.2.2 Ill-posed problem and prior information
Even for sound sources that meet the requirements above, polar angle estimation is still argued
to be a mathematically ill-posed problem (Ege et al., 2018), as the spectrum of the signal at the
eardrum results from a time-domain convolution of two unknowns: the actual source spectrum
and the particular direction-dependent HRTF. This means that a priori knowledge of the source
spectrum and/or direction helps to differentiate between spectral cues resulting from the source
properties and from the filtering by the pinnae. Thus, a listener with an a priori knowledge is
better able to estimate the pinna filtering characteristics from an incoming sound and associate
those characteristics with the appropriate source position.

Despite the ill-posed problem for sound’s polar-angle estimation, human localisation perfor-
mance can be accurate and precise for most sound directions. Thus, to estimate the most likely
direction, the auditory system seems to complement the acoustic cues with non-acoustic infor-
mation about sounds and the environment. For example, the auditory system considers certain
parts of the sensory information to be more reliable than others, such as different weightings on
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different frequency bands (Zonooz et al., 2019). With respect to sound localisation, priors em-
phasising the central directions helped to describe the systematic underestimation of peripheral
source directions in owls (Fischer and Peña, 2011). There also appears to be a clear mapping
between frequency and elevation estimation, where high pitch is consistently mapped to high
positions and vice versa (Parise et al., 2014). A priori assumptions such as the HRTF being
unique for each sound elevation and natural source spectra not resembling HRTFs helped in
modelling the process of sound localisation (Ege et al., 2019).

Interestingly, sound-localisation mechanisms seem to be independent along the horizontal and
vertical dimensions, providing evidence that they may be embedded as distinct strategies to
deal with spatial uncertainty in the acoustic environment (Ege et al., 2018). In the same study,
azimuth estimation did not require a prior. Conversely, elevation estimation did require a prior
in the form of a Gaussian spatial distribution centred around the horizontal plane. This is in
line with the current understanding of multisensory perception where priors are independently
encoded (Beierholm et al., 2009). The elegant inclusion of such prior information is a major
advantage of a Bayesian framework.

In vision, priors have been discovered, e.g., observers tend to underestimate the speed of an
object as they initially assume them to move stationary or move slowly (Weiss et al., 2002).
These priors may also apply to audition. In fact, an analogous prior for low velocity of auditory
sources has already been suggested (Senna et al., 2015; Freeman et al., 2017).

A.3 Dynamic listening

Our acoustic environment is in constant motion, due to both animate objects and listener move-
ments. This makes the dynamic listening problem twofold (Carlile and Leung, 2016): 1) How
is motion perceived and encoded in the auditory system? 2) How can a listener disambiguate
moving sources from the apparent motion caused by head rotation? Both questions will be
addressed in this section.

It is important to distinguish here between ‘passive’ dynamic listening and ‘active’ dynamic lis-
tening, particularly because several definitions exist in different fields related to audition (Barnett-
Cowan and Harris, 2011; Cooke et al., 2007; van der Heijden et al., 2018; Portello et al., 2014).
According to our definition, passive dynamic listening involves a dynamic acoustic environment
without the employment of head movements, i.e., dynamic cues are solely produced by moving
sound sources. In contrast, in the active dynamic listening situation listeners can rotate their
heads and obtain dynamic cues even from static sound sources.
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There are three degrees of freedom considered in most research related to dynamic listening:
head rotation around the z-axis (yaw), head turn around the y-axis (pitch) and head tilt around
the x-axis (roll), see Fig. A.2. Note that in this article, we focus on the directional localisa-
tion process, thus we do not consider head translations, which are usually related to distance
estimation (Lu and Cooke, 2011).

Fig. A.2 Three degrees of freedom in head orientation: yaw (head rotation), roll (head pivot),
and pitch (head tip).

A.3.1 Acoustic features and perceptual cues
Wallach first suggested that dynamic ITDs and ILDs associated with head rotation are used to
refine localisation accuracy, especially along the cones of confusion (Wallach, 1940). He argued
that head yaw rotations would eliminate front-back ambiguity due to the contrasting change
in the interaural cues provided by a stationary source (Macpherson, 2013). The contribution
of dynamic cues to resolve front from back has since been empirically shown multiple times
(Wightman and Kistler, 1999; Thurlow and Runge, 1967; Begault et al., 2001), especially in
conditions in which spectral cues are not fully accessible to the auditory system (Ashby et al.,
2014; Morikawa et al., 2013; McAnally and Martin, 2014). Dynamic interaural cues contribute
more to front-back resolution than dynamic monaural spectral cues (Burger, 1958) and dynamic
ITD is a more salient cue than dynamic ILD (Macpherson, 2013).

Not only yaw rotations produce a strong dynamic cue, head rolls provide supplementary infor-
mation to resolve up-down confusions (Jiang et al., 2019). The contribution of yaw and roll to
the process of sound localisation based on ITD can be investigated with the so-called ITD angu-
lar rate, i.e., dITD/dα with α being the source angle along a given rotation axis. ITD angular
rate describes the change in ITD caused by the change in the source direction (Pavão et al.,
2020). Fig. A.3 shows ITD angular rates for the three rotation axes and sources placed over the
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full sphere. The ITDs were calculated from the HRTFs of a mannequin (KU 100, Neumann,
Germany) available from the THK SOFA database (Bernschütz, 2013). Figure A.3 shows that
yaw and roll induce large ITD rates providing a strong cue to resolve the cone of confusion.
The head pitch, on the other hand, does not seem to evoke significant ITD rates, i.e., it does not
provide dynamic cues to sufficiently resolve the cone of confusion.

Fig. A.3 ITD angular rates (dITD/dα) in µs per degree. Here dα corresponds with a positive
rotation around the a) z-axis (yaw), b) y-axis (pitch), and c) x-axis (roll). Left and right panels
represent source locations in the front and back of the head, respectively.

Dynamic cues also help in estimating the elevation of a sound source. As it can be deduced
from Fig. A.3a, the ITD angular rates caused by head yaw depend on the source elevation angle
(Wallach, 1940). They are large for sources placed on the horizontal plane and nearly zero for
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those placed directly above or below a listener. This relation is shown in more detail in Fig. A.4,
which shows the ITD angular rate for head yaw (dITD/dα with α being the lateral angle) as a
function of the polar angle for sources located on the median plane. The auditory system is able
to evaluate these ITD rate differences and associate them with the sound elevation (Wallach,
1940; Perrett and Noble, 1997a; McAnally and Martin, 2014; Kim et al., 2013a; Ashby et al.,
2014). The sensitivity of this feature varies with the elevation. In reference to Fig. A.4, the
ITD yaw rate is largest for sources on the horizontal plane and the smallest for sources above
and below the listener. The opposite is true for the slope of the ITD yaw rate, i.e., the slope
is steeper for higher polar angles. The steepness of the slope may explain why elevation es-
timation based on dynamic ITD only improves for elevations greater than 30◦ above or below
the horizontal plane (Perrett and Noble, 1997a). Generally, the relation between the dynamic
ITD rate and elevation perception seems to be quite complex, as it seems to further depend on
the stimulus bandwidth (Ashby et al., 2014) and might even be supported by dynamic spectral
cues (McAnally and Martin, 2014), but not in a monaural listening situation (Hirahara et al.,
2021).

Fig. A.4 ITD yaw rates (in µs per degree) calculated for the median plane as a function of the
sound-source polar angle. Note the sinusoidal shape indicating that the ITD yaw rates do not
change linearly with polar angle, showing the largest values at eye level (polar angle of zero),
but the largest changes above or below the listener (polar angle of ±90).

Head movements do not always improve localisation. Brief sounds played during an ongo-
ing head movement may even degrade localisation accuracy (Leung et al., 2008; Honda et al.,
2016). During rapid head turns, the auditory space can be perceived as distorted or ‘smeared’
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(Cooper et al., 2008), which indicates that rotation speed may be a relevant parameter in the
process of sound localisation. Interestingly, those distortions only occurred when the sounds
were presented near the end of the head turn indicating a complex interaction between the head
rotation and perceived auditory space. On top of that, all the spatial cues can vary temporally
and our brains need to integrate the information somehow in order to obtain a stable image of
the environment. Unfortunately, it is not completely clear yet how the brain accomplishes this
task (Gerken et al., 1990).

So far, there is no evidence for peripheral neurons sensitive to auditory motion (Carlile and
Best, 2002; Carlile et al., 2014; Freeman et al., 2014), in contrast to those found in the visual
system. Still, humans are able to faithfully track a sound’s unpredictable movements in the hor-
izontal plane with smooth-pursuit responses of the head, which in turn supports the existence of
a pursuit system for auditory head-tracking (Calvo et al., 2021). This is supported by neurons
in the midbrain (inferior colliculus and medial geniculate nucleus) sensitive to dynamic cue
changes. This suggests the existence of a higher-level neural network estimating sound motion,
similar to that of third-order (acceleration) motion detectors found in vision for cats (Al’tman
et al., 1985), bats (Pollak, 2012), guinae pigs (Ingham et al., 2001), and barn owls (Wagner
and Takahashi, 1992; McAlpine et al., 2000). These networks are heavily modulated by at-
tention (Boucher et al., 2004) and have been measured by means of electroencephalography
(EEG) (Kreitewolf et al., 2011), providing further evidence for higher cognitive processes in-
volved in decoding sound velocity in humans. Taken together, sound motion is most probably
tracked by sampling the estimated source position and integrating that information by higher
stages of the auditory system (Middlebrooks, 2015; Carlile and Leung, 2016), rather than by a
continuous measurement of sound velocity in the peripheral stages.

It is generally accepted that the auditory system depends on a type of ‘temporal integration’
(Loveless et al., 1996). It is important here to distinguish between the operation of mathemat-
ical integration (as the term ‘temporal integration’ seems to imply) and the actual process in
the analysis of time-variant information. In cognitive sciences, temporal integration considers a
variety of models working on various time scales (Teng et al., 2016). For example, in the ‘mul-
tiple looks’ model, samples or ‘looks’ are taken from the acoustic features, stored in memory,
and can be selectively accessed and processed (Viemeister and Wakefield, 1991). When applied
to the process of sound localisation, the auditory system seems to integrate acoustic informa-
tion over a duration of approximately 5 ms to form a single look, which are then combined
through a leaky integrator, with a stable composite estimation requiring a stimulus duration of
approximately 80 ms (Hofman and Van Opstal, 1998).

More specifically, static elevation estimation seems to require 40 to 80 ms of broadband in-
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put(Hofman and Van Opstal, 1998). For static lateralisation, stable performance can be achieved
with stimuli as short as 3 ms (Vliegen et al., 2004). During dynamic sound-source localisation,
the sound localisation system seems to require a minimum 100 ms of input to yield an improved
estimate (likely due to the process of vestibular-auditory integration), with the stimulus duration
above 100 ms further improving the localisation performance (Macpherson, 2013; Perrett and
Noble, 1997a).

Doppler shift, i.e., the frequency shift caused by the motion of the sound source and/or the
listener, is an additional dynamic cue that must be noted. Interestingly, within a single frequency
band, the binaural Doppler equation results in mathematically equivalent results as the ITD
angular rate (Baumann et al., 2015). Despite its implementation in robotic systems (Kumon
and Uozumi, 2011), there seems to be no evidence that human use the Doppler effect to localise
sound sources. When considering moving sources, however, humans are indeed able to utilise
the Doppler shift as a cue for velocity discrimination (Lutfi and Wang, 1999).

A.3.2 Integration of proprioceptive information
Listeners are capable of dissociating self-motion from source motion, with the largest apparent
difference being the additional sensory feedback from the vestibular and proprioceptive systems
in the case of self-motion (Carlile and Leung, 2016). Consequently, the contribution of self-
motion implies the consideration of proprioceptive information in modelling the localisation
process.

In the human auditory system, acoustic cues are encoded in an egocentric representation, i.e.,
head-centred reference frame (Vliegen et al., 2004). In the process of spatial inference, the
frame of reference needs to be transformed from egocentric to allocentric, i.e., world-centred
information about the environment (Schechtman et al., 2012). The auditory system is able
to compensate for head rotations during the perception of sound-source motion, though this
compensation seems to be incomplete (Freeman et al., 2017). Complementary information from
other senses, integrated with the acoustic input can help to better estimate the allocentric spatial
properties of the environment. In fact, mechanisms responsible for building an allocentric frame
of reference are based on multisensory processing (Lewald and Karnath, 2000; Viaud-Delmon
and Warusfel, 2014; Yost et al., 2015).

Thus, it is not surprising that in the process of sound localisation, information needs to be in-
tegrated from many systems such as the vestibular system, proprioception or from efference
copies of motor commands (Goossens and Van Opstal, 1999). For example, performance in
a dynamic spatial auditory task improved when dynamic cues were generated by self-induced
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head motion rather than by the source itself (Brimijoin and Akeroyd, 2014). However, front-
back confusions that initially did not resolve with source movement were in fact resolved when
source movements were controlled by the listener (Wightman and Kistler, 1999), suggesting
that head movements may not be required to produce dynamic cues to resolve front–back ambi-
guity and, instead, that the listener’s priors, e.g., additional information on the direction of the
source, contribute strongly.

The extent to which the various information channels contribute to the process of spatial calibra-
tion remains an open question. There is a strong indication that vestibular-auditory integration
takes place in the sound localisation process as indicated by the requirement of a long stimulus
duration (in the range of 100 ms) for an effective use of dynamic auditory cues (Macpher-
son, 2013). However, in that study, listeners rotated their head at a constant velocity and the
stimulus was played when the head orientation entered a selected spatial window. Because
of this, movement initiation and acceleration, in which vestibulo-proprioceptive mechanisms
may play a prominent role, were not tested. Experiments that made subjects orient themselves
”straight ahead” found that proprioceptive input from the neck region does significantly im-
pact the subjective body orientation in humans, even though the effect was smaller than that
found for vestibular stimulation (Karnath et al., 1994). In order to clarify whether the vestibulo-
proprioceptive information integrated with acoustic cues is derived from vestibular or propri-
oceptive systems, several head and and body movement conditions were tested in a sound lo-
calisation experiment (Kim et al., 2013b). The proprioceptive information did not improve
localisation indicating that the vestibular inputs are sufficient to inform the auditory system
about head movement. In line with these findings, work by Genzel et al. (2016) shows that
auditory updating is dominated by vestibular signals, though they did find significant contribu-
tions from proprioception/efference copy. Even eye position (Lewald and Ehrenstein, 1996) and
audiovestibular interaction (Van Barneveld and John Van Opstal, 2010) seem to affect the spa-
tial localisation, which further complicates the understanding of the contribution of vestibulo-
proprioceptive information to the process of sound localisation. It is apparent, however, that the
vestibular system is dominant in many of the tested scenarios.

A.3.3 Active-listening strategies
Borrowing from control theory terminology, active listening can be subdivided into open-loop
and closed-loop listening. In open-loop listening head movements do not depend on the sound
source. For closed-loop listening, the listener adjusts the head movements in response to the
perceived sound in a feedback loop, adapting the movement for the duration of the sound sig-
nal. This makes closed-loop listening a task-dependent problem. Closed-loop listening can be
beneficial to ‘triangulate’ a source, to decrease interference from reverberation, and to attend to
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a single (moving) source in a complex listening environment (Cooke et al., 2007). Naturally,
closed-loop listening strategies are only possible if there is enough time to react. In a dynamic
listening task, localisation accuracy could be improved with signals as short as 50 ms, but only
in the cases where the listener responds with a head movement within the duration of the stim-
ulus (Perrett and Noble, 1997a). Note that, besides head movement, eyes can also be moved
as a reaction to a sound (Goossens and Van Opstal, 1997), but because they do not change the
auditory signal, we do not consider them in this article.

In an unconstrained listening situation, i.e., any head movements allowed, listeners utilise yaw
more often than pitch or roll (Thurlow et al., 1967; Morikawa et al., 2013). This is in line with
the observation that yaw produces the most informative dynamic cues, compare Fig. A.3. In a
closed-loop listening situation, listeners can also orient their head towards the source. Indeed,
in another listening task, a majority of the subjects rotated their head toward the direction of
the source (Muir and Field, 1979; Fuller, 1992). This behaviour may be beneficial for several
reasons such as the spatial centring the acoustic image of a sound and the alignment of the
visual system with the source of the sound (Brimijoin et al., 2010). The horizontal localisation
is best in the area around the frontal half of the median plane (Mills, 1958; Oldfield and Parker,
1984) and thus may be considered as a neuro-computational auditory fovea, which somewhat
resembles the visual ocular pursuit system (Calvo et al., 2021). Following this, a listener’s
intention may be to orient their head such that the source direction is within the field of highest
spatial resolution (Blauert, 1997). Furthermore, listeners also tend to make reversals in head
movements, i.e., rotating their head back and forth (Muir and Field, 1979; Fuller, 1992). By
doing so, a continuum of dynamic cues is produced, which when integrated, may improve the
estimation of the position of a stationary sound source.

It may be unnecessary to consider all physically attainable orientations of the head, because a
confined area around the initial position covers the majority of head positions in natural listen-
ing situations. Even though humans can rotate their heads on the yaw axis as far as ±70◦, the
listeners do not seem to rotate their heads to this extent (Kim et al., 2013a). Small head rotations
(up to ±16◦) already significantly reduce the rate of front-back confusions, though larger move-
ments are required to also significantly reduce elevation errors (McAnally and Martin, 2014).
Head movements are smaller for broadband noise than for narrowband noise (Morikawa et al.,
2013), indicating an inverse relationship between spectral content and the required rotation an-
gle.

It is important to note that all the aforementioned studies report large individual differences in
the head movements. The optimal manner of obtaining dynamic information may be subject-
dependent because of differences in morphology and hearing capabilities. It is, however, rather
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likely that untrained and fully unconstrained listeners do not inherently know how to utilise
dynamic cues. In a speech perception experiment, untrained listeners did not make optimal
use of the dynamic cues (Grange and Culling, 2016). In fact, some listeners did not move
at all, some rotated directly to near-optimum orientations, while others moved gradually and
erratically. After being instructed on the head movements, listeners’ behaviour became more
coherent and performance improved indicating that listeners are capable of quickly learning
new strategies in order to optimise their head movements. However, there seem to be only
little advantage from ‘free’ (i.e., no instructions) over ‘forced’ (i.e., an instructed direction and
speed) rotations (Perrett and Noble, 1997a; Thurlow and Runge, 1967). In summary, inclusion
of individual listener strategies in an active listening model would require the consideration of
a task-dependent variable driving the head orientation, freely chosen at each moment of time.

A.4 Bayesian models

There is a general consensus that in order to estimate a sound-source direction, the human
auditory system performs a comparison between incoming acoustic features and their learned
representation (Middlebrooks, 1992, 1999; Reijniers et al., 2014; Zonooz et al., 2019). In other
words, the models assume a template-matching process, in which the auditory system maintains
a stored library of templates of the acoustic information associated with each sound-source
direction. When a stimulus is perceived, the listener then compares it to the templates. Given
some prior assumptions, the localisation estimate then corresponds to the direction for which
the template fits most closely.

This procedure can be well represented in the Bayesian framework, in which the probability of
an occurring event may be affected by prior knowledge about the event, e.g., how frequently a
stimulus previously occurred at a given position. The inclusion of a prior probability is what
distinguishes this method from other interpretations of probability. A multitude of studies on
multimodal perception suggests that the brain uses a Bayesian approach to combine stimuli
during estimation of spatial localisation (Shams et al., 2005; Alais and Burr, 2004; Körding
et al., 2007; Gu et al., 2008; Ursino et al., 2017) and to learn and adapt to changes in the
environment (Körding and Wolpert, 2004; Stocker and Simoncelli, 2006; Hudson et al., 2007;
Carlile et al., 2014; Ege et al., 2019).

A.4.1 Bayesian estimation
In Bayes’ theorem (in terms of probability density functions),

p(ψ|y) = p(y|ψ)p(ψ)
p(y)

,
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the posterior probability density function ( PDF) p(ψ|y) of direction ψ of a source given acous-
tic information y depends on three factors: 1) The likelihood p(y|ψ), representing the PDF
of acoustic information y being observed for a source at direction ψ; 2) The prior PDF p(ψ),
representing assumptions on the result, derived from the past experience on the parameter to be
estimated; and 3) The denominator p(y), representing the PDF of acoustic information y being
observed and assumed to be a normalisation constant inferred from

∫
p(ψ|y)dψ = 1, so that

the area under the posterior PDF integrates to 1.

When formulating the sound source localisation problem as a Bayesian decision problem, the
listener first determines the posterior PDF given both prior and sensory information. Next, a loss
function is defined on the set of source directions and by using the posterior PDF to minimise
the expected loss the ‘best’ estimate of the source direction is determined.

If the loss function specifies the minimisation of the probability of error, the optimal Bayesian
decision rule selects the maximum of the posterior PDF, a strategy known as the maximum-a-
posteriori (MAP) strategy (Bahl et al., 1974). Note that in the special case of the prior being
a uniform PDF, the MAP strategy obtains the same result as maximum likelihood estimation,
which returns the parameter value ψ that maximises the likelihood. Interestingly, the auditory
system does not always rely on a point estimate like the MAP rule and a random sampling
strategy from the posterior PDF seems to better explain the localisation process in some condi-
tions (Ege et al., 2018).

Bayesian inference is a widely used approach in investigating various auditory effects. For
example, Bayesian inference can help to reconstruct localisation cues from listener responses
to random cue spectra (Hofman and Van Opstal, 2002), or to investigate how fluctuations of
binaural cues in realistic noisy listening conditions affect localisation performance (Nix and
Hohmann, 2006), or to investigate the trading between accuracy and precision in the sound-
localisation process (Ege et al., 2018).

Bayesian inference and the template-matching procedure have been combined to model sound
localisation based on ITDs and spectral acoustic features of a stationary source (Reijniers et al.,
2014). That Bayesian ideal-observer model was able to predict empirical sound localisation
errors, reproducing patterns observed in human localisation experiments. It can be seen as a
first step in modelling active dynamic localisation and is, in fact, a simplified example for our
model later (see Sec. A.5.5).
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A.4.2 Recursive Bayesian estimation
There is a variety of methods to introduce time dependency to Bayesian models (Barber et al.,
2011), especially when it comes to derive a decision in complex dynamic systems (Mark et al.,
2018). Recursive Bayesian inference is one of these techniques and can be applied to fit a statis-
tical model to data in a series of steps (Särkkä, 2013). The methodology of recursive Bayesian
inference can be defined as a two-step process that recursively cycles through a prediction step
(which “predicts” a prior PDF of current state based on the old estimate) and an update step
(which “updates” the state PDF to form a posterior estimate by taking the newly available mea-
surement into account).

A popular way to approximate the recursive Bayesian estimation in discrete state-space is
through linear-Gaussian models, i.e., Kalman filters, which assume that the true state of sys-
tem model X(ti) at time ti linearly evolves from the state at time ti−1. In order to process
non-linear systems, adaptations of the Kalman filter can be used, such as extended Kalman
filters or unscented Kalman filters (Wan et al., 2001). The Kalman filter and its variants up-
date the process mean, i.e., the state, and its variance at each iteration, making it the optimum
(minimum error) estimator when the noises are Gaussian. However, multimodal noises may
bring the Kalman filter to instability, which prevents it from converging to the mean. In order
to handle such multimodal ambiguities as well as non-linear models, the particle filter method
(or sequential Monte Carlo) has been developed (Li, 2014).

The switch between linear and non-linear systems can even be required when solving a single
problem. For example, in an investigation of auditory-based prey capture by the barn owl (Cox
and Fischer, 2015), both linear and non-linear recursive Bayesian estimations were used to
predict a source’s future direction, given a sequence of sensory observations and a prior PDF
for direction and angular velocity. A linear relationship between prey direction and ITD was
assumed for prey in the frontal hemisphere allowing for the use of a Kalman filter. For more
lateral sound directions, however, the linear approximation did not apply and a particle filter
was required to compute the Bayesian prediction. Note that while that model is a dynamic
model, it utilises dynamic cues from source motion only, not from head movements.

Recursive Bayesian inference was also used to model the external nucleus of the inferior col-
liculus (Willert et al., 2006), which is thought to be responsible for the transformation from a
frequency-specific code for spatial cues into a topographic code for space (Cohen and Knudsen,
1999). A similar mechanism was able to explain how an input with a limited spectrum can
improve elevation estimation after training (Zonooz et al., 2018).

In the field of auditory scene analysis (Bregman, 1994), recursive Bayesian estimation has been
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used to improve the process of resolving individual sources in a complex acoustic environ-
ment (Hambrook et al., 2017). That model is based on dynamic ITDs and uses a simple recur-
sive approach, in which the prior PDF of sound positions is stored in a spectrospatial map and
the incoming short-time maps constitute new evidence. As a simplification, the dynamic cues
of the head movements are translated to equivalent inverse changes in the source position. The
model also assumes perfect control of the head orientation. Thus, it does not reflect a realistic
dynamic listening situation, in which the actual head orientation needs to be a random variable
with an uncertainty, because of the inherent error in the sensorimotor system. Still, it can be
considered as a case of ‘idealised’ dynamic listening.

Much can also be learnt from research in robotics, as there are many existing models for multi-
sensory integration and motion strategies (Luo and Chang, 2011; Schymura et al., 2014, 2015;
Ma et al., 2017; May et al., 2015). However, many of these studies have focused on developing
artificial auditory systems that are less applicable to research on human binaural listening, such
as the use of microphone arrays (Aarabi, 2003; Valin et al., 2007). Nonetheless, the techniques
applied can prove useful for more biologically plausible models, especially for dynamic listen-
ing. For example, performance of an extended Kalman filter has been improved by introducing
additional a priori information verifying the consistency of location estimation at each time
step (Kumon and Uozumi, 2011).

A.5 Modelling active listening in a static environment

In this section, we propose a state-space model to describe the problem of active sound locali-
sation, explain the generative model used in the Bayesian framework, and derive the posterior
PDFs of the head orientation and source direction. We also demonstrate the feasibility of our
model in two simplified examples.

In our model, we limit the source to be stationary with respect to the head movements within
the considered temporal interval in the model. This is justified by assuming that our framework
is a part of a larger framework of causal inference, in which the listener tests various hypotheses
on the auditory environment and at the moment of probing the environment, the most probable
assumption is an environment consisting of non-moving auditory objects. This assumption is
further upheld by the empirical data supporting the ‘slow-motion prior’ in listening (Senna et al.,
2015; Freeman et al., 2017).

We allow the listener to actively control the head movements. While head rotations can be
described in a general way by using quaternions, in our article, we use a simplified description
by limiting head movements to yaw rotations only. Finally, we assume a ‘multiple looks’ model
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whereby the listener collects information at discrete time steps during the motion and updates
the evidence step by step.

A.5.1 State-space model
We describe the listener as a dynamic state-space process, where in all instances of listening,
the listener needs to determine the posterior PDF of the source direction and that PDF needs
to be updated recursively as more evidence or information becomes available. This recursive
estimation process is important in dynamic models including temporal integration and relies on
the Markov assumption: the future is independent of the past given the present (Fosler-Lussier,
1998). The state-space representation utilises state variables, of which the values evolve over
time in a way that depends on their current value (i.e. state) and on the input variables. Using
this definition and the Markov assumption, we denote the true state of the system as X. This
true state is hidden to the listener, who can only observe the state via a noisy measurement that
we denote as y,

X(ti) = g(X(ti−1), u(ti−1), δu(ti)), (A.1)

y(ti) = h(X(ti), δx(ti)),

where g and h are called the system model and the measurement model, respectively, u is the
system control function, and δu and δx are the system and measurement noise, respectively.

In the context of a sound localisation process with the source positioned in the far-field, the state
information required by the listener to localise a source consists of the head orientation θH(t)
and the source direction ψ a 2D vector defined by the lateral and polar angles of the source

X(t) = (θH(t), ψ)
T ,

with both the head orientation and the source direction measured relative to the torso that we
assume as the link between the egocentric and allocentric spatial systems.

The control signal u(t) is represented by the speed of rotating the head, i.e., u(t) = ωz(t). Thus,
the discrete-time dynamic state-space model g is formulated as

X(ti+1)−X(ti) = (ωz(ti)∆t+ δu, ψ(ti+1)− ψ(ti))
T , (A.2)

with ∆t the time step of the ‘multiple looks’ model and δu the noise on the self-motion rep-
resenting the difference between the intended and the actually executed head movement. Note
that, in a stationary auditory environment, the difference between the previous and current sound
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direction, ψ(ti+1) and ψ(ti), respectively, is zero.

The measurement equation of the proposed state-space model consists of two components

y(ti) = (yA(ti), yH(ti))
T .

The first component, yA(ti), describes the acoustic features used by the auditory system in the
process of sound localisation, as described in Sec. A.3. For example, when resolving front-back
confusions, the system may rely on dynamic ITDs only, resulting in yA(ti) = ITD(θH(ti), ψ)+

δA. In that example, the noise in the acoustic features is modelled as unbiased Gaussian noise
δA ∼ N (0, σyITD

).

The second component, yH(ti), describes the measurement of the head orientation as yH(ti) =
θH(ti) + δH and assumes that the listener knows the head orientation relative to the torso up to
some additive (unbiased) Gaussian noise δH ∼ N (0, σyH ).

While the aforementioned noise sources are described as additive, control of movement (Todorov,
2005) and stimulus perception (Stern and Johnson, 2010) are generally assumed to not only be
endowed with additive but also with multiplicative noise, in which the standard deviation of the
noise is linearly related to the amplitude of the signal. A possible solution in the case of our
framework can be transforming the signals to a space of constant variance.

Note that we make no assumptions about the linearity of the acoustic component of the measure-
ment equation. Note also that we do assume that the head orientation and acoustic measurement
processes are independent, in particular that the acoustic features are not used by the listener to
estimate the head orientation. This is directly exploited in the following sections: in order to
translate the acoustic measurements into source direction, the listener needs information about
the head orientation and we simplify the active sound localisation problem considerably by first
estimating the head orientation (Sec. A.5.3), and subsequently making use of that information
in the process of estimating the source position (Sec. A.5.4). In order to retain the assumption
of independent noise in the underlying measurement processes, we assume the delays involved
in the process to be broadband.

34



Fig. A.5 Bayesian network describing the dynamic listening situation. The white and grey
circles represent observed and hidden variables, respectively. The arrows denote conditional
dependencies. ψ denotes the stationary sound source direction.

A.5.2 Generative model
In the framework of Bayesian inference, we assume that the listener wants to determine the
source direction based on all prior information about the environment and on all sensory in-
formation collected during the head movement. To this end, the listener first determines the
posterior PDF of the source direction. The desired posterior PDF, taking into account all infor-
mation available at time ti will be denoted as,

pti = p(ψ | u(0 : i− 1),y(0 : i)), (A.3)

with u(0 : i− 1) denoting the sequence of control signals, i.e., rotation speed, applied at times
t0 until ti−1 with the time step ∆t, and y(0 : i) the sequence of sensor readings, i.e., acoustic
features and head orientation, collected at times t0 until ti. Figure A.5 illustrates the generative
model describing this posterior PDF. Note that, while we assume the source to be stationary,
we make explicit the time varying nature of our knowledge about the source direction by taking
into account all relevant information available at time ti. Thus, we refer to this distribution by
the shorthand pti .

In Bayesian decision theory, the posterior PDF is usually used to minimise a loss function,
that describes the optimal point estimate of the source direction. In closed-loop listening, the
posterior PDF, computed at each update of the recursive process, can be further used as the input
for a head-movement strategy. An example is the smooth posterior mean strategy (Schymura
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et al., 2015), which makes the listener steer the head on a smooth trajectory towards the posterior
mean of the source position during each iteration. While the definition of a relevant loss function
and its minimisation is both of theoretical interest and required for practical implementations
(see our numerical examples in Sec. A.5.5), it is beyond the scope of this article having its main
focus on the derivation of the posterior PDF.

A.5.3 Estimation of head orientation
We model the dynamic process of the head rotation by

θH(ti+1) = θH(ti) + ωz(ti)∆t+ δu,

yH(ti+1) = θH(ti+1) + δH ,

with the initial head orientation given by a normally distributed variable θH(t0) ∼ N (θ0, σ0)

representing the listener’s uncertainty about the initial head orientation. The additive noise on
both the movement equation and the sensor equation is assumed to be zero-mean white Gaussian
noise δu ∼ N (0, σu) and δH ∼ N (0, σyH ).

Making use of Bayes’ rule and taking into account all head rotations executed as well as all
sensor readings collected so far, the PDF of the head orientation at time ti+1 during the head
movement can be shown to be Gaussian and given by

p(θH(ti+1) | yH(0 : i+ 1), u(0 : i)) =

N (θ̂H(ti+1), σθH(ti+1)), (A.4)

with mean and variance

θ̂H(ti+1) = (1−K) · (θ̂H(ti) + ωz(ti)∆t) +K · yH(ti+1),

σ2
θH(ti+1)

= (1−K) · (σ2
θH(ti)

+ σ2
u),

and

K =
σ2
θH(ti)

+ σ2
u

σ2
θH(ti)

+ σ2
u + σ2

yH

.

The prior required to initiate the recursive process is based on two components: the prior knowl-
edge available to the listener about the sound source direction p(ψ) and the prior knowledge
p(θH(0) | yH(0)) available to the listener about the initial head orientation. We assume here
that θH(0) is a Gaussian distribution centred on an initial head orientation θ̂H(0) as described
in Eq. A.6, but that may depend on the actual experiment being modelled.
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Note the recursive nature of these equations as well as their correspondence with a Kalman filter
implementation of the head orientation estimation process.

A.5.4 Estimation of sound-source direction
Here we derive a recursive expression for Eq. A.3 describing the posterior PDF pti at time
ti = ti−1 + ∆t in terms of the prior PDF pti−1

derived at time ti−1 combined with the extra
information from the most recent ‘look’ in the sequence of ‘multiple looks’ collected during the
head movement. We assume the sensor readings and the control signals to be available to the
estimation process as

y(0 : i) = ((yA(t0), yH(t0))
T , (yA(t1), yH(t1))

T , · · ·

(yA(ti), yH(ti))
T )

and
u(0 : i− 1) = [ωz(t0), ωz(t1) · · ·ωz(ti−1)],

i.e., we assume a varying speed of head rotation around the yaw-axis (which remains constant
during each time-step ∆t).

In the first step, as the source direction is part of the full state X = (θH , ψ)
T , we derive the

desired PDF described by Eq. A.3 from the joint full-state PDF by marginalisation over all
possible head orientations

pti = p(ψ | y(0 : i), u(0 : i− 1)) = ∫
θH

pX(ψ, θH(ti) | y(0 : i), u(0 : i− 1))dθH

This operation allows us to correctly take into account the effect of the remaining head orienta-
tion uncertainty on the source estimation. The joint PDF pX can be expanded as

pX(ψ, θH(ti) | (yA(ti), yH(ti))T ,y(0 : i− 1), u(0 : i− 1)) =

p(ψ | θH(ti), yA(ti),y(0 : i− 1), u(0 : i− 1))×

p(θH(ti) | yH(ti),y(0 : i− 1), u(0 : i− 1)).

Our knowledge of the head orientation taking into account all relevant data up until time ti can
be described by a reformulation of Eq. A.4

p(θH(ti) | yH(0 : i), u(0 : i− 1)) = N (θ̂H(ti), σθH(ti)).
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In the second step, by using Bayes’ rule, we rewrite the first term of pX

p(ψ | θH(ti), yA(ti),y(0 : i− 1), u(0 : i− 1)) =

p(yA(ti) | θH(ti), ψ)× p(ψ | y(0 : i− 1), u(0 : i− 1))

p(yA(ti) | θH(ti),y(0 : i− 1), u(0 : i− 1))
,

and simplify it with
p(ψ | y(0 : i− 1), u(0 : i− 1)) = pti−1

,

i.e., the posterior distribution on the source direction we determined at time ti−1.

By combining these results we obtain the recursive expression for the posterior PDF

p(ψ | y(0 : i), u(0 : i− 1)) = pti = C · pti−1
×∫

θH

p(θH(ti) | yH(0 : i), u(0 : i− 1))×

p(yA(ti) | θH(ti), ψ)dθH

(A.5)

with the normalisation constant C derived from the posterior PDF∫
ψ

p(ψ | y(0 : i), u(0 : i− 1))dψ = 1.

The recursive process in Eq. A.5 is comparable to Hambrook et al. (2017) and expresses our
new state of knowledge about the source direction pti based on the previous state of knowledge
pti−1

with the extra knowledge obtained in the most recent ‘look’. This extra knowledge takes
into account not only the acoustic measurement but also the current head orientation estimate.

The recursive processes is initiated with the source direction PDF from Eq. A.3 derived from
the initial acoustic measurement performed at time t0

pt0 = pψ(ψ | (yA(t0), yH(t0))T ).

This PDF, following a similar derivation as the one described for Eq. A.5, is given by

pt0 = C · p(ψ)×
∫
θH

p(θH(t0) | yH(t0))×

p(yA(t0) | θH(t0), ψ)dθH ,
(A.6)

with p(θH(t0) | yH(t0)) = N (θ̂H(t0), σθH(t0)) representing the initial (uncertain) head orienta-
tion and p(ψ) being the prior PDF on the source direction. Note that at this very first moment
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t0 the head motion is not made use of, as at that moment only the current head orientation is
known (up to some uncertainty). As with Eq. A.5, the constant C can be derived from the
normalisation of this posterior PDF.

Depending on the behavioural task and listener’s priors on the environment, this prior informa-
tion p(ψ) (in Eq. (A.6)) may substantially modify the model predictions. For example, it may
constrain the possible source directions to a sub-region of the full sphere around the listener’s
head, e.g., the frontal hemisphere or the horizontal plane. This can be modelled by choosing
p(ψ) accordingly.

A.5.5 Numerical examples
The presented concept is mathematically consistent, yet its complete numerical evaluation is
not trivial: it depends on the considered acoustic features and needs to consider many listening
situations. Thus, it deserves separate discussions in future articles. In this article, we illustrate
the explanatory power of the concept by numerically applying it to two examples in a simplified
setting, using an MAP estimator to convert the posterior PDF into a point estimate. Note that
the MAP estimator is just one of the possibilities to obtain a point estimate from the PDF.

Fig. A.6 Example 1: Predictions obtained from 10 simulated trials of the simplified concept
without head movements, head orientation straight ahead. a) Polar angle errors (in degrees).
b) Front-back confusion rates (in %); rates for target directions near the frontal plane are not
shown for clarity .
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In the first example, we simplify our concept to the sound localisation with head oriented
straight ahead and without any head movements (not even noise), i.e., u = 0, and yH = 0,
respectively. This simplifies Eq. A.2 to X(ti+1) = X(ti) and Eq. A.3 to p = pψ(ψ | yA). The
resulting model corresponds to the ideal-observer model by Reijniers et al. (2014). Results
from that model were replicated by using our implementation of the simplified concept. To
replicate the results from the original study, we used the same acoustic features yA: ITDs, the
summed binaural spectral information, and the interaural spectral information. We also used
the same noise parameters tuned to the ITD thresholds and absolute hearing thresholds. For the
input signal, we used Gaussian white noise filtered with HRTFs from Sec. A.3.1, which were
also used as templates in the model. 2354 target directions on the spherical grid were consid-
ered. Per target sound direction, 10 trials were simulated and averaged to obtain polar errors and
front-back confusion rates. Figure A.6 shows the polar errors and front-back confusion rates
obtained with that simplified model. The polar errors are largest above and below the listener,
which is qualitatively in line with the observations obtained from actual localisation experi-
ments (Best et al., 2011). The large polar errors near the interaural axis can be attributed to the
disproportional changes in polar angles even for small changes of the source direction (Majdak
et al., 2010).
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Fig. A.7 Example 2: Polar angle errors (in degrees) obtained from 10 simulated trials of the
simplified concept with a 10◦ turn and perfectly determinable head orientation. a) Head yaw
rotations. b) Head pitch turns. c) Head roll tilts. Left and right panels represent source locations
in the front and back of the head, respectively.

The second example demonstrates the recursive nature of the estimation process in our con-
cept. We reduce the concept to head rotations that are small (i.e., up to 10◦), open-loop, and
at a constant speed (i.e., u = ωz), so we can assume a linear relationship between ITD and
head-rotation angle (Cox and Fischer, 2015). Head position is assumed to be exactly known,
i.e., a deterministic yH not confounded by any noise. Further, we used the broadband ITD as
acoustic feature, i.e., yA(ti) = ITD(θH(ti), ψ) + δA and used a uniform distribution for the
prior PDF. Taking into account these simplifications, Eq. A.3 reduces to pti = p(ψ | y(0 : i))

with y(ti) = (yA(ti), θH(ti)). The predictions were calculated for yaw, roll, and pitch sepa-
rately, with identical simulation parameters from the first example. Figures A.7 and A.8 show
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the polar errors and front-back confusion rates, respectively. The results show that head yaw
significantly reduces front-back confusions, though roll also shows a slight improvement. Head
yaw and roll also reduced polar errors, with most of the reduction for sources located at eye
level. All these findings are in line with empirical data (Perrett and Noble, 1997a; McAnally
and Martin, 2014). Head pitch, on the other hand, did not show much improvement, neither in
reducing the localisation errors nor the front-back confusions, both being in line with the ob-
servation of small ITD rates when tilting the head (see A.3c). These two examples demonstrate
the feasibility of the concept.

Fig. A.8 Example 2: Front-back confusion rates (in %) obtained from the simplified concept
with a 10◦ turn and perfectly determinable head orientation. a) Head yaw rotations. b) Head
pitch turns. c) Head roll tilts. For clarity rates for target directions near the frontal plane are
not shown. Left and right panels represent source locations in the front and back of the head,
respectively.
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A.6 Conclusions

This article briefly reviews the recent literature on modelling active dynamic sound localisation,
which complements the well-documented sound localisation based on static acoustic features
with cues from self-motion or source motion. The review focuses on Bayesian inference be-
cause of its prominent role in recent multimodal cognitive models and high potential in mod-
elling dynamic cognitive processes. We have defined the term of active dynamic sound lo-
calisation, describing the localisation process in which the listener actively updates the head
orientation to facilitate the localisation process.

Further, we described a theoretical Bayesian modelling framework based on the independent
estimation of acoustic features and head rotations. In order to show the feasibility of the con-
cept, we provide two short examples of simplified versions of the concept, for which numeric
implementations are available. While these two examples do not fully validate the concept in all
its aspects, they demonstrate the potential of the proposed concept towards a general dynamic
sound localisation model.

Future work will involve model extensions along different directions. First, model parameters
will need to be fine-tuned through sensitivity analyses and comparisons to empirical data in
order to quantitatively fit the predictions to the sound localisation performance of humans. Sec-
ond, an implementation of a closed-loop version of the model will be required to completely test
the concept. Here questions related to listening strategies will become relevant. Additionally,
our current concept considers stationary sources only. It can be extended to dynamic auditory
environments by integrating e.g. a multiscale network (Ferreira and Lee, 2007), expanding our
concept to a general framework of active sound localisation in dynamic auditory environments.
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Dynamic spectral cues do not
affect human sound localisation
during small head movements
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1 Department of Engineering Management, University of Antwerp, Belgium
2 Acoustics Research Institute, Austrian Academy of Sciences, Austria

Abstract - Natural listening involves a constant deployment of small head movement.
Spatial listening is facilitated by head movements, especially when resolving front-back
confusions, an otherwise common issue during sound localisation under head-still condi-
tions. The present study investigated which acoustic cues are utilised by human listeners
to localise sounds using small head movements (below ±10◦ around the center). The
stimulus conditions included the interaural time difference (ITD), interaural level differ-
ence (ILD), monaural spectral shape (MSS) and their dynamic counterparts: dynamic
ITD (dITD), dynamic ILD (dILD) and dynamic MSS (dMSS). They were presented un-
der three movement conditions: no movement, head rotations over the yaw axis and
over the pitch axis. The results show that even small yaw rotations provide a remark-
able decrease in front-back confusion rate, whereas pitch rotations did not show much of
an effect. Furthermore, MSS cues improved localisation performance even in the pres-
ence of dITD cues. However, performance was similar between stimuli with and without
dMSS cues. This indicates that human listeners utilise MSS cues before the head moves,
but do not rely on dMSS cues to localise sounds when utilising small head movements.
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B.1 Introduction

Human sound localisation experiments and models have historically predominantly focused on
passive localisation, i.e., where the head is held still. However, head movements have repeat-
edly been shown to improve sound localisation (Wallach, 1940; Wightman and Kistler, 1999),
especially for sources with little or distorted spectral content (Morikawa et al., 2013; Perrett
and Noble, 1997b; Kato et al., 2003). This has led to increasing interest in the influence of head
movements on the localisation performance.

Unfortunately, modelling active sound localisation is significantly more complex than its pas-
sive counterpart. The three major acoustic cues that humans use during sound localisation are
the interaural time difference (ITD), interaural level difference (ILD), and monaural spectral
shape (MSS) cues (Blauert, 1997). In spatially static listening conditions, i.e., static sound
source and without head movements, ITDs and ILDs contribute to the sound localisation in the
lateral dimension and listener-specific MSS cues are required to achieve sound localisation per-
formance in sagittal planes (Majdak et al., 2020). In a dynamic environment, i.e., with moving
sources and listeners, the acoustic cues that the auditory system processes change over time, and
thus all have a dynamic counterpart: dynamic ITD (dITD), dynamic ILD (dILD) and dynamic
MSS (dMSS) cues. In theory this gives the auditory system many acoustic cues from which
the source’s location can be inferred, but whether this happens in practice is currently a point
of debate. Moreover, active listening requires a separate movement model to complement the
acoustic model (McLachlan et al., 2021). This demands insights on the vestibular and motor
systems and the way that humans coordinate these systems in conjunction with the auditory
system.

Due to these added complexities, it is of great interest to simplify auditory modelling wherever
possible. For example, we may consider which cues are essential to localisation performance
and which could be omitted. Modelling dITD is relatively easy due to its near-linear link with
the lateral position of the sound (Cox and Fischer, 2015), whereas the link between the dMSS
and source direction seems to be more complex and would result in a considerably more com-
plicated localisation model. The movement model can also be simplified, e.g., by restricting it
to only small head rotations along a single axis. Such small rotations can be approximated as
constant velocity, modelling the movements as a simple first-order derivative for the dynamic
acoustic cues without having to consider translation or acceleration. Further, small head rota-
tions can be seen as the first step in understanding and modelling complex movement behaviour,
because any natural head rotation can be decomposed into a sequence of smaller rotations. Out-
side the context of modelling, small head movements are important to investigate explicitly
because of their constant presence in natural listening (Carlile and Leung, 2016), and from
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an evolutionary standpoint it may be expected that the brain exploits these movements if they
provide additional information.

For horizontal movement of sound sources, the minimum audible movement angle is about 2◦

at velocities up to 15◦/s and about 8◦ at 115◦/s. When motion is restricted to the vertical,
minimum audible movement angles are substantially larger at all velocities, ranging from 6◦

to 12◦ (Saberi and Perrott, 1990). This data suggests that listeners are more sensitive to (dy-
namic) binaural cues (ITD and ILD) than to (dynamic) spectral cues (MSS), though all three
can be perceivable within a head rotation of 10◦, depending on velocity. These results quantify
movement discrimination, but it is still unclear how this affects localisation performance.

The purpose of this study was to investigate the effects of small head movements (up to ±10◦)
on sound localisation for normal hearing subjects, and determine which dynamic cues are re-
sponsible for these effects. Based on current evidence, the hypothesis was that dITD is the
dominant dynamic acoustic cue. Further, this cue was expected to have an even more profound
positive effect in conditions in which spectral cues are not available. Finally, it was also ex-
pected that dMSS cues do not affect localisation performance. This hypothesis is supported by
the findings that dMSS cues during monaural listening (Hirahara et al., 2021) and pitch rotations
(i.e., rotations along the interaural axis) (Thurlow and Runge, 1967; Kato et al., 2003) have no
effect on sound localisation.

B.2 Methods

B.2.1 Subjects
Seven normal-hearing subjects (6 female, 1 male) participated in the experiment. Their absolute
hearing thresholds were within the average (±1 standard deviation) of the age-relevant norms
(Corso, 1959; Stelmachowicz et al., 1989) within the frequency range from 0.125 to 16 kHz.
The age range of the subjects was between 22 and 30 years. None of the subjects were familiar
with this type of experiment.

B.2.2 Apparatus
The experiment was conducted in the loudspeaker array studio of the Acoustics Research In-
stitute of the Austrian Academy of Sciences in Vienna. The studio is a semi-anechoic room
consisting of 91 speakers (E301, KEF Inc.) distributed over the sphere within the elevation
angles from −47◦ to 90◦. The room was equipped with a head-mounted display (HMD, Oculus
Rift, CV1, Meta Inc.) for the visual presentation of virtual reality and three infrared cameras
for the tracking of the listener within the six degrees of freedom. The HMD was worn in all
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conditions. The setup also provided equipment for the measurement of listener-specific HRTFs
by inserting microphones (KE 4-211-2, Sennheiser Inc.) into the ear canals and measuring the
responses from the individual loudspeakers. The HRTF measurement procedure corresponded
to that from Majdak et al. (2010), without the HMD in place.

The experiment was controlled by a computer running a 64-bit Windows 10, equipped with
a 8-core, 3.6-GHz CPU (i7-11700KF, Intel Inc.), 16 GB of RAM, and a graphic card with
dedicated 8 GB of RAM (GeForce RTX 3070, NVIDIA Inc.). The computer was controlled
by custom software framework ExpSuite version 1.1 which provides modules for various types
of stimulation (multi-channel via loudspeakers, binaural via headphones), for controlling visual
interfaces via virtual reality, for tracking systems, and many other functionalities (Majdak and
Mihocic, 2022). The HRTF measurements were run by the ExpSuite application AMT@ARI
version 7.0.31. The experiment was run by the ExpSuite application LocaDyn version 0.8. All
ExpSuite applications are freely available (Majdak and Mihocic, 2022).

Free-field signals were presented via the 91 loudspeakers, each driven by an amplifier (Sonible
d:24, sonible GmbH) connected to a computer via sound interface (RME MADIface USB,
RME Audio AG). In order to create virtual sound sources appearing from an arbitrary direction,
vector-base amplitude panning (VBAP, Pulkki, 1997) was applied. For a requested direction
of the virtual sound, three loudspeaker positions surrounding that direction were found and the
amplitude gains for those loudspeakers were calculated. VBAP was implemented within the Ex-
pSuite module YAMI100 version 1.3 running within the puredata version 0.49 (Puckette et al.,
1996) environment. Note that only static virtual sound sources were used in this experiment.

The binaural signals were presented via open headphones (HD-650, Sennheiser Inc.). The
spatialisation of the binaural virtual sources was done in real-time in the ExpSuite module SO-
FAlizer for Unity version 1.6 (Jenny et al., 2022) running within the Unity version 2020.3.34f1
environment. The binaural signals were updated in real time by capturing the subject’s position
and orientation with the tracking system of the head-mounted display. The tracking system pro-
vides an accuracy of 0.76 cm (in a sitting position, inside a room, Borrego et al., 2018), and a
latency below 6 ms (Becher et al., 2018).The subject’s position and orientation were recorded
for later analyses.

B.2.3 Stimuli
The acoustic stimulus used in this experiment was a wideband (20 to 20000 Hz) white noise
burst, gated with a 5-ms cosine ramp. The duration was 2000 ms for static listening and was
gated off after 10◦ of head rotation for dynamic listening.
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41 directions were selected to test the effects of localisation over different planes (see Fig. B.1).
These directions were based on the results of a model for dynamic localisation (McLachlan
et al., 2021) and the results from (Perrett and Noble, 1997b), which show the largest improve-
ment of errors through head movement for sources around the median plane, especially for
sources at high elevations. A higher source density was selected around this area of interest.
The sources were further distributed over several sagittal planes, following the so-called ’cones
of confusion’. Because of the left-right symmetry, positions on the midsagittal plane were tested
twice, so that the set of tested positions consisted of 52 directions.

Fig. B.1 Spatial directions of the sound sources used in the experiment, plotted as two hemi-
spheres cut through the frontal plane. In total 41 directions were used.

Playback over headphones used listener-specific HRTFs. The acoustically measured HRTFs
were available for 91 spatial directions only. Thus, in order to create a smooth real-time dynamic
listening environment, each listener-specific HRTF set was interpolated to a denser grid of 5762
positions. This dense grid was created by subdividing the faces formed by the sparse grid. The
subdivision was iterated three times. An HRTF of the dense grid was calculated by removing
the time of arrival by calculating its minimum-phase version, interpolating the spectrum by
applying VBAP based on the sparse directions, and introducing a dense time of arrival modelled
by the spherical-head time of arrival model (Ziegelwanger and Majdak, 2014). Figure B.2 shows
the acoustically measured and the interpolated HRTFs in the top and center rows, respectively.

B.2.4 Tested Conditions
Four acoustic cue conditions were tested, named by their aimed spectral properties: full, flat,
frozen and free-field. The first three conditions were run using a virtual acoustic display, i.e.,
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Fig. B.2 HRTFs of the subject NH257 as an example. Left column: Energy time curves of the
impulse responses (in dB) calculated for the HRTFs of a left ear along the azimuth angle. Right
column: Magnitude spectra of HRTFs (in dB) along the median plane as a function of the polar
angle. Top row: HRTFs from the condition ’full’. Center row: HRTFs from the condition ’flat’,
here the MSS was significantly flattened, but the time of arrival, thus, the ITD and dITD cues
remained unchanged. Bottom row: HRTFs from the condition ’frozen’ to (0◦,0◦), i.e., for all
spatial positions, the MSS was frozen to that of the spatial position in the front and at eye level,
but the time of arrival, thus, the ITD and dITD cues, were identical to those from the actual
spatial positions.

presented via headphones. The full condition used dense listener-specific HRTFs without any
further processing. The flat condition used the same HRTFs as in the full conditions, but with
flattened frequency-dependent contrasts between 1 and 16 kHz, leaving only (dynamic) ITD
and ILD as acoustic cues. This processing was exactly as that in Baumgartner et al. (2017) for
C = 0. The frozen condition used HRTFs with all cues available while the head was stationary,
but considered only ITD changes when the head rotated. Thus, ILD and MSS cues remained
static, i.e., frozen to the ILD and MSS for the head in the initial orientation. Figure B.2 shows
the frozen HRTFs in the bottom row. The free-field condition refers to the loudspeaker-based
stimulus presentation using VBAP to create a virtual sound source at the requested direction.
This condition served as a sanity check for the headphone results, where, assuming an adequate
headphone playback using listener-specific HRTFs, similar results were expected between the
free-field and full conditions.
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Three types of head rotations were tested: static (i.e., no head movement), yaw rotation, and
pitch rotation. The two rotations were single-sided (i.e., from reference position (0◦, 0◦) towards
a specific point). The signal was gated off so that only 10◦ of the rotation contained acoustic
information. The yaw rotation evokes large interaural changes whereas pitch rotation evokes
minimal interaural changes but large monaural changes, enabling a clear comparison between
the individual dynamic cues.

B.2.5 Procedure
B.2.5.1 Training

Each subject underwent acoustic training in the virtual reality environment in order to get fa-
miliar with the equipment and task, and to reach a baseline localisation performance (Middle-
brooks, 1999). The training consisted of 300 trials with a 2000-ms white noise burst spatialised
from a direction randomly selected from a uniform distribution over the available directions of
the interpolated HRTF set.

At the start of each trial, the subjects oriented their head straight ahead by placing a cross-
hair over a visual target at (0◦, 0◦) presented via the HMD. The stimulus was then played,
during which the subjects kept their head still. At the end of the stimulus, the subjects pointed
towards their perceived source direction with a hand-tracking device to provide their localisation
estimate. Visual feedback was then provided of the actual source direction, and the stimulus
repeatedly played until targeted a second time, so that the subjects could familiarise themselves
with the available dynamic cues.

B.2.5.2 Static localisation

In the static localisation experiment, head movements were restricted by instructing the subjects
to keep their head aligned with the reference position. Further, the binaural presentation did not
consider subject’s head movements. The experiment consisted of nine blocks (three repetitions
of three stimulus conditions) of 52 trials, with each trial representing one tested sound direction.
The stimulus was a 2000-ms white noise burst. Within each block, directions were selected from
the grid in a random order, while ensuring that each direction was presented once. The order
of blocks was ordered randomly across the listeners. No feedback was provided to the subject,
neither on the subject’s performance nor the actual sound-source positions.

B.2.5.3 Dynamic localisation

In the dynamic localisation experiment, subjects were instructed to make a specific one-sided
rotation around either the yaw or the pitch axis, as soon as they heard the stimulus onset. At
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the beginning of each trial, the subject was asked to rotate to the reference position (0 azimuth,
0 elevation) and an arrow was presented on the HMD to instruct the direction of head rotation,
indicating the direction of either the pitch axis (up or down), or the yaw axis (left or right).
The subject then confirmed to be ready. The head rotation speed was left unrestricted, but
was monitored through the tracking system of the virtual reality headset and recorded for the
analysis. Then the stimulus was played and the head orientation was recorded. After a head
rotation of 10◦ was registered, the stimulus was again gated off over 5 ms, so that dynamic
acoustic cues were only provided for 10◦ of rotation. Finally, the subject was asked to point to
the perceived sound direction and confirm with a press of the button. This process was repeated
for 12 blocks (3 repetitions for 4 stimulus conditions). Each block consisted of 208 trials (4
arrow directions for 52 source directions). All other details were as in the static-localisation
task.

Note that this task of dynamic sound localisation differed from the head-sweep method used
in dynamic sound localisation experiments (Macpherson, 2013). In this experiment, the move-
ment was initiated after, not before, the stimulus onset. Therefore, this experiment did not
test the isolated dynamic localisation performance, but instead tested the added benefit of head
movements after a period of static localisation.

B.2.6 Data Analysis
Before investigating individual localisation performance metrics, head orientations recorded
during the stimulus presentation (for dynamic and static free-field localisation) were checked
for outliers. Responses linked with head rotations of less than 5◦ were excluded. Responses
linked with rotations along the incorrect axis (i.e., axis orthogonal to the instructed axis) of
more than 2◦ were also excluded.

Localisation performance was assessed by three metrics; lateral and polar precision errors (both
in degrees), i.e., standard deviations (Middlebrooks, 1999; Majdak et al., 2010), and front-back
confusions (FBC) rate, i.e., each response was labeled by 0 for the correct hemisphere and
1 for a reversal, then the rate (in %) of FBCs was calculated. In identification of front-back
errors, target locations with an absolute lateral angle over 60◦ were ignored, and responses were
allowed to cross the midline by 10◦. For polar errors, the trials that resulted in an FBC were
omitted before calculation to keep all metrics independent.

Each subject participated in all experiments, allowing an extensive within-subject analysis. The
lateral and polar precision was analysed using a linear mixed-effects model. FBC data was
analysed with a mixed-effects logistic regression. For both model types, the subject was treated
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as a random variable. Stimulus type and rotation type, as well as the interaction between the two,
were treated as fixed variables. As a follow-up analysis, the estimated (least-squares) marginal
means were compared, using Tukey’s adjustment for multiplicity. The statistical significance
was considered below the levels of p of 0.05 as significant and p of 0.001 as highly significant.
These statistical analyses were run in R version 4.2.1 (Müller, 2020).

B.3 Results

B.3.1 Head rotations
9984 responses were collected each for yaw and pitch rotation. They were checked for the
head-movement related outliers. After the clean up, 8488 localisation responses were obtained
for yaw rotation and 8364 estimates were obtained for pitch rotation. Subjects NH919 and
NH1016 showed extremely slow head rotations compared to the other subjects, i.e., almost all
trials employed a head rotation speed below 30◦/s. Still, there was no evidence that justified
removing these data.

The maximum velocities of head rotations averaged over all subjects were low (36.41±23.03◦/s

for yaw rotations and 28.54 ± 17.50◦/s for pitch rotations). Stimulus duration for dynamic
listening was on average below one second with the averages of 645.53 ± 447.78ms for yaw
rotations and 802.12± 545.91 for pitch rotations.

Finally, reaction times of rotation initiation after the stimulus started were on average in the
range between 100 and 200 ms. These reaction times are slightly lower than those found in
previous studies, e.g., 200 to 300 ms in Perrett and Noble (1997a)). This can be explained by
the button press before each trial, which may have primed the subject to be more responsive to
the next stimulus.

B.3.2 Localisation performance
Figures B.3 and B.4 show the statistics of the localisation performance of all subjects. Both
figures present the same data, but they are grouped differently for easier comparison across
the types of head rotation (Fig. B.3) and the acoustic cues (Fig. B.4). Boxes show the lower
and upper quartiles with the median represented by the line in the center, whiskers show the
non-outlier minima and maxima, and the small circles show the outliers.

Fig. B.3 facilitates the comparison across the types of the head rotation by comparing across the
rotation conditions, encoded by color, within each stimulus condition. Each column shows the
performance metrics for no movement (blue), yaw rotation (red) and pitch rotation (yellow),
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grouped by the available acoustic cues. Results of the statistical analysis of the differences
across the types of head rotation (per acoustic cue) are presented in Tab. B.1.

Fig. B.3 Localisation performance grouped by the available acoustic cues. (a): Lateral precision
error (in degrees). (b): Polar precision error (in degrees). (c): Front-back confusion rate (in %).
Lower values indicate better performance. Each boxplot shows the statistics of all subjects
(median, first and third quartiles, minima and maxima, outliers).

Fig. B.4 facilitates the comparison across the available acoustic cues: Each column shows the
performance metrics for the conditions ”flat” (dITD, blue), ”full” (dITD and dMSS, red), ”free
field” (natural listening with all cues, yellow), and ”frozen” (dITD with MSS only, violet),
grouped by the type of the head rotation. Results of the statistical analysis of the differences re-
sulting from the available acoustics cues (per type of the head rotation) are presented in Tab. B.2.
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Table B.1 Statistical significance of differences in three localisation performance metrics (lat-
eral error, polar error, FBC rate) between the tested types of head rotation, grouped by the type
of acoustic cues. Statistical significance is shown in bold.

Cue Tested rotation p lat err p pol err p FBC
Flat static/yaw 0.6640 0.1172 <.0001
Flat static/pitch 0.9999 1.0000 0.8634
Flat yaw/pitch 0.0007 0.1979 <.0001
Full static/yaw 0.9600 0.8780 0.2511
Full static/pitch 0.9980 0.9988 0.6090
Full yaw/pitch 0.0073 0.9999 0.0010
Free field static/yaw 1.0000 0.6076 <.0001
Free field static/pitch 1.0000 0.9604 0.4239
Free field yaw/pitch 0.8441 1.0000 0.0001

Table B.2 Statistical significance of differences in three localisation performance metrics (lat-
eral error, polar error, FBC rate) between the tested acoustic cues, grouped by the type of head
rotation. Statistically significant results are printed in bold.

Rotation Tested cue p lat err p pol err p FBC
Static full/flat 0.2540 <.0001 <.0001
Static full/free field 0.3313 0.2498 1.0000
Yaw full/flat 0.0227 0.0089 0.0868
Yaw full/free field 0.0810 0.2736 0.0001
Yaw full/frozen 0.9936 1.0000 0.0098
Yaw frozen/flat 0.2236 0.0093 0.9997
Pitch full/flat 0.0684 0.0002 0.0014
Pitch full/free field 0.4723 0.3065 0.0002
Pitch full/frozen 1.0000 1.0000 0.9129
Pitch frozen/flat 0.1327 0.0001 0.0085

B.4 Discussion

B.4.1 General
As a first check, subject performance in conditions already tested in previous studies was anal-
ysed, with the goal to verify the general quality of this experiment’s sound presentation. For the
static listening situation in the free field, average localisation performance was 9.3◦, 20.4◦, and
15.4% (lateral error, polar error, and FBC rate, respectively). This is similar to the performance
usually found in such experiments (e.g., 10.6◦, 22.7◦, 4.6% in Middlebrooks (1999)), with ex-
ception of the FBC rate. The larger FBC rate is surprising, however, it was not problematic for
the experiment because it prevented floor effects by providing room for improvements when
testing conditions including head rotations. The increased FBC appears to be related to the
definition chosen to categorise FBCs. Indeed, when applying the FBC definition provided by
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Fig. B.4 Localisation performance grouped by the type of head rotation. (a): Lateral precision
error (in degrees). (b): Polar precision error (in degrees). (c): Front-back confusion rate (in
%). Lower values indicate better performance. Each boxplot shows the statistics of all subjects
(median, first and third quartiles, minima and maxima, outliers).

Middlebrooks (1999) the average FBC rate for static listening in the free field is 6.3%.

The comparison between the free-field and full conditions sheds light on the quality of the
binaural rendering. In the static full condition, the performance was 12.0◦, 25.7◦, and 15.1%
(lateral error, polar error, and FBC rate, respectively), which is a small but not significant differ-
ence to the static free-field condition (compare row #2 in Tab. B.2). This implies that the HRTF
measurements, HRTF manipulations, and the static binaural spatialisation adequately simulated
the loudspeaker-based reproduction. The localisation performance in the full condition was in
the range (again excluding FBC rate) of that usually found in such experiments (e.g., 14.5◦,
28.7◦, and 7.7% in Middlebrooks (1999); 13.6◦, 21.9◦, and 12.8% in Majdak et al. (2011), cal-
culated based on Majdak et al. (2010)). This indicates that the subjects here localised static
sounds with the precision usually found in the literature.
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In the dynamic conditions (yaw and pitch), no significant differences were found in the lateral
and polar errors between the free-field and full conditions, indicating that the general presenta-
tion of dynamic cues worked as expected. However, there was a significant difference in FBC
rates (compare rows #4 and #8 in Tab. B.2) and from the free-field condition to the full con-
dition, FBC rates increased from 5% and 11% (yaw and pitch, respectively) to 10% and 20%.
This implies that the dynamic spatialisation may have had some short-comings.

No differences were found between full and free-field FBC rates in the static condition, nor
were found in the localisation precision. This suggests that the increased FBC rates in the
dynamic conditions probably were not caused by problems in static MSS and ITD cues created
by imperfections in the HRTF interpolation or differences between headphone and loudspeaker
coloration. Artifacts in dITDs might have been the origin, though, for example because of a too
large head-tracking latency, causing a lag between the actual subject’s head position and not-yet
correctly spatialised sound, manifesting itself in a slightly increased uncertainty about the plane
of the sound direction, reflected in the increased FBC rates. While this problem may play a
role in consumer spatialisation products, there is no evidence that it affects the interpretation
of the experimental results. Most importantly, none of the subjects reported about dizziness,
audio glitches, or loss of externalisation, which would indicate more serious problems with the
dynamic sound reproduction.

A final important observation is the large variance across subjects in some of the conditions,
indicating large inter-subject differences in the localisation performance. An analysis of the
listener variability may provide valuable insights. It is, however, beyond the scope of this study.

B.4.2 Effect of the head rotations
In the free-field condition, there was no significant effect of head rotation on localisation pre-
cision, neither on lateral nor on polar errors. This condition best represents natural listening,
suggesting that small head rotations in general do not affect the localisation precision. The
lack of an effect on precision is consistent with McAnally and Martin (2014), who also showed
that rotation does not affect lateral error, and that elevation error only decreases for rotations of
16◦ and larger. Previous studies that investigated larger pitch rotations than the ones produced
here also found no reduction in elevation errors (Thurlow and Runge, 1967; Kato et al., 2003).
In the flat and full conditions, a significant effect of head rotation was found, but only when
comparing the lateral errors between yaw and pitch rotations (see rows #3 and #6 in Tab. B.1).
These differences were approximately 2◦ (see Fig. B.3a), thus rather small. Interestingly, the
lateral errors were larger in the yaw conditions indicating that the subjects had more difficulties
to localise sound in the lateral dimension when rotating their head along that dimension. This
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was only the case in the binaural reproduction. This small but significant effect might be related
to some issues with the dynamic cue presentation in the study’s binaural reproduction. As the
lateral localisation performance is usually associated with ITD cues, this issue might indicate
an imperfection in the reproduction of ITD and dITD cues. Note that polar errors did not show
a significant difference between rotation conditions in any of the cue conditions. This indicates
that imperfections with respect to spectral cues such as MSS and dMSS in the binaural reproduc-
tion were absent or imperceptible to the subjects. The absence of an effect on polar errors with
head movements also suggest that small head movements do not induce the so-called Wallach
cue, i.e., the rate of change in source azimuth angle relative to the change in head orientation,
which has been hypothesised to provide information on elevation angle (Wallach, 1940; Perrett
and Noble, 1997b). The general lack of an effect of head rotations on localisation precision
shows that the information gained from dynamic cues due to small head rotations is either too
small to improve the precision or, alternatively, is cancelled out by the increased uncertainty
caused by head rotation. Both hypotheses align well with findings that lateral and polar errors
decrease for head rotations larger than 45◦ only (McAnally and Martin, 2014).

For FBC rates, yaw rotations yielded reduced rates in all cue conditions, with the flat and
free-field conditions showing a highly significant decrease of approximately 25% and 10%,
respectively (see Fig. B.3c). This shows that small yaw rotations effectively aided in resolving
FBCs, even when all acoustic cues were available. This is consistent with Wallach (1940) and
Thurlow and Runge (1967). Pitch rotations, on the other hand, did not yield any significant
changes in FBC rates in any stimulus conditions, indicating that pitch rotations do not help in
resolving front from back.

Taken together, these results demonstrate that small head rotations do not improve localisation
precision, however, yaw rotations, even as small as 10◦, do help listeners to resolve front from
back. This benefit is, however, most clearly visible in conditions without MSS cues (flat), but
remains present even in the free field, when MSS cues are available. This means that dITD is
still informational in the presence of MSS cues, and thus is not redundant. As hypothesised,
pitch rotations do not affect the sound localisation performance at all. Pitch rotations follow the
interaural axis, thus do not induce any dITD or dILD cue, leaving the dMSS as the only available
dynamic cue. The lack of an effect caused by pitch rotations indicates that the subjects were
unable to utilise dMSS in the present sound-localisation task. The effects of the dMSS and other
cues are investigated in the following section.
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B.4.3 Effects of the acoustic cues
For the lateral precision, errors in the flat condition were significantly larger than the full condi-
tion during yaw rotation (see row #3 in Tab. B.2). This suggests that, for some subjects, MSS or
dMSS cues in the full condition may have provided additional information that improved lateral
precision. There is, however, little evidence from literature that MSS cues contribute to the lo-
calisation of static sounds along the lateral angle, on contrary, MSS cues have been rather found
as uncorrelated with the localisation along the lateral angle (Macpherson and Middlebrooks,
2002). Furthermore, it is also unlikely that dMSS caused this improvement, as no difference
was found between the static and the yaw movement in the full-spectrum condition. However,
the significant error increase might have originated from a potential conflict in the natural ITD-
ILD combinations. The full condition provided natural ITD-ILD pairs, but the flat condition,
because of the spectral flattening, might have reduced the ILDs, resulting in unnatural ITD-ILD
pairs, yielding to a worse precision in localising sounds along the lateral dimension. In the
static and pitch conditions there was no significant increase in lateral errors, indicating that if a
potential conflict in the unnatural static ITD-ILD combinations affected the localisation then it
was not much. The reason for the lateral error increase reaching the level of significance in the
yaw condition might consist of two effects adding up: unnatural static ITD-ILD combinations
(which alone increased the errors a little but did not cause any significance), and a potential
conflict in the dynamic ITD-ILD pairs. This is supported by previous experiments on conflict-
ing dynamic cues, such as the ”Wallach illusion” (Brimijoin and Akeroyd, 2012; Macpherson,
2011; Pöntynen et al., 2016) or the ”phantom walker illusion” (Martens et al., 2013), show-
ing that conflicting dynamic interaural cues can be a cause for unstable location perception,
potentially yielding increased localisation precision errors in the lateral dimension.

For the polar precision, significant differences were found between the flat and full conditions
across all types of rotations (see rows #1, #3, and #7 in Tab. B.2). For the static condition, this
is not surprising, as MSS cues are essential for localisation along the sagittal planes (Kistler and
Wightman, 1992; Baumgartner et al., 2014). Similarly for pitch rotations, which did not provide
dITD or dILD cues, this indicates that MSS cues help in localising sounds along the polar
dimension. Note that this benefit is not necessarily evidence for the use of dMSS cues, as the
improvement is similar to that in the condition without head movement. For the yaw rotation,
the differences between flat and full conditions indicate that MSS cues provided additional
information on the polar angle, despite the availability of dITD and dILD cues.

The analysis of the frozen condition can further help in disentangling the contribution of MSS
and dMSS cues because the frozen condition provided the actual ITD and dITD cues, but the
MSS cue was ’frozen’ to that of the initial head orientation, thus provided no dMSS cue. In the

58



frozen condition, the polar errors were at similar levels for both types of rotation (see Fig. B.4b)
and there was no significant difference between the full and frozen conditions (see rows #5 and
#9 in Tab. B.2). This indicates that the absence of the dMSS cue in the frozen condition was
not relevant for the localisation precision in the polar dimension. When compared to the flat
condition, however, the frozen condition yielded significantly improved localisation precision
(see rows #6 and #10 in Tab. B.2), indicating that the static MSS cues were essential for the
polar localisation precision even in the presence of head rotations.

For FBC rates, in the conditions without head rotations, there was a significant difference be-
tween the full and flat conditions, confirming the clear contribution of MSS cues when resolving
front from back in a static sound-localisation task (Langendijk and Bronkhorst, 2002). In the
conditions with pitch rotations, there was a significant difference between the conditions full
and flat, but there was no significant difference between the conditions full and frozen (see rows
#7 and #9 in Tab. B.2). This demonstrates that MSS cues, but not the dMSS, were essential to
resolve front from back even when pitch rotations were involved. For the yaw rotations, the sit-
uation was different. No statistically significant differences were found between the flat and full
conditions. This suggests that neither MSS nor dMSS cues provided a benefit to resolve front
from back when the subject were allowed to rotate the head along the yaw axis. Thus, small
head rotations seem to sufficiently have compensated for the absence of any spectral cues.

Next, a small but significant difference was found between the full and frozen conditions for
the yaw rotation. The hypothesis behind this finding might be the effect of ILD cues, which
remained constant over the course of the frozen stimulus, thus potentially creating a conflict
between the dynamic interaural cues, i.e., dILD and dITD. These potential conflicts in the frozen
condition may have slightly but significantly reduced the ability to resolve front from back.
Note that such difference has not been found for pitch rotation, probably because the change
of the interaural cues over this axis is minimal. This hypothesis is supported by findings of
dILD as a perceivable cue, though it is mostly weaker than dITD cues (Pöntynen and Salminen,
2019). Experiments on conflicting dynamic cues, such as the ”Wallach illusion” (Brimijoin and
Akeroyd, 2012; Macpherson, 2011; Pöntynen et al., 2016) or the ”phantom walker illusion”
(Martens et al., 2013), have previously shown that conflicting dynamic interaural cues can be a
cause for unstable location perception. Such illusions seem to be strongest when high-frequency
spectral cues are absent, i.e., the spectral cues can correct for a conflicting dITD. Note that these
studies did not address dITD versus dILD cues or the dynamic aspect of spectral cues explicitly.
On the other hand, in another study involving an NoSπ task it was found that in the presence
of conflicting dILD and dITD cues, dITD cues dominated for binaural signal detection (van der
Heijden and Joris, 2010). However, it is not clear whether this result can be extrapolated to a
dynamic localisation task as considered here.
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The benefit of dynamic monaural spectral cues for sound localisation has been rarely discussed.
A reduced elevation error has been observed for large pitch rotations during stimulus presenta-
tion (McAnally and Martin, 2014), suggesting an effectiveness of dynamic spectral cues with
head rotation. Often, however, pitch rotation did not produce an improvement in localisation
performance (Thurlow and Runge, 1967; Kato et al., 2003). In a monaural listening experiment,
normal-hearing listeners with one ear plugged showed no benefit of head rotations when local-
ising sounds located in the horizontal plane (Hirahara et al., 2021). However, single-sided deaf
listeners do appear to utilise and even rely on changes in head position to induce changes in the
monaural cues produced by the direction-dependent high-frequency attenuation resulting from
acoustic head shadowing (Pastore et al., 2020).

Taken together, these results demonstrate the important contribution of static MSS cues to sound
localisation performance, even during sound localisation involving head movements. The re-
sults also suggest that, for small head movements, dynamic changes of that cue are not evaluated
by the auditory system. This has a direct implication for modeling active sound localisation in
human listeners. Recently, a model of active sound localisation based on Bayesian inference
was proposed (McLachlan et al., 2021). That model only implemented dITD as an additional
dynamic cue, though the necessity for the consideration of other cues was at that point unclear.
As it seems, further updates of MSS cues (dMSS cues) are not required when modelling human
sound localisation, at least for small head movements.

B.5 Conclusions and future work

In this study, the influence of small head movements on localisation performance was investi-
gated by means of three metrics. The results show no additional benefit of small head rotations
(up to ±10◦) on lateral and polar localisation precision. Only yaw rotations significantly re-
duced the front-back confusions, whereas pitch rotations were of no help. This finding could
be explained by the contribution of dynamic ITD cues (and, to a lesser extent, the dynamic ILD
cues). These effects were most prominent for stimuli devoid of monaural spectral cues, but
remained even when these cues were available. The analysis of the frozen spectrum condition,
which provided the actual static and dynamic ITD cues, but ’froze’ the monaural spectral cues
to those from the initial head orientation, suggests that humans do utilise the static monaural
spectral cues but are insensitive to their dynamic changes over the course of the stimulus. This is
clearly supported by the results showing that monaural spectral cues, fixed to those from the ini-
tial head orientation and conflicting with the dynamic ITD cues, did not impair the localisation
performance.

There are several directions that future work can move towards. First, due to the differences
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between the binaural and loudspeaker performance in the dynamic listening conditions, it would
be insightful to compare various loudspeaker-based conditions by using, for example, band-pass
filtered instead of broadband signals. Second, a direction-dependent analysis of the localisation
performance may reveal which spatial regions gain from the head movements most. Third,
the results showed a large inter-subject variability. Thus, a listener-specific analysis of the
contribution of static and dynamic cues may be interesting. A similar analysis has been done
for the acoustic and non-acoustic factors contributing to the localisation performance in sagittal
planes (Majdak et al., 2014). Finally, these findings will help to further develop the previously
proposed model of active directional sound localisation (McLachlan et al., 2021).
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Abstract - From a Bayesian perspective, sensory information in the brain is represented
in the form of probability distributions. Inherent to these probability distributions is the
representation of uncertainty due to sensory noise and ambiguity. Dynamic listening
using head movements is a multisensory process which involves several sources of sen-
sory uncertainty. In this study, we introduce the numerical implementation of a Bayesian
dynamic sound localisation model and investigate how the model’s sensory noise param-
eters affect its localisation performance over the 2D sphere assuming static sound-sources
in the far field. We restrict ourselves to small, open-loop head rotations. Six noise pa-
rameters that describe both acoustic and proprioception measurements are proposed and
investigated through a sensitivity analysis. The localisation performance is expressed in
lateral error, polar error and front-back confusion rate. The results from this sensitivity
analysis will be compared in the future to empirical data.
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C.1 Introduction

Recently, we proposed a Bayesian framework to model sound localisation that includes self-
motion, i.e., head movements (McLachlan et al., 2021). Fundamentally, it is an extension of the
static ideal-observer model presented by Reijniers et al. (2014), which used the same Bayesian
theory to determine the conditional probability distribution of the sound-source direction ψ,
given the available acoustic input and prior information (Reijniers et al., 2014).

The present implementation expands the static model on two fronts. First, the model no longer
relies on a single measurement, but instead makes an observation of the available cues at set
intervals during stimulus presentation (Hofman and Van Opstal, 1998). This means that the
the posterior distribution of the sound-source location can be recursively updated as more in-
formation becomes available. Second, the head position can be controlled over time. From
this follows that not just acoustic information, but also proprioceptive information must be pro-
cessed.

We previously provided a numerical implementation of the theoretical framework as a proof
of concept, which qualitatively showed what information on source location could be gained
from head movement (McLachlan et al., 2021). However, a more in-depth analysis of its output
remained to be carried out. Moreover, this proof of concept relied on two significant simplifi-
cations: 1) it encoded interaural time differences (ITDs) as the only available dynamic acoustic
cue, ignoring temporal changes in spectral cues and 2) it assumed the head positions to be fully
deterministic, i.e., without uncertainty.

In this paper, we remove these two simplifications and use the model to study human dynamic
localisation over the full 2D sphere in the far field (i.e., direction estimation) when presented
with a broadband sound-source. This model is publicly available as "mclachlan2023" in
the Auditory Modeling Toolbox (Majdak et al., 2022). Through a sensitivity analysis we will
investigate the effect of the different model parameters on localisation performance.

C.2 Model extension

C.2.1 Acoustic and proprioceptive information
The present model assumes the same feature space of the acoustic input static ideal-observer
model by Reijniers et al. (2014): yA, which consists of the noiseless ”true” state of the acoustic
information, XA, convolved with noise due to uncertainty caused by the auditory system or the
environment:

yA = [Xitd + δitd,X− + δ−,X+ + δ+], (C.1)
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X− = XL −XR, (C.2a)

X+ = [XL +XR]/2, (C.2b)

XL/R = S+HL/R, (C.2c)

where XL and XR are the frequencywise sum log-magnitudes of the sound source spectrum, S,
and the head-related transfer functions (HRTF), HL and HR, for the left and right ear, respec-
tively. X− and X+ then correspond with the interaural spectral difference and an average of
both monaural spectra, respectively. Note that this transformation is not strictly necessary, but
aids to interpret and discuss the results. The noise sources are described as follows:

δitd ∼ N (0, σ2
itd) (C.3a)

δ− ∼ N (0,Σ−), Σ− = 2σ2
I · I (C.3b)

δ+ ∼ N (0,Σ+), Σ+ = (σ2
I/2 + σ2

S) · I+ σ (C.3c)

Variances σ2
I , σ2

S and σ2 model the noises on the spectral measurements, the subject’s knowl-
edge of the sound-source spectrum, and the cross-talk between adjacent frequency bands, re-
spectively.

Finally, there is the proprioceptive component. Similar to yA, yH denotes the noisy observation
of the true state of the head orientation θH , which is applied to both azimuth and elevation. At
each time step, θH is updated with a motor control signal u, which denotes a rotation of the
head around the yaw or pitch axis. These variables are defined as:

yH(ti) = θH(ti) + δH , (C.4a)

θH(ti+1) = θH(ti) + u(ti)∆t+ δu, (C.4b)

δH and δu are the noises on the head orientation observation and the motor command, respec-
tively. These noises are applied to both the azimuth and elevation angles and are defined as:

δH ∼ N (0, σ2
H), (C.5a)

δu ∼ N (0, σ2
u), (C.5b)

Note that, for easier notation, most equations above are not described as functions of time.
In reality, new measurements are made at each time step (e.g., yA(ti)) and the noise variance
parameters can change over time (e.g., σitd(ti)).
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C.2.2 Recursive Bayesian estimation
We model temporal integration of acoustic and proprioceptive information through recursive
Bayesian estimation, where probability density functions (PDFs) are updated recursively over
time with incoming measurements.

Following Bayes’ Theorem, this process can be simply written as:

pti = C · pti−1
·M, (C.6)

Turning to Bayesian terminology, pti denotes the posterior PDF, pti−1
denotes the prior PDF and

M denotes the joint sensor model which computes the likelihood. C is a normalisation constant.
Note that the prior at time step ti equals the posterior from time step ti−1. At the initiation of the
recursive process, pti−1

= p(ψ), which is the spatial prior, or the prior knowledge of the sound
direction. A detailed description of this equation is given in McLachlan et al. (2021).

Fig. C.1 demonstrates the recursive process for 5 time steps with a time step size ∆t of 5 ms.
Here the left two columns accumulate into an increasingly narrow distribution. We see that,
despite the large variance between each look, the cumulative distribution very quickly (after
25ms) decreases in spread.

This specific example shows the process that will result in a fairly successful localisation es-
timate, which is presented in Fig. C.2a. This does not necessarily need to happen. Fig. C.2
shows the results for three different iterations of the same model parameters. If system noise
causes enough incorrect observations, then localisation can be affected either by an inability to
narrow the distribution (Fig. C.2b), or by a narrowing of the distribution around an incorrect
direction (Fig. C.2c). The first effect can be considered detrimental to precision, whereas the
second effect is detrimental to accuracy.

C.3 Methods

A sensitivity analysis was conducted to determine how the different noise parameters affect the
model’s localisation performance. We considered three rotation conditions, 1527 target direc-
tions (distributed over the full sphere above an elevation of −30) and seven different individual
HRTFs, obtained in an earlier study (McLachlan et al., 2023). Simulations were repeated 50
times per target direction per HRTF. For yaw and pitch rotation conditions, half of the simula-
tions rotated the head in the positive direction and the other half rotated in the negative direction.

The input stimulus was a 100ms broadband white noise burst. For the movement conditions,
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Fig. C.1 Probability density functions of the sound-source direction over the full sphere at time
steps t=1-5, with the time between each step ∆t set at 5ms. Left two columns: single look PDF
at each time step. Right two columns: cumulative PDF, i.e., recursive posterior distribution at
each time step. The blue ’x’ marks the true source direction.

rotations of 10◦ were deployed at a constant speed of 100◦/s along either the yaw or pitch axis.
The initial head orientation was straight ahead, i.e., 0◦ azimuth and 0◦ elevation. The model
worked with a time step size ∆t of 5 ms, so the posterior was updated every 5 ms. The spatial
prior was set to a uniform distribution to best visualise the effect of each tested parameter. To
obtain a point estimate from the posterior PDF, we applied the maximum a-posteriori (MAP)
estimate, which selects the mode of the distribution.

Localisation performance was evaluated based on three metrics: the lateral and polar root mean
square error ϵL and ϵP (degrees) and the quadrant error ϵQ (% of trials), as defined in Middle-
brooks (1999).

The tested parameters and their control values are presented in Tab. C.1. In preliminary simu-
lations, it became apparent that the standard deviations of the noise models chosen in Reijniers
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Fig. C.2 Three examples of probability density functions over the full sphere of the same sound-
source direction at final time step t=21. a) accurate estimate, b) smeared estimate c) front-back
confusion. The blue ’x’ marks the true source direction.

et al. (2014) were too low to provide insightful results. For this reason, the control values for
acoustic noise were set large enough to see the effects of each individual parameter. Every pa-
rameter was adjusted individually, because an investigation of the interaction effects would go
beyond the scope of this work. For this same reason the proprioceptive control noise was set to
zero: to prevent any interaction effects between proprioceptive and acoustic uncertainty during
the analysis.

Table C.1 Noise parameters included in the sensitivity analysis, including descriptions of the
signal they affect and their control values.

Noise on: Symbol Value
ITD look σitd 3 JND
Spectrum look σI 20 dB
Source knowledge σS 20 dB
Head orientation look σH 0◦

Head motor signal σu 0◦
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Table C.2 Lateral and polar root mean square error (ϵL, ϵP ) and quadrant error rate (ϵQ) for five
tested noise parameters and three rotation conditions, averaged over 7 virtual subjects, 1527
source directions and 50 repetitions. Values are rounded to one decimal place.

STATIC ϵL ϵP ϵQ
control 4.1◦ 24.2◦ 8.1%
2 · σitd 6.1◦ 25.4◦ 8.8%
2 · σI 4.7◦ 30.1◦ 15.8%
2 · σS 4.0◦ 25.9◦ 11.4%
σH = 10 4.7◦ 25.4◦ 9.3%
σu = 2 4.6◦ 21.8◦ 4.3%
YAW ϵL ϵP ϵQ
control 4.6◦ 22.8◦ 5.1%
2 · σitd 6.5◦ 24.7◦ 7.0%
2 · σI 5.5◦ 28.8◦ 10.4%
2 · σS 4.5◦ 24.4◦ 6.6%
σH = 10 5.3◦ 24.1◦ 6.1%
σu = 2 4.7◦ 20.7◦ 3.5%
PITCH ϵL ϵP ϵQ
control 4.1◦ 24.3◦ 8.1%
2 · σitd 6.1◦ 25.5◦ 8.8%
2 · σI 4.7◦ 30.3◦ 15.9%
2 · σS 4.1◦ 26.0◦ 11.5%
σH = 10 4.8◦ 25.4◦ 9.1%
σu = 2 4.6◦ 21.4◦ 4.0%

C.4 Results

Tab. C.2 presents the results of the sensitivity analysis, averaged over 7 virtual subjects, 1527
source directions and 50 repetitions. This serves as a starting point to determine the general
effect of each noise parameter under different movement conditions. Fig. C.3 presents the same
results for ϵL and ϵP , distributed over the full sphere for the static (no movement) condition. This
figure provides an insight on the direction-dependent effects of each noise source. Because the
spatial effects of ϵP and ϵQ were very similar, we decided to omit figures for ϵQ.

C.5 Discussion

Before beginning the discussion it must be noted that the purpose of this analysis is not to
match the model output to empirical data, but to test the influence of each noise source to
assist parametrisation of the model in a future stage. The noise sources were divided into
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three categories: timing noise, spectral noise and proprioceptive noise. Each category will be
discussed separately.

C.5.1 Control
Comparing between the three rotation conditions, it becomes apparent that yaw rotation pro-
vides a lot of information on the polar angle and the quadrant in which the sound-source is
located. The decreases in ϵP and ϵQ can be explained by the hypothesis on the effect of head ro-
tations posed in Wallach (1940). The sign of the change in ITD that accompanies a head rotation
is an unambiguous indicator of the proper hemisphere, which reduces quadrant errors. Addi-
tionally, the rate of change in source azimuth angle relative to the change in head orientation can
theoretically provide information on elevation angle. Pitch rotation does not affect localisation
whatsoever, this agrees with the results from earlier studies (McLachlan et al., 2023).

C.5.2 Timing noise
In all rotation conditions, an increase in σitd causes a 50% increase in ϵL. This is no surprise:
interaural cues are mostly informative about the lateral angle of a source. Perhaps more sur-
prising are the small decreases in performance for the other two metrics. Looking at Fig. C.3a,
we see that these small effects mostly take place behind the listener and away from the median
plane. This suggests that there are small asymmetries in the ITD between the front and back
hemispheres, which in the control condition sometimes (although rarely) provided information
on the correct hemisphere. Note that the effect on ϵQ is larger during yaw rotation, because an
increased σitd makes it more difficult to utilise the ITD rate of change, which, as mentioned
before, is an indicator of the correct hemisphere.

C.5.3 Spectral noise
When σI is increased, we see highly detrimental effects for both ϵP and ϵQ, this can be explained
by the well-known role that spectral cues play in localisation along the sagittal planes. Lateral
error ϵL is also increased, although this effect is minimised due to the complementary nature
between interaural timing and level differences. For yaw rotation, an increase on spectral noise
has a much smaller effect on ϵQ. This again demonstrates how dynamic ITD as a function
of head rotation serves as a strong cue to prevent quadrant errors. The spatial analysis (Fig.
C.3b) shows that error increases are largest away from the median plane, this is likely because
locations around the median plane are still partly supported by Xitd and X+, which are not or
less severely affected by σI .

An increase in σS has no effect on ϵL, because knowledge of the source spectrum is irrelevant
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Fig. C.3 Model root mean square error difference between control values and separately varied
model parameters, during static localisation. Left column: lateral error ϵL, right column: polar
error ϵP . a) 2 · σitd, b) 2 · σI , c) 2 · σS , d) σH = 10, e) σu = 2. The results are plotted for 1527
target directions over the full sphere relative to the torso. Results were averaged over 7 subjects
and 50 trials per subject per direction.

to lateral localisation. It also appears to be only slightly detrimental to ϵP and ϵQ. However,
looking at Fig. C.3c, we see that specifically directions around the median plane are much more
heavily influenced than others, which contrasts to the effects in C.3b. Indeed, on the median
plane the listener can extract less information regarding the polar angle from X− because of
symmetry, and relies more on X+ (Reijniers et al., 2014). This requires knowledge of the
sound-source, which becomes uncertain as σS increases.
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C.5.4 Proprioceptive noise
A higher σH results in an increased error for all three metrics. This is not surprising, as one
would expect an uncertainty of the orientation of the head and ears to correspond with a smear-
ing of the direction estimate. Fig. C.3 shows that this smearing occurs more severely for sources
close to straight ahead (0, 0) and behind (0, 180). This can be explained by the fact that σH is
two-dimensional, i.e., it applies to the orientation of the head along the pitch and the yaw axis.
Sources above the listener only suffer from the uncertainty in pitch and sources to the left or
the right only suffer from the uncertainty in yaw. Whereas the directions at (0, 0) and (0, 180)

are affected by both yaw and pitch uncertainty. In other words, this is an artifact of the present
definition of the movement model, and empirical data would be required to determine if this
adequately simulates true movements.

It may be counter-intuitive that an increase in noise on the motor control signal σu improves
polar localisation (ϵP and ϵQ), but it can be easily explained by considering equation C.4. When
δu is high, it means that the true head orientation θH(ti+1) deviates far from the previous ori-
entation θH(ti). If this deviation is large enough, then positive effects similar to those in the
yaw rotation condition can be expected. This result raises the question about the validity of
localisation experiments where subjects were instructed to remain still, as it is possible that a
deviation from the instructed position accidentally provided additional acoustic cues.

C.6 Conclusion and Outlook

In this work we investigated the dynamic localisation model described in McLachlan et al.
(2021) through a sensitivity analysis of the sensory noise parameters. The current parameters
already provide much control and insight on the role of acoustic and proprioceptive information
during sound-localisation, but the present Bayesian framework makes it easy to implement
additional elements. To conclude, we will list a number of possible adjustments, based on
psychoacoustic findings. Note that this list is intended to shed a light on the potential of the
recursive Bayesian framework, but is by no means exhaustive.

First, the feature space may be reformulated to be more representative of the acoustic cues
that humans utilise for sound localisation. For example, several studies found that the positive
spectral gradient may be a more appropriate localization cue than the absolute spectral values
in each frequency band (Baumgartner et al., 2014).

Second, lateral and polar estimation may be split into two separate processes. There is some
neurological evidence that this may be the case (Ege et al., 2018), and previous work has shown
that this split significantly affects the output of the Bayesian model (Peremans et al., 2022). One
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way of splitting this process is by applying a Bayesian decision rule depending on the plane of
localization, e.g., maximum a-posteriori for the lateral angle and random sampling for the polar
angle.

Third, a non-uniform spatial prior can be implemented. Empirical findings suggest that a Gaus-
sian distribution around the horizontal plane may better describe elevation estimation (Ege et al.,
2018).

Finally, earlier work showed that the introduction of a pointing error to the Bayesian estimator
successfully accounted for the deviance between model and experimental data (Baumgartner
et al., 2014). It is important to note here, however, that this pointing error cannot be included
arbitrarily. To prevent that this noise is simply added to account for any deviating results, its
values should be carefully chosen and grounded in empirical evidence, e.g., a higher pointing
error for sources behind the listener.
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Abstract - Self-motion is an essential but often overlooked component of sound localisa-
tion. While the directional information of a source is implicitly contained in head-centred
acoustic cues, that acoustic input needs to be continuously combined with proprioceptive
information about the head orientation in order to decode these cues to a world-centred
frame of reference. On top of that, the use of head movement significantly reduces am-
biguities in the directional information provided by the incoming sound. In this work,
we evaluate a Bayesian model that predicts dynamic sound localisation, by comparing its
predictions to human performance measured in a behavioural sound-localisation exper-
iment. Model parameters were set a-priori, based on results from various psychoacous-
tic and sensorimotor studies, i.e., without any post-hoc parameter fitting to behavioral
results. In a spatial analysis, we evaluated the model’s capability to predict spatial lo-
calisation responses. Further, we investigated specific effects of the stimulus duration,
the spatial prior and sizes of various model uncertainties on the predictions. The spatial
analysis revealed general agreement between the predictions and the actual behaviour.
The altering of the model uncertainties and stimulus duration revealed a number of inter-
esting effects providing new insights on modelling the human integration of acoustic and
proprioceptive information in a localisation task.
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Introduction

The acoustic cues acquired through head rotation are of crucial importance to spatial hearing.
Not only do they improve sound externalisation (Brimijoin et al., 2013), they provide dynamic
acoustic cues which contribute to sound localisation. First and foremost, they reduce ambigui-
ties between the front and back (Wallach, 1940; Perrett and Noble, 1997a). Second, under cer-
tain conditions, they can improve the elevation estimation of a source through a relation between
the rate of change in binaural cues and the amount of performed head rotation, a phenomenon
termed the ‘Wallach cue’ (Wallach, 1940; Jiang et al., 2019). Dynamic acoustic cues become
especially important when spectral cues are difficult to process, like in reverberant (Giguère and
Abel, 1993) or virtual (McLachlan et al., 2023) environments, or when high-frequency cues are
unavailable (Thurlow and Runge, 1967).

The movements that benefit sound localisation are not always voluntary. On the contrary, for
both sensorimotor (Winter, 1995) and behavioural (Hadar et al., 1983, 1985) reasons, the human
head is rarely completely still. Even when the only task given to subjects is to remain still, they
continue to move by a small but measurable amount (Wersényi and Wilson, 2015). Despite
this constant motion, we perceive the auditory world to be relatively stable. This suggests that
there exists a mechanism that utilises positional information about the head to compensate for
self-motion and converts the head-centred auditory cues into a stable, world-centred frame of
reference (Brimijoin and Akeroyd, 2014). This notion is further supported by the fact that
moving sound sources do not provide the same benefits to localisation as the head movements
that would theoretically cause similar acoustic cues (Wightman and Kistler, 1999).

If we are to include these unavoidable dynamic effects in future studies of sound localisation,
it is apparent that there is a need for a tool to better investigate or predict the effects of head
movements in a reproducible manner. To this end, we previously proposed an ideal observer
model for active sound localisation based on Bayesian inference, which can process dynamic
cues obtained through self-motion. This model integrates acoustic and proprioceptive infor-
mation over time to simulate sound localisation through self-motion (McLachlan et al., 2021).
The model serves as a performance ‘ceiling’, given the available acoustic cues. It also provides
a bottom-up approach to sound localisation, i.e., it lets one change the cues that are extracted
from incoming sound and the way that they are utilised (e.g. by adjusting the spatial prior or
increasing sensory noise), after which the effects on localisation performance can be tested.

In this paper, we investigated to what extent humans behave like an ideal observer during active
sound localisation. We did this by comparing the output of a Bayesian model for active sound
localisation to behavioural data over the full 2D sphere. First, we described the active sound
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localisation model. This model continually collects auditory snapshots or ‘looks’, akin to the
multiple looks model (Viemeister and Wakefield, 1991). Through recursive Bayesian estima-
tion, these looks were accumulated over time, reducing sensory ambiguity. The use of snapshots
means that dynamic cues were formed implicitly, i.e., the additional information obtained from
head motion was obtained through a series of static looks. Note that this model controls head
movement irrespective of the incoming sound and, hence, does not encompass ‘closed-loop’
processes such as triangulation or source tracking. Next, we described the localisation experi-
ment and compared the results obtained here to the model data. Finally, we adjusted a subset
of the parameters to investigate their effect on localisation performance. The present experi-
ments focus on small head rotations (10◦) along the yaw axis. Small head movements have
been shown to comprise the majority of natural head movements (Kim et al., 2013a), and can
be considered, if necessary, as a first step in a more complex movement framework. All ex-
perimental data, including the localisation model, were made publicly available in the Auditory
Modeling Toolbox (AMT, Majdak et al., 2022).

Methods

Ethics statement
All subjects that participated in this study were adult volunteers. They were informed on the
procedure and were free to withdraw at any time. They gave written informed consent before
the experiment. The study applied the standard methodology of the Acoustics Research Institute
(ARI) which has been approved by the Ethics Representatives of the ARI.

Template definition
The proposed model utilises a ‘template-matching’ procedure which requires a set of acoustic
templates TA that the observed information is compared to Middlebrooks (1992); Baumgart-
ner et al. (2014); Reijniers et al. (2014). Each template in TA contains the expected acoustic
information from a specific direction. We assumed that TA is the acoustic ‘knowledge’ that the
brain has learned and stored over a lifetime of experience, and is thus signal-independent.

To compute TA, a set of acoustic features was extracted from the subject’s head-related transfer
functions (HRTFs) and the signals received at each ear. This process is identical to the feature
extraction described in earlier work (Reijniers et al., 2014).

The ITD template Titd was computed as the difference between times of arrival of the head-
related impulse responses at each ear. The time of arrival was defined as the time it takes for the
impulse response to reach a value 10 dB below its maxima. Each head-related impulse response
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was low-pass filtered at a cutoff frequency of 3000 Hz before deriving the time of arrival. Then,
the ITDs (in time units) were transformed into a scale of just-noticeable difference (JND) units,
such that the error on the ITD was modeled as an additive instead of multiplicative factor (for
further explanation, see Reijniers et al. (2014)).

Next, we consider the directional filters for the left TL and right TR ear separately. The
head-related impulse responses were passed through a Gammatone filterbank with 32 chan-
nels in equivalent rectangular bandwidths, with centre frequencies ranging between 300 Hz and
15 kHz, as in Reijniers et al. (2014). These processed signals were half-wave rectified, low-pass
filtered using five sequential first-order infinite impulse response filters with a cut-off frequency
of 2000 Hz, and then transformed to a logarithmic domain (in dB). This stage simulates a sim-
plified processing of the inner hair cell (Breebaart et al., 2001). Then, for each frequency
channel, the root mean square of the signal was computed. Thus, TL and TR denote vectors
with monaural spectral information in dB along the equivalent rectangular bandwidth channels.

Ultimately, the ITD and the monaural spectral vectors for both ears are combined into TA which
is a matrix containing the combined vectors per template source direction:

TA = [Titd,TL,TR] (D.1)

In this article, TA consists of 2042 directions that are uniformly distributed over the sphere.
These directions were obtained through spherical-harmonics interpolation of the measured HRTFs,
involving Tikhonov regularisation to account for measured directions not covering the full
sphere (Pollow et al., 2012).

Generative model
We assume that the listener wants to determine the source direction based on all prior informa-
tion about the environment and all sensory information collected during the head movement.
This prior and sensory information is combined into a posterior probability density function
(PDF), from which finally a point estimate is retrieved.

To explain this process step-by-step, we first introduce the function of the spatial prior p(ψ).
Then we discuss how the likelihoods of the acoustic information LA and proprioceptive infor-
mation LH are computed. Finally we combine these factors into the posterior PDF and obtain
an estimate of the sound source direction from this distribution.
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Spatial prior

In the Bayesian framework the probability of an occurring event may be affected by prior knowl-
edge about the event. The spatial prior p(ψ) quantifies the listener’s a-priori assumptions about
the source location before taking any sensory information into account. Polar estimations show
a general bias towards the audio-visual horizon (Ege et al., 2018; Carlile et al., 1997). This
can be modelled with a Gaussian spatial prior around the horizontal plane with a limited SD of
about 12◦. However, the best fitting SD of the prior seems to depend on the decision rule used.

The spatial prior is only one example of possible prior information available to a listener. Priors
can be related to any variable, such as the number of sources (Rohe and Noppeney, 2015), the
movement properties of the sound source (Senna et al., 2015) or its spectral content (Hofman
and Van Opstal, 1998). In fact, the proposed model relies on the assumption that the source
spectrum is unknown, but is derived from an ecologically valid prior.

Acoustic sensor model

The acoustic sensor model compares the stored template information TA to a vector of acoustic
features present in the observed sound signal, yA, which consists of the noiseless ‘true’ state
of the acoustic information, XA, corrupted with noise due to uncertainties within the auditory
system or caused by the environment:

yA = [yitd,yL,yR] (D.2)

with

yitd = Xitd + δitd

yL = XL − Ŝ+ δL + δS

yR = XR − Ŝ+ δR + δS

where δitd is the error on the ITD measurement with standard deviation σitd, δL and δR are the
errors on the left and right monaural spectra measurements with covariance matrices ΣL =

ΣR = σ2
I · I, respectively. Thus, σI represents the noise on the spectral measurements. Finally,

Ŝ is the mean expected source spectrum and δS is the error due to imperfect knowledge of the
sound source with covariance matrix ΣS (assuming a central process, this is the same at both
ears). So, Ŝ and ΣS define the observer’s prior on the source spectrum:

P (S) = N (Ŝ,ΣS) (D.3)

78



i.e., the observer assumes that the source has spectrum Ŝ with an uncertainty which is contained
by the source covariance matrix ΣS .

With that, we define the full covariance matrix of the acoustic cues as:

ΣA =

σ
2
itd 0 0

0 ΣL +ΣS ΣS

0 ΣS ΣR +ΣS

 (D.4)

All error terms are assumed to be zero-mean Gaussian noise. Note that we assume the spectrum
to be time-invariant and the source in the far field. We also assume here that each frequency
channel has the same sensory noise of σI . Several studies have shown that the JND shows
little dependence of signal frequency for sources louder than 50 dBA SPL (Jesteadt et al., 1977;
Ozimek and Zwislocki, 1996).

We then consider the acoustic sensor model:

LA(ti) = p(yA(ti) | θH(ti), ψ) (D.5)

where yA(ti) and θH(ti) are the observed acoustic information and the true head orientation,
respectively, at time-step ti, and ψ is the true sound source direction, which here is assumed to
be independent of time.

The expression in Eq D.5 is calculated by computing the Mahalanobis distance between the
measured acoustic cues yA(ti) and the set of acoustic cue templates TA and covariance matrix
ΣA. This is done at each sampled sound source direction, given the current head orientation
θH(ti).

Motor sensor model

The motor sensor model is defined as:

LH(ti) = p(θH(ti) | yH(t0 : ti), u(t0 : ti)) (D.6)

where θH(ti) and yH(ti) are the true and observed head orientations at each time step ti, respec-
tively, and u is the motor command signal, which is represented by the speed ω(ti) of rotating
the head around a given axis. These variables are defined as:

yH(ti) = θH(ti) + δH ,

θH(ti+1) = θH(ti) + u(ti)∆t+ δu,
(D.7)
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The additive noise on both the movement equation and the sensor equation is again assumed to
be zero-mean white Gaussian noise δu ∼ N (0, σu) and δH ∼ N (0, σH). Thus, σH describes
the noise on the head orientation observation at each time step and σu describes the noise on the
motor command that steers the head.

Assuming head orientation measurements to be independent of acoustic measurements, we
show in McLachlan et al. (2021) that Eq D.6 can be reformulated. The dependency on all
sensor readings and all head rotations executed so far can be expressed recursively as

LH(ti) = p(θH(ti) | yH(t0 : ti), u(t0 : ti)) = p(θH(ti) | θ̂H(ti)) (D.8)

with θ̂H(ti) ∼ N (µθH (ti), σθH (ti)) the estimated head orientation updated at each step through
a Kalman filter with:

µθH (ti+1) = (1−K) · (µθH (ti) + u(ti)∆t) +K · yH(ti+1),

σ2
θH
(ti+1) = (1−K) · (σ2

θH
(ti) + σ2

u)

and K the Kalman gain:

K =
σ2
θH
(ti) + σ2

u

σ2
θH
(ti) + σ2

u + σ2
H

, (D.9)

The expression in Eq D.8 is calculated by computing the Mahalanobis distance between given
head orientation θH(ti) and θ̂H(ti).

At the initial time step t0 we define: µθH (t0) = yH(t0) and σ2
θH
(t0) = σ2

H .

Posterior computation

By marginalisation over all possible head orientations and using Bayes’ theorem, we can com-
bine the spatial prior and sensor model output to obtain the joint posterior PDF:

pti = C · pti−1
×
∫
θH

(LH × LA)dθH , (D.10)

Turning to Bayesian terminology, pti is the posterior PDF, pti−1
is the prior PDF and the joint

sensor model computes the likelihood. C is a normalisation constant. Note that the prior at
time step ti equals the posterior from time step ti−1. At the initiation of the cumulative process,
pti−1

= p(ψ), which is the spatial prior. The detailed derivation of this equation is explained
in McLachlan et al. (2021).

Fig D.1 illustrates how the posterior updates over time as more information arrives. Note that
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Fig. D.1 Example posterior distribution of source direction at different time steps during yaw
rotation. Darker areas indicate higher probabilities. The blue ‘x’ is the true source direction.

in the numerical implementation of the model, the initial look contains all acoustic information,
and the following looks only consider changes in the ITD cue to update the posterior. The
reasoning for this is explained in the Methods.

Localisation decision rule

Eq D.10 returns a probability distribution over the sphere, i.e., a probability from a large but dis-
crete set of source directions. The last step in the process is to obtain a point estimate from this
posterior PDF. To do so, a decision rule must be defined. The present model uses the posterior
matching strategy, where a weighted random sample is taken from the posterior PDF. However,
it is easy to implement other strategies, such as the maximum a posteriori strategy, i.e., selecting
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the location at the maximum of the posterior. It was found that localisation performance lies
somewhere between the maximum a posteriori and posterior matching strategies (Ege et al.,
2018).

Model parameters
General

The stimulus was a broadband time-invariant Gaussian white noise burst. The duration was
the same as in the behavioural experiment, for both movement conditions. The simulated head
movement was copied directly from the experimental head tracker data. In other words, for
each simulated trial, the model executed the same head rotation as the subject did during the
experiment.

The template TA was listener-specific, i.e., derived from the individual’s measured HRTFs.
Earlier work suggests that the auditory system can detect changes (ITD (Bernstein et al., 2001),
ILD (Brown and Tollin, 2016; Bernstein et al., 2001), spectrum (Hofman and Van Opstal, 1998;
Martin and McAnally, 2008)) on a short time scale of about 5 ms. However, the full integra-
tion window of acoustic information for sound localisation appears to be more in the range of
100-200 ms (Zwislocki, 1969; Yabe et al., 1998). Furthermore, in localisation studies along the
horizontal plane, the azimuth estimation reached best performance for stimulus durations of
only 3 ms (Vliegen and Van Opstal, 2004). In studies along the vertical plane, a longer duration
of 80 ms was required to reach the best performance in the elevation estimation (Hofman and
Van Opstal, 1998). When head movements are allowed, a stimulus duration of approximately
100 ms seems to be required to provide a substantial benefit from the head movement (Macpher-
son, 2013). For the above reasons, the time step size ∆t for the updating of the posterior was
set to 100 ms. The effects of other step sizes are reported in the discussion.

The localisation task was simulated for 33 source directions and repeated 20 times without
head movement, 20 times with a 10◦ rotation to the left, and 20 times to the right. This reflects
the sound directions and repetitions used in the behavioral experiment. The simulations were
repeated for each subject that participated in the behavioral experiment, then the results were
pooled for further statistical analyses.

The spatial prior was assumed to emphasise directions around the horizon (Ege et al., 2018; Fis-
cher and Peña, 2011). That is, for elevation, the prior has a mean around zero and a restricted
variance σp. In Ege et al. (2018), the optimal value of σp was found to be around 11.5◦. Initial
simulations in the present model showed that this prior is too strong, as will be shown in the
discussion. An explanation may be that this value was determined from a localisation exper-
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iment that only included source directions in the elevation range of [−35◦, 35◦] in the frontal
hemisphere. For better comparability with the behavioural data, the model spatial prior was
weakened to 30◦.

Acoustic information

In this implementation of the model, yL and yR were measured once, and yitd was measured
several times during stimulus presentation. The reason for this is twofold. First, it was found
that dynamic spectral cues are not informative for sound localisation during small head rota-
tions, which makes it unnecessary to take several measurements of the spectral information
during head rotation (McLachlan et al., 2023). Second, the model’s recursive estimation pro-
cess relies on the assumption that the measurements are independent and identically distributed.
This assumption does not hold for natural source spectra: we found the spectra of two subse-
quent segments of 100 ms for sources from the ESC-50 database (Piczak, 2015) to be highly
correlated (ρ ≈ 0.8).

The SD on the ITD measurement at each time step t, σitd, was set to 0.6 JND. The SD on the
measurement of the spectral content, σI , was set to 3.5 dB. These values and units were derived
earlier for the static localisation model in Reijniers et al. (2014). In the discussion, the effects
of higher ITD measurement noise are reported.

The covariance matrix of the knowledge of the spectral content of the incoming sound source,
ΣS , i.e., the source prior, was derived from the ESC-50 database (Piczak, 2015), which is a
collection of 2000 environmental audio recordings. Each of the sound files of the database
were chopped up in intervals of 0.2s and, for each of these intervals, the source log-magnitude
spectrum was expressed as function of the equivalent rectangular bandwidth centre frequencies.
The resulting spectra were pooled in a single dataset, from which the average source spectrum
Ŝ and the covariance matrix ΣS were calculated.

Proprioceptive information

The SD on the measurement of the head orientation at each time step t, σH , and the SD on the
motor command steering the head rotation, σu, were both initially set to 0◦. In other words,
this assumed that the listener can perfectly estimate and control the head orientation. Human
subjects are able to report motion and orientation perception with very high precision (Karnath
et al., 1994; Diaz-Artiles and Karmali, 2021). In a seated position, the standard deviation of
head rotation around the starting position (notated in our model as σu) is around 2◦ (Wersényi
and Wilson, 2015). In the discussion the effects of higher motor noise are reported.
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As with virtually all sensory systems, motor imprecision increases with stimulus magnitude (Todorov,
2005; Harris and Wolpert, 1998), i.e., noise increases with exerted force. However, motor noise
(σH and σu) was assumed here to be additive for simplicity.

Theoretically, Eq D.10 requires marginalisation over all possible head rotations. However, with
low proprioceptive noise, the probability distribution of head orientations based on the accumu-
lated proprioceptive evidence will be near-zero for most orientations. Hence, a computational
heuristic was used to only consider orientations within a range of 2σH from the true orientation,
so that about 95% of the orientations were considered.

Acoustic measurements and behavioural experiment
Apparatus

The behavioural localisation experiment and acoustic HRTF measurements were conducted in
a semi-anechoic room with 91 speakers (E301, KEF Inc.) distributed over the sphere within the
elevation angles −47◦ to 90◦. A head-mounted display (HMD, Oculus Rift, CV1, Meta Inc.)
was used for the visual presentation of the virtual environment: a sphere with grid lines, which
serve as anchor points to the subject’s orientation in space. Although HMDs can minimally
affect localisation performance (Gupta et al., 2018; Poirier-Quinot and Lawless, 2023), this
decision was made as it was a higher precision error was found in darkness than when providing
spatial information with an HMD (Majdak et al., 2010). Three infrared cameras were used for
the tracking of the listener within the six degrees of freedom.

The experiment was controlled by a computer running a 64-bit Windows 10, equipped with
an 8-core, 3.6-GHz CPU (i7-11700KF, Intel Inc.), 16 GB of RAM, and a graphic card with
dedicated 8 GB of RAM (GeForce RTX 3070, NVIDIA Inc.). The experiment was controlled
by the ExpSuite 1.1 application LocaDyn, version 0.9.7.

The tracking system provided a translation accuracy of below 1 cm (Borrego et al., 2018) and a
rotation accuracy of below 1◦ (for a similar tracking system (Monica and Aleotti, 2022)). The
position and orientation of the subject’s head were recorded for later analyses and to simulate
using the model.

Subjects

Eight normal-hearing subjects (four female, four male) participated in the experiment. Their
absolute hearing thresholds were within the average (±1 standard deviation, SD) of the age-
relevant norms (Corso, 1959; Stelmachowicz et al., 1989) within the frequency range from
0.125 to 12.5 kHz. The age range of the subjects was between 22 and 33 years.

84



Stimuli

Stimuli were always played over loudspeakers using virtual-base amplitude panning (Pulkki,
1997). Thirty-three source directions were distributed over the full sphere, which are visible in
Fig D.3 and Fig D.4.

The acoustic stimulus used in this experiment was a wideband (20 to 20000 Hz) white noise
burst, gated with a 10 ms cosine ramp. Each trial used the same noise realisation. The stimulus
was gated off after 500 ms in the passive condition, and after 10◦ of head rotation for the active
condition. For the latter, this means that the stimulus duration depended on the rotation velocity,
with mean 634.9ms and SD 335.7ms.

Presentation level was measured to be 48 dBA SPL at the ear drum, with a ±2.5 dB level roving
range between trials.

Procedure

The localisation task procedure was identical to that of McLachlan et al. (2023). At the start of
each trial, the subject kept the head still on the reference orientation at (0◦, 0◦). The stimulus
was then played and the subject remained still or initiated rotation depending on the movement
condition. At the end of the stimulus, the subject pointed towards their perceived source di-
rection with a hand-tracking device to provide their localisation estimate. No feedback was
provided about performance during or after the trials.

In the condition labelled ‘passive’, the subject was instructed to keep the head still for the
duration of the stimulus. For the condition labelled ‘active’, the subject was instructed to make
a single-sided rotation (either to the left or to the right) as soon as they heard the stimulus onset.
Half of the trials instructed a leftward rotation, the other half was rightward. The head rotation
speed was unrestricted, but was monitored through the tracking system of the VR headset and
recorded for analysis.

In total, the passive experiment consisted of 660 trials (33 directions and 20 repetitions) per
subject. The active experiment consisted of 1320 trials per subject: 660 for a leftward rotation
and 660 for a rightward rotation. The trials were divided into 6 blocks, with trials and blocks
presented in random order. For passive localisation, trials which exceeded 2◦ of movement in
any direction were excluded (225 omissions in total). For active localisation, trials that resulted
in a total yaw rotation smaller than 7◦ or larger than 13◦, or with a pitch rotation larger than 6◦

were omitted (648 omissions in total).

Subjects were trained before commencing the experiment. The training consisted of 300 trials
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with the 500ms white noise burst, played from a direction randomly selected from a uniform
distribution within the range of available directions. Subjects were not excluded based on their
performance at the end of training.

Localisation metrics
There are many metrics available for sound localisation performance, this makes comparison
between localisation studies difficult. It is, however, generally accepted that a distinction needs
to be made between two types of errors (Carlile et al., 1997). The first type is the local error.
Here we use the lateral-polar coordinate system (Morimoto and Aokata, 1984), (θ, ϕ), where
θ ∈ [−90, 90] and ϕ ∈ (−180, 180], with (θ, ϕ) = (0, 0) defined as straight ahead. The local
error was expressed in root mean-squared error (RMSE) value of the lateral and polar errors.
Polar RMSE was only considered in the range of ±30◦ lateral angle, and estimates in the wrong
hemisphere (i.e., front-back and up-down confusions) were excluded from the local errors, fol-
lowing the definition by Middlebrooks (1999).

The second type of error is the reversal error, which generally is reported as a percentage, i.e.,
the rate of reversals in a given set of trials. The first reversal error considered was the quadrant
error (QE) rate, which is defined as any polar error larger than 90◦. Additionally, we used the
front-back confusion (FBC) rate and the up-down confusion (UDC) rate , which are defined as
any response crossing the frontal plane and the horizontal plane, respectively. This is the same
definition as used by Carlile et al. (1997), and thus allows for a direct comparison between
present and previous data. Note that this is a very coarse definition for the reversal error, as it
confounds FBCs and UDCs with local errors near the frontal or horizontal plane, respectively.

Results

Global statistics
First, we present the global results, in order to compare to the existing literature. Table D.1
presents the localisation data of both the behavioural (B) experiment and the model (M) simu-
lations (means and SDs averaged over the subjects), for passive (P) and active (A) conditions.

Local errors

The lateral errors in the behavioural results agreed with previous findings from similar exper-
imental setups (Oldfield and Parker, 1984; Middlebrooks, 1999). However, the model results
were small compared to the behavioural data. This may have been the result of σitd being set
too small, or of the behavioural responses being confounded with a ‘pointing’ error. The effect
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Table D.1 Averages and SDs of behavioural (B) and modelled (M) localisation performance in
the passive (P) and active (A) conditions. The performance is represented as the lateral and po-
lar RMSE (in degrees), QE, FBC, and UDC rates (in %). Means and SDs were computed over
eight (virtual) subjects. For comparison, the results from previous work are reported too (Mid-
dlebrooks, 1999). N.R.: not reported.

Condition L. RMSE P. RMSE QE FBC UDC
(deg) (deg) (%) (%) (%)

BP (Middlebrooks, 1999) 10.6± 2.0 22.7± 5.1 4.6± 5.9 N.R. N.R.
BP 8.1± 1.4 20.0± 2.4 7.9± 4.5 10.7± 6.3 6.7± 4.2
BA 8.2± 1.8 18.9± 5.0 0.7± 1.1 1.5± 1.2 4.2± 4.1
MP 2.7± 0.5 17.9± 2.5 7.4± 2.0 4.0± 1.3 3.1± 0.5
MA 2.7± 0.2 15.3± 2.2 2.0± 1.1 1.1± 0.3 1.8± 0.7

of ITD noise on the model performance is tested below.

The polar errors of the behavioural results were consistent with previous findings (Middle-
brooks, 1999; McLachlan et al., 2023). Like the lateral error, the mean polar error of the sim-
ulated trials was lower than that of the behavioural data. However, the difference here was
smaller.

No decrease was seen in polar error in condition BA. This is evidence against the ‘Wallach
cue’ (Perrett and Noble, 1997a), and agrees with previous findings (McLachlan et al., 2023).
However, condition MA did show a decrease in polar error. Although this improvement is still
small, it is an indicator that the Wallach cue may be theoretically informative, as the model was
able to obtain elevation information from yaw movement. The reason why this isn’t seen in
humans could be due to motor noise. This is investigated below.

Interestingly, the SD of the polar RMSE increased in condition BA, even though the mean did
not change much. This suggests that the effects of head movement may be subject-dependent,
e.g., motor noise during motion may be higher for some individuals.

Reversal errors

QE rates in conditions BP and MP agreed with previous work (Middlebrooks, 1999). Further-
more, the near-complete removal of QEs in conditions BA and MA also confirms the consensus
that head rotation resolves all reversal errors (McLachlan et al., 2023).

The FBC rate in condition MP was notably lower than in condition BP. Looking at earlier
studies, FBC rates of normal hearing listeners were closer to 3 − 6% (Carlile et al., 1997;
Fischer et al., 2020; Makous and Middlebrooks, 1990), although the errors were highly subject-
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dependent. This means that the high FBC rate in this study is somewhat anomalous. Hence,
the cause for the discrepancy here seems to lie in the behavioural results, not in the model
predictions.

There was also a slight decrease in the UDC rate. This reduction may have been caused by the
improved polar estimation obtained from the Wallach cue. It is possible that the rotation made
during some trials contained a significant roll-component, which helps distinguish between the
lower and upper hemispheres (McLachlan et al., 2021). However, the tracker data shows that
overall roll rotation was small, with the mean absolute roll 0.82◦ and the SD 0.51◦.

The high SD in the reversal errors shows that this metric is highly subject dependent. The SDs
of reversal errors between model ‘virtual listeners’ were small compared to the behavioural
results. This is not surprising, as the individual differences between subjects are likely not fully
explained by the individual HRTFs. The same noise parameters were used for each individual,
while it is likely that they differ per individual (Barumerli et al., 2023). Furthermore, higher
level processes such as listening strategies (Thurlow et al., 1967) or attention (Klatt et al., 2018)
will also be a cause for individual differences.

Spatial analysis
Following the methods of visualisation of previous work, the localisation responses were mod-
elled as elliptical Kent distributions (Leong and Carlile, 1998; Carlile et al., 1997). The cen-
troids visualise the bias, i.e., the mean vector, of all responses for one source direction. The
ellipsoid outlines visualise the equal probability contours of the distribution of responses. The
major and minor axes of the ellipsoid are two SDs in length and represent the first two orthog-
onal ‘principal components’ of the dataset that account for the maximum amount of variance
in the data. Fig D.2 illustrates the Kent distribution of all responses for the frontal direction of
condition BP.

Fig D.3 visualises the behavioural and model localisation results per source direction on the
sphere around the listener. Quadrant errors were excluded.

Response bias

The direction of the centroids of condition BP are similar to those found in (Carlile et al., 1997).
More specifically, the centroids show a bias towards the audio-visual horizon and towards the
interaural axis, i.e. the left and right ear. This supports the already strong evidence for a spatial
prior on the horizon (Ege et al., 2018). Several other studies have shown that human sound lo-
calisation displays a peripheral bias that increases with eccentricity (Oldfield and Parker, 1984;
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Fig. D.2 Centroid and Kent distribution for condition BP and source direction (30◦, 30◦). Black
dots are the individual subject responses, from which the Kent distribution was calculated.

Fig. D.3 Centroids and Kent distributions of behavioural (B) and modelled (M) responses in
the passive (P) and active (A) conditions, averaged over eight subjects. The rows show the
same data viewed towards the front, the right, and the back of the head. Quadrant errors were
excluded.
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Lewald and Ehrenstein, 1998; Odegaard et al., 2015).

In condition BA, the bias towards the horizon seemed to increase further. This can be explained
if we assume an increase in uncertainty on the orientation of the head, or perhaps on the spectral
cues during motion. Due to this increase in sensory noise, the relative strength of the spatial
prior towards the horizon would increase. The biases did not change between conditions MP and
MA. Possibly, this effect was not seen in the model because the head orientation was assumed
to be perfectly known. Below we investigate the influence of increased proprioceptive noise.

Two explanations for spatial biases have been proposed previously: 1) a Bayesian approach
describes a pre-existing spatial prior for certain locations that is added to the sensory informa-
tion, 2) alternatively, responses may be pulled to certain directions due to compressions and
expansions in the sensory representations of auditory (and visual) space (Odegaard et al., 2015;
Brimijoin, 2018). Fig D.3 shows that the selected spatial prior for the model results in vertical
biases that are similar to the behavioural data. This is evidence that the spatial biases can, at
least in part, be explained by a prior.

Response variance

Similar to the Kent distributions in Carlile et al. (1997), condition BA shows larger distributions
for sources at higher elevations, and for sources in the rear hemisphere. The response spread is
also highest along the polar dimension, more specifically, along the cones of confusion (Blauert,
1997).

The spread in model responses also followed the cones of confusion. On the median plane the
response distributions appear fairly similar. However, the response spread for sources at higher
lateral angles was noticeably smaller than in the behavioural responses, especially for the lateral
responses. This was to be expected from the lower local errors that were seen earlier.

The biggest difference was seen for sources in the rear. For conditions MP and MA, the response
distributions for sources in the rear were nearly identical to those in front. On the contrary,
the behavioural data contained a much larger spread in the rear, especially along the lateral
dimension. This suggests that the increase in variance, i.e., decrease in precision, found in
the rear hemisphere of the behavioural results cannot be (fully) attributed to a lower spatial
resolution in acoustic cues. Instead, a response or ‘pointing’ error may have been responsible.
Even if the auditory system can perfectly estimate a source location, the action of pointing in
a direction as a response may introduce an additional error. It is reasonable to hypothesise that
sources behind the listener are more difficult to point towards consistently. Pointing errors have
been modelled previously (Baumgartner et al., 2014; Barumerli et al., 2023), though only as
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a simple Gaussian noise source, which does not take into account the source direction. More
research is required to accurately model the spatial dependence of a response error.

There were no large differences in Kent distributions between passive and active conditions,
neither for the behavioural data nor for the model. One exception is the source position directly
above the listener in the model predictions. In condition MP, a much higher polar spread is
predicted than in condition BP. This can be explained by the Gaussian shape of the spatial prior,
which affects sources at higher elevations more heavily than those around the horizon. Inter-
estingly, this spread isn’t visible in condition MA, which means that head rotation significantly
improved estimation of this source direction and outweighed the spatial prior. This is another
indicator of the available Wallach cue in the model simulations. This suggests that either per-
fect knowledge of the head orientation or lower noise on the ITD made head rotation more
informative for the model than in the behavioural experiments.

Quadrant errors

The spatial distribution of QEs was visualised in Fig D.4. Condition BP reveals that QE rates
were more common in the rear hemisphere than in the front: 59.4% and 40.6%, respectively.
Most notable are the source directions directly in front of the listener, which showed nearly no
QEs at all. Condition MP also shows more QEs in the back than in the front: 74.6% and 25.4%.
This suggests that acoustic information accounts for most of the quadrant errors found. How-
ever, as was found in the Kent distributions, the source positions above the listener showed very
different results between conditions BP and MP, this was caused by the spatial prior towards the
horizon.

Previous studies have shown that the quantity and spatial distribution of reversal errors were
highly subject-dependent. For example, one study found an even higher percentage of QEs to be
located in the rear hemisphere than in the present study (Middlebrooks, 1999). In another study,
only two subjects showed a significant majority of reversal errors in the rear, while two showed
a majority in the front, and two showed an equal distribution (Makous and Middlebrooks, 1990).
Similarly, this study contained three subjects with a majority in the back, one with a majority
in the front, and four with no clear preference. For the localisation of low-pass stimuli, most
confusions happened for sources in the front, note that this may be because sources from behind
undergo more filtering than sources from the front (Carlile et al., 1999).

From the present findings and the available literature, it is apparent that reversal errors involve
a complex process that differs between individuals.
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Fig. D.4 Quadrant error rates [%] of behavioural (B) and modelled (M) responses in the passive
(P) and active (A) conditions, averaged over eight subjects. The rows show the same data
viewed towards the front and the back of the head.

Effect of ITD noise
Table D.1 shows that the lateral RMSE was too small compared to the behavioural results. Here,
we tested new values of σitd to investigate whether this parameter is the cause of the discrepancy.
The results were plotted in Fig D.5.

The lateral error increased monotonically with σitd. However, even for σitd = 3◦, the errors
were still lower than the behavioural results. This shows that ITD noise alone cannot account
for the discrepancy in lateral error. As expected, polar errors remained mostly unaffected in the
passive condition, as the static ITD contains little to no information on the polar angle. However,
the reduction in polar error in the active condition (due to the Wallach cue) was only visible
for σitd < 1.2◦. Minimising σitd led to a complete removal of QEs in the active condition,
whereas maximising it made the passive and active conditions near-identical. Together, the
results suggest that a low noise on the ITD cue is essential to utilise the dynamic cue that
resolves reversal errors when moving the head. They also show that the value of σitd = 0.6 that
was derived from a previous experiment is a plausible value (Reijniers et al., 2014).

Effect of the proprioceptive noise
For the initial simulations, the head orientation was assumed to be perfectly known. Here we
investigated the effects of an increased uncertainty on the head orientation. The simulations
were rerun with different values for σH and σu. The results were plotted in Fig. D.6.
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Fig. D.5 Lateral RMSE, polar RMSE and QE rate of the modelled data as a function of σitd (in
units of JND). Blue markers are passive results, orange markers are active results. The markers
and the error bars represent the mean and standard deviation over the eight modelled subjects.
For reference, the dashed lines and the coloured areas show the behavioural means and standard
deviations over the eight subjects, respectively.
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Fig. D.6 Lateral RMSE, polar RMSE and QE rate of the modelled data as a function head
orientation measurement noise σH , with head control noise σu = 0◦ (left column) and σu = 8◦.
Blue markers are passive results, orange markers are active results. The markers and the error
bars represent the mean and standard deviation over the eight modelled subjects. For reference,
the dashed lines and the coloured areas show the behavioural means and standard deviations
over the eight subjects, respectively.
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The results show that a larger value for σH increased the lateral error, similar to σitd. There
appeared to be no interaction effect with σu.

Polar error monotonically increased with σH , though the active condition seemed to suffer
slightly more. In other words, the difference in polar error between condition MP and MA
became smaller as σH increased. This effect was even stronger with a high σu. This suggests
that uncertainty on the head position is the reason why the Wallach cue cannot be used by
human listeners.

For σu = 0◦, the QE rate was affected slightly for higher values of σH , notably less than when
σitd was increased. For σu = 8◦, the effects were larger, and even condition MP seemed to
suffer more QEs.

Together, this leads to the conclusion that the uncertainty on the proprioception measurement
of the head orientation, σH , can account for several (though not all) of the differences found
between the behavioural data and the model output, but that the noise on the execution of the
control signal, σu needs to be low.

Note that σH and σu will likely be higher in the active condition than in the passive condition,
as motor noise is multiplicative (Todorov, 2005).

Effect of the spatial prior
The bias vectors in the behavioural results appeared slightly stronger than for the simulations
with σp = 30. This implies that a stronger spatial prior may be necessary. There are many
different possible spatial prior shapes, e.g. a Laplace distribution (Gerven et al., 2009), or
prioritising the front or high lateral angles (Garcia et al., 2017). In this study, the analysis was
restricted to the horizontal prior. Fig. D.7 shows the elevation gain (Ege et al., 2018) (i.e., the
slope of a linear regression between responses and true directions) and QE rate for different
values of σp. As we are interested in the ‘pull’ towards the horizon, the elevation gain is a more
appropriate indicator than the polar RMSE.

The plot suggests that the correct prior σp lies between 20◦ and 30◦, where the gain and QE
rates are closest to the behavioural results. Thus, σp = 30 was again a fairly good estimate,
though the large standard deviations between subjects in the behavioural data suggest that the
strength of the prior may be subject-dependent. As σp increases, the prior approaches a uniform
distribution and the relative weight of the sensory information will increase. The plot shows
that, as a result, the responses approach an elevation gain of 1. This suggests that the bias
present in human responses is not due to acoustic factors, but indeed due to a prior towards the
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Fig. D.7 Elevation gain (Ege et al., 2018) and QE rate of the modelled data as a function of σp
(in degrees). Blue markers are passive results, orange markers are dynamic results. The markers
and the error bars represent the mean and standard deviation over the eight modelled subjects.
For reference, the dashed lines and the coloured areas show the behavioural means and standard
deviations over the eight subjects, respectively.
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horizon.

However, there remains a problem in the distribution of the errors. First, it was noted that the
prior affects sources at higher elevations more heavily than those around the horizon, resulting
in an unrealistically high spread in responses and high QE rate for sources above the listener (see
Fig. D.3 and Fig. D.4, condition MP). There also remains the lateral bias that is unaccounted
for with the spatial prior tested in this study. These discrepancies could mean that humans have
an additional auditory spatial bias upwards and towards higher lateral angles. Alternatively,
as stated earlier, it is possible that responses are pulled or ‘snap’ to certain directions due to
the sensory representations of space (Garcia et al., 2017; Odegaard et al., 2015). The latter
explanation would be an example of non-ideal observer behaviour.

Effect of the time step
To investigate the effect of the time step size ∆t, the model was rerun with different update
rates. Note that each simulated trial always contained at least two time steps at the start and
at the end of the stimulus duration, to make dynamic cues available. The results are shown in
Fig. D.8.

Generally, it seems that a smaller ∆t makes localisation performance slightly more accurate,
this is the result of more looks being available. This improvement is mostly visible in the
polar RMSE of condition MA, which shows that the benefit of the Wallach cue becomes more
prevalent if more ITD looks are allowed. Unsurprisingly, a similar effect was seen when the
noise on ITD looks was kept low. For the other metrics, the improvement performance is
surprisingly small. Regarding the QE rate, it appears that two ITD looks (one at the start and
one at the end of rotation) were sufficient to prevent most errors, and that any look in between
is somewhat redundant. Finally, there appeared an unexpected dip in the QE rate of condition
MP at ∆t = 50ms. A repetition of the model simulations revealed that this was a statistical
anomaly.

Conclusions

This article introduced a Bayesian ideal observer model that enables a bottom-up investigation
of human performance in the task of active sound localisation. In order to investigate to what
extent humans perform as ideal observers, the model output was compared to behavioral results
obtained in a free-field localisation experiment.

With parameters selected a priori, i.e., without the use of any post-hoc fit to the behavioral
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Fig. D.8 Lateral RMSE, polar RMSE, and QE rates of the modelled data as a function of time
step size ∆t. The symbols show the averages and the error bars represent ±1 SDs over the
(virtual) subjects. For reference, the horizontal dashed lines show the behavioural data.
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data, the model predicted and explained the human performance in a general sense. This is an
encouraging finding, supporting the hypothesis that model parameters can be derived a-priori
based on general behavioural experiments. Furthermore, as the model only processed changes
in ITD, it also confirms the earlier finding that humans do not utilise dynamic spectral cues for
localisation, at least during small head rotations (McLachlan et al., 2023).

In a more detailed spatial analysis, the model predictions deviated from the behavioral data. The
largest differences were found for sources to the rear and above the listener. We investigated in
detail the conditions where the model agreed or deviated from the behavioural data by studying
the effects of several model parameters on the predictions. The ITD noise parameter revealed
that an ITD cue alone does not account for the lateral RMSE and QE rate found in behavioural
data. The uncertainty on the head orientation had a significant effect and was able to partially
explain the behavioural data.

The discrepancies we found between the model predictions and behavioural data are impor-
tant for future investigations. First, there is a high variance in behavioral responses for sources
behind the listener, whereas the model showed little difference between the front and rear hemi-
sphere. This indicates that these errors result from non-acoustic factors, such as the pointing
error. Second, human listeners showed a response bias towards larger lateral angles, which was
not seen in the model predictions. The origins of this discrepancy remain an open question,
with a lateral spatial prior or a stretched sensory representation of space as potential candidates.
Third, the model predictions showed a higher response variance and QE rates for sources placed
above the listener. In the model, this might be an effect of the Gaussian spatial prior towards
the horizon, which might not fully reflect the spatial prior of the human listeners, or even point
to a more complex mechanisms at play.

Our framework can be applied in the future to a variety of phenomena that have been identified
in previous studies on active sound localisation, such as the improvement of elevation perception
with yaw movements for low-pass stimuli (Perrett and Noble, 1997a), elimination of FBCs for
low-pass stimuli (Macpherson, 2013), and the relative weight of dynamic ILD and ITD in the
localisation process (Pöntynen and Salminen, 2019).
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Head rotations follow those of a
truncated Fick gimbal during an
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Abstract - Recent interest in dynamic sound localisation models has created a need to
better understand the head movements made by humans. Previous studies have shown
that static head positions and small oscillations of the head obey Donders’ law: for each
facing direction there is one unique three-dimensional orientation. It is unclear whether
this same constraint applies to audiovisual localisation, where head movement is unre-
stricted and subjects may rotate their heads depending on the available auditory informa-
tion. In an auditory guided visual search task, human subjects were instructed to localise
an audiovisual target within a field of visual distractors in the frontal hemisphere. Dur-
ing this task, head and torso movements were monitored using a motion capture system.
Head rotations were found to follow Donders’ law during search tasks. Individual dif-
ferences were present in the amount of roll that subjects deployed, though there was no
statistically significant improvement in model performance when including these individ-
ual differences in a gimbal model. The roll component of head rotation could therefore
be predicted with a truncated Fick gimbal, which consists of a pitch axis nested within a
yaw axis. This led to a reduction from three to two degrees of freedom when modelling
head movement during localisation tasks.
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E.1 Introduction

Sound localisation performance improves when listeners are able to move their heads during
stimulus presentation. Changes in interaural cues as a result of head movement help resolve
front-back confusions and can, in certain situations, improve elevation estimation (Wallach,
1940; Thurlow and Runge, 1967; Perrett and Noble, 1997b; Kato et al., 2003; Iwaya et al.,
2003; McAnally and Martin, 2014; McLachlan et al., 2023).

Traditionally, experiments and models of human sound localisation have mainly focused on
passive localisation, where the head remains stationary. However, new available technologies
in head tracking and virtual reality have led to a growing interest in understanding how head
movements affect sound localisation performance (Carlile and Leung, 2016). A few models
exist that consider the dynamic position of the head during sound localisation (McLachlan et al.,
2021; Lladó et al., 2024), though this remains a relatively new area of study and introduces a
number of new challenges in auditory modelling. First, it raises the question of how acoustic
and sensorimotor information are combined. Second, the incoming information needs to be
integrated over time. Third, a separate movement model must be defined to simulate head
rotation. In this manuscript we focus on addressing the latter challenge.

Models of head motion have been proposed in the past with various levels of complexity. There
are models that consider rotation (Kunin et al., 2007; Ghosh and Wijayasinghe, 2012), transla-
tion (Medendorp et al., 1998) or acceleration patterns (Zangemeister et al., 1981a). Movement
also seems to depend highly on the individual (Kim et al., 2013a). Furthermore, experiments
that also investigated unrestricted and natural head movement found that movement is task-
dependent (Ceylan et al., 2000; Kunin et al., 2007), so a model for one task may not be applica-
ble to another. In the context of sound localisation, it is possible that humans move their heads
to optimise the acoustic information that they receive, which may lead to its own unique head
movement behaviour Brimijoin et al. (2010); Hendrikse et al. (2022).

The arguments above make it difficult, though important, to find general rules of head motion
that may simplify a movement model. A common example of such simplifications is the as-
sumption that humans generally move their heads according to Donders’ law, i.e., the head does
not make use of all three degrees of freedom when rotating (Donders, 1847; Von Helmholtz,
1867; Listing, 1905). Rather, for any direction of the head, its rotation around its direction is
unique. In other words, the amount of roll (i.e. torsion) is not controlled separately, instead it is
a function of the amount of yaw (i.e. horizontal) and pitch (i.e. vertical) rotation (Medendorp
et al., 1998; Ghosh and Wijayasinghe, 2012). Note that humans are anatomically capable of
executing independent roll rotations, but that Donders’ law implies that, in practice, humans do
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not utilise this additional degree of freedom.

The goal of the present study is to investigate head movement behaviour by collecting head (and
torso) motion data during an auditory-guided visual search task. More specifically, we wish to
answer two subsequent questions: 1) do the head movements in this task follow Donders’ law
and 2) how can we best model this? The results of this study can then be used to integrate a more
realistic movement model into existing sound localisation models that process self-motion.

E.2 Methodology

E.2.1 Coordinate and rotation conventions in three dimen-
sions

All axes and rotations described in this paper follow the right-hand rule and are expressed in the
global coordinate system, with the axes fixed to the world. The positive x-axis points forwards,
with positive roll rotations towards the right shoulder. The positive y-axis points to the left,
with positive pitch rotations downwards. The positive z-axis points upwards, with positive yaw
rotations towards the left. The coordinate system and the directions of rotation are illustrated in
Fig. E.1.

Fig. E.1 Visualisation of three-dimensional axes and corresponding positive rotations.

The orientation of an object in a three-dimensional space with respect to a fixed coordinate
system can be described by a set of three rotations around three principal axes, the Euler angles.

If θ is the rotation angle around a single axis, then rotation over the spatial x axis, i.e., roll, is
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defined as:

Rx(θx) =

1 0 0

0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

 , (E.1)

Rotation over the spatial y axis, i.e., pitch, is defined as:

Ry(θy) =

 cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

 , (E.2)

Rotation over the spatial z axis, i.e., yaw, is defined as:

Rz(θz) =

cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

 , (E.3)

The rotation matrix to obtain the final orientation can be expressed by a successive multipli-
cation of the three single-axis rotation operators. This can be done in any order, but this will
result in different final orientations, so it is also important to define the order of rotations. In
this paper we follow the Fick convention, which defines R as a rotation over the x-axis, then the
y-axis and then the z-axis using world-fixed rotation axes.

R = Rz ∗Ry ∗Rx, (E.4)

We can also express rotation matrix R as a vector r, which can bring the object from the refer-
ence orientation to the orientation of interest by just one rotation around a single axis. This rep-
resentation has been used in several studies investigating head and eye movements (Haslwanter,
1995; Medendorp et al., 1998; Kunin et al., 2007).

Rotation vector r with components (rx, ry, rz)T is defined as (Haslwanter, 1995):

r =
1

1 +R11 +R22 +R33

∗

R32 −R23

R13 −R31

R21 −R12

 , (E.5)

where Rij are the indices of rotation matrix R, where i is the row and j is the column. The
length of r is a function of the angle of rotation α around the vector | r |= tan(α/2) and the
direction of the rotation axis coincides with that of r, again using the right hand rule for the
sense of rotation.
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Fig. E.2 a) Truncated Fick gimbal, b) Truncated Helmholtz gimbal and c) k-gimbal model,
where θ denotes a pitch rotation and ϕ denotes a yaw rotation. Note that the axes were visually
separated for clarity; the models do not undergo any translation. The upper rotation axes are
nested within the bottom axes, e.g., the truncated Fick gimbal is a pitch axis nested within a
yaw axis.

E.2.2 Models for head rotation
According to Donders’ law, the rotation vectors of a head rotation in any direction should fit on
a second-order twisted surface (Tweed and Vilis, 1990):

rx = a1 + a2ry + a3rz + a4r
2
y + a5ryrz + a6r

2
z , (E.6)

where a1 adjusts the surface offset, a2 and a3 adjust the surface orientation, a4 and a6 yield a
parabolic curvature and a5 allows for the surface to twist.

By examining the roll, pitch and yaw components of the rotation vector, it was inferred that
the constraints on the head during natural movement resemble a specific form of Donders’ law,
following the rotations of a truncated Fick gimbal (with no roll axis) (Glenn and Vilis, 1992;
Ceylan et al., 2000; Kunin et al., 2007). Here the yaw axis of rotation is fixed relative to the
trunk and can change the direction of the supported pitch axis (Radau et al., 1994). Thus, the
roll component of the rotation vector (rx) in such a system is not controlled independently, but
depends on the eccentricity of oblique facing directions. The truncated Fick gimbal is illustrated
in Fig. E.2a.

Kunin et al. (2007) further extended the truncated Fick gimbal system by utilising a coefficient,
k, which reflects the ratio of the angles by which the first and second pitch axes rotate: kθ2 =

(1−k)θ1. This system is referred to as the k-gimbal model (see Fig. E.2c). This model provides
a mathematical and biomechanical explanation for the types of roll rotation made as a result of
yaw and pitch rotation, resulting in the following relationship (Kunin et al., 2007):
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rx = rz · tan(2k · tan−1 ry − tan−1 ry) + rx0, (E.7)

where rx0 is the amount of roll offset. If k = 0, then the model represents a truncated Fick
gimbal, if k = 1, then it represents a truncated Helmholtz gimbal (see Fig. E.2).

E.2.3 Apparatus
The subjective evaluation took place in the multichannel anechoic chamber ‘Wilska’ at Aalto
University’s Acoustics Lab (Espoo, Finland). A total of twenty Genelec 8331A coaxial loud-
speakers were arranged in the frontal hemisphere, positioned 2.04 meters from the center (see
Figure E.3). These loudspeakers were placed at four distinct elevations. On the horizontal
plane, seven loudspeakers were evenly spaced with an angular separation of 30° in azimuth.
On the planes with ±30° in elevation, five loudspeakers were evenly spaced with an angular
separation of 45°. On the plane with an elevation of 60°, three loudspeakers were evenly spaced
with an angular separation of 90°. In one of the experimental conditions, sources at azimuth
90◦ and −90◦ were excluded to prevent unnecessary neck strain for the subjects (represented in
Figure E.3 as empty circles). See Section E.2.4 for detailed information about the experimental
conditions.

A 2x2 LED matrix (with a 15 mm center-to-center spacing) was installed directly in front of
each loudspeaker, serving as a visual target for the search task. The target loudspeaker’s LED
matrix always displayed an even number of illuminated red LEDs (either two or four, randomly
determined for each trial). Non-target loudspeakers displayed an odd number of illuminated
LEDs (one or three, randomly determined for each loudspeaker). The LED system was con-
trolled by an Arduino UNO WiFi Rev2, interfaced with Max 8 via serial communication. An
auditory stimulus synchronized with the visual target was emitted from the target loudspeaker
to assist in locating the visual target. This sound stimulus consisted of pink noise with an onset
ramp of 10 ms, as described in Method 3 of ANSI/ASA S3.71(ANSI/ASA, 2019), set at an A-
weighted level of 65 dB SPL measured at the subject’s position. The stimulus continued until
the subject responded. The room lights were dimmed to aid the visual search task.”

The head and torso movements were tracked using the Motive software and six OptiTrack Prime
13W cameras at a sampling rate of 100 Hz. The origin of the world coordinates was calibrated
at floor level beneath the chair in which the subjects were seated. The origin of the head tracker
was calibrated for each individual separately, at the center of the head and slightly above eye
level. Reflective markers were located on a hat and the torso of the subjects to track head and
torso movements respectively, which were grouped as rigid bodies in Motive to analyse these
two body parts separately.
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To control the participants’ field of view in the experiment, pinhole goggles were constructed by
taping off standard protective construction goggles. This left only a small rectangular aperture
through which a single target could be seen at any given time, with a maximum width of 30◦.

E.2.4 Experimental conditions
Three movement conditions were tested, each intended to incentivise different modes of move-
ment. In all conditions subjects were seated in a fixed chair with arm rests, hence the subjects’
hips were fixed. In the first condition, subjects were instructed not to move the torso. We refer
to this as the no torso condition (NT). In the second condition, the subjects also could not move
the torso and, in addition, they wore pinhole goggles that blocked their peripheral vision. It was
checked that the subject could not see more than one loudspeaker at a time with the pinhole
goggles before the experiment started. This forced them to fully rotate their heads towards a
source to see it, as opposed to merely rotating to bring it into their field of view. We refer to this
as the pinhole goggles condition (PG). In this PG condition, sources at azimuth 90◦ and −90◦

were excluded, to prevent unnecessary neck strain for the subjects. In the third condition, the
subjects were free to move however they preferred from a seated position, including head and
torso movements. We refer to this as the free condition (F). No further instructions were given
on how the head or body should be moved.

E.2.5 Subjects
During a recruitment period from May 10th to May 19th, 2023, seventeen caucasian subjects
(three female, fourteen male) were recruited from the staff at Aalto University for the experi-
ment. Subjects provided written informed consent, and reported normal hearing and no recent
neck injuries. The age range of the subjects was between 19 and 34 years. There was no
financial compensation for participating in the experiment.

E.2.6 Experimental design
The localisation task conducted here was inspired by the experimental design used in Bolia
et al. (1999), Simpson et al. (2005), and Lladó et al. (2024), and was adopted by the standard
“Methods for Measuring the Effect of Head-worn Devices on Directional Sound Localization
in the Horizontal Plane” (ANSI/ASA, 2019). The subject held two buttons, which were used to
answer how many LEDs were activated at the target. Left (blue) indicated two and right (red)
indicated four.

At the start of each trial, the subjects oriented their body and head straight forward facing the
LED board at (0◦ azimuth, 0◦ elevation). A new trial was initiated by pressing the two buttons

107



at the same time. The LEDs were activated on all loudspeakers. Simultaneously, an acoustic
stimulus was played from the target direction. The subject then searched the field in order
to localise the target. Once the target was identified, the subject had to press the appropriate
button, according to the correct number of LEDs activated. The sound stimulus was presented
until a response button was pressed. The head tracking for each trial began when the stimulus
was presented and was terminated when the subject pressed the response button.

The order of conditions and source directions was randomised independently for each subject,
and only one movement condition was tested within a single block of trials. Each source direc-
tion was presented a total of 5 times per block.

This experiment was performed under the ethical approval for listening experimentation by the
Research Ethics Committee of Aalto University.

Fig. E.3 a) Example of target and two distractor LED clusters. b) Source direction distribution in
the frontal hemisphere, used during the listening experiments. Empty circles were excluded in
condition PG. c) Photo of experimental setup, including pinhole goggles and head and shoulder
reflectors for tracking.

E.2.7 Post-processing and statistical analyses
The tracker data was rotated and translated per subject by the median starting position of that
subject, so that the resulting median starting orientation and translation of the centre of the head
was at zero along all world-centred axes for each subject.

Trials were omitted if they had unrealistic roll values larger than 50◦, durations that exceeded 5s
or, in the case of NT and PG, had torso rotations that exceeded 5◦. This resulted in 1 + 2 + 166

total omissions, respectively, out of 4165 trials. This means that the majority of omissions were
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due to forbidden torso rotations. For the calculation of gimbal scores and k values, data points
were only considered for rotations larger than 6◦.

As a statistical measure of the goodness-of-fit of the twisted surfaces to the obtained data, the
R2 was reported. The statistical significance between performance of the truncated Fick gimbal
model and alternative model implementations was tested using two-tailed t-tests.

E.3 Results

E.3.1 Maximum rotations
We calculated the medians, upper and lower quartiles and ranges of the minimum and maximum
rotations made over all trials. These results are plotted in Fig. E.4, separated for the world-
centred yaw, pitch and roll axes and for all test conditions.

Unsurprisingly, the largest rotations were made around the yaw axis. The maximum yaw rota-
tion was the same for NT and PG, even though the maximum direction of the stimuli were not
the same (see Fig. E.3). When localising sound, subjects will often rotate their heads toward
the presented sounds, though they do not necessarily fully turn their heads to face the stimu-
lus (Thurlow et al., 1967). The field of view then appeared to be responsible for a discrepancy
of about 30◦ between the orientation of the head and the stimulus orientation.

Pitch rotation was asymmetrical: extension (negative pitch) reached larger angles than flexion
(positive pitch). This is likely caused by the distribution of the stimuli, which omitted the lowest
elevations (see Fig. E.3). The maximum rotations for pitch were larger in condition PG. Again
this is most likely because the restricted field of view forces the subject to (almost) fully rotate
towards each source. In condition NT subjects made almost no use of flexion.

The lowest rotations were seen around the roll axis. However, with maximum rotations up to
20◦, the roll axis is still important to consider for potential acoustic cues, which can already be
informative for rotations smaller than 10◦ (McLachlan et al., 2021).

There was very little difference between conditions NT and F. The maximum ranges were
slightly larger for condition F, as were the lower and upper quartiles. However, the lower and
upper quartiles of torso rotations were found to be smaller than 2◦, indicating that very little use
was made of the extra allowed freedom of movement. Thus, for the remainder of the manuscript
we will focus on the results of conditions NT and PG, where no torso movements were allowed.

Together, these general results show that, without torso movement, the maximum ranges of
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Fig. E.4 Median, upper and lower quartiles and ranges of maximum rotations made over all
trials. Results are separated for the world-centred yaw, pitch and roll axes, for movement con-
ditions NT, PG and F. Note that negative pitch is an upwards rotation.

head rotation are around 60◦ for yaw and pitch rotation, and 20◦ for roll rotation.

Note that the obtained data contained significant variances in starting positions between sub-
jects. This is a result of individual differences in what is considered a comfortable ‘resting’
position for the head. For example, some subjects consistently rested their head at 10◦ or 20◦

below the calibrated zero-pitch orientation. Note that the plots in Fig. E.4 show values after the
median initial orientation over all trials was set to zero.

E.3.2 Rotation trajectories
The azimuth trajectories over time of all trials performed by all subjects were plotted in Fig.
E.5a. The same trajectories were plotted on a sphere in Fig. E.5b, which provides pitch rota-
tion information instead of time information. For both conditions, the target that elicited the
maximum rotation size was selected, this was source direction (90, 60) for condition NT and
(45, 30) for condition PG. The source directions were indicated with a red cross.

The shapes of the rotation trajectories were similar between subjects. In the time domain,
trajectories consistently followed a sigmoid curve, with the maximum velocity halfway through
the rotation. This pattern has also been observed in other studies (Zangemeister et al., 1981b;
Land, 2004). Trajectories in condition PG had more consistent end points than when full vision
was available. This is because the subjects were forced to fully rotate towards the location of
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Fig. E.5 Trajectory plots of the head, for all trials towards the same target direction (NT: top
row, (90, 60); PG: bottom row, (45, 30)). Distance between dots indicates a higher velocity. a)
Yaw trajectories plotted against time. b) Trajectories plotted on a sphere. The red cross indicates
the source direction.

the target in order to see it, this adds a factor of consistency between subjects. In condition NT,
any end point that contains the target within the field of view is acceptable. The start points
were more consistent for the same reason: it was easier to align the head to a straight-forward
direction, because the target at (0, 0) was only visible at this exact orientation.

E.3.3 Twisted surfaces
To test the viability of Donders’ law, we fitted a surface to the rotation vectors of the data of
each subject with a nonlinear least-squares solver in MATLAB lsqcurvefit. The procedure
minimised the residual error ϵ for the fitted twisted surface:

rx = a1 + a2ry + a3rz + a4r
2
y + a5ryrz + a6r

2
z + ϵ, (E.8)

Fig. E.6 shows the trajectories of the rotation vectors for each trial and the fitted twisted surfaces
to those trajectories, for the subjects with the highest value, the median and the lowest value of
a5, respectively. Values for a5 and R2 were reported in the bottom right corner for each subject.
The top row shows the results for condition NT (a5 = −0.50,−0.96,−1.80), the bottom row
shows the same results for condition PG (a5 = −0.41,−0.77,−1.14).

Tab. E.1 presents the means and standard deviations of the fitted twisted surface parameters
for conditions NT and PG, alongside the results from an earlier study on head rotation, where
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Fig. E.6 Fitted second-order surfaces for subjects with the lowest, median and highest absolute
twist score (a5), respectively. For condition NT (top row) and PG (bottom row). The thick lines
are the individual trajectories of the rotation vectors per trial. The respective a5 and R2 values
were reported in the bottom right corner of each plot.

NT PG Reference (Medendorp et al., 1998)
a1 0.000± 0.005 0.000± 0.005 0.001± 0.002
a2 −0.019± 0.052 −0.018± 0.044 −0.004± 0.024
a3 −0.003± 0.075 0.013± 0.051 −0.005± 0.064
a4 −0.105± 0.215 −0.012± 0.056 0.072± 0.071
a5 −1.062± 0.321 −0.794± 0.171 −0.732± 0.268
a6 −0.017± 0.072 −0.004± 0.051 −0.026± 0.064

Table E.1 Mean and standard deviation of fitted values for parameter space a of second-order
twisted surfaces. Standard deviations were computed between subjects.

subjects were instructed to rotate the head from a central position towards twelve targets on a
circle in front of them, arranged like the hours on the face of a clock (Medendorp et al., 1998).
The mean and standard deviation of a5 (NT:−1.062± 0.321, PG:−0.794± 0.171) were similar
to those found in the reference study (−0.732± 0.268).

As a metric for the goodness-of-fit of the twisted surfaces we used the coefficient of determina-
tion,R2. In Fig. E.7 we reportR2 scores of the fitted twisted surfaces for conditions NT and PG.
This was computed first with all parameters included and followed by individually excluding
each of the six parameters. E.g. for R2

1: a1 = 0, for R2
2: a2 = 0.
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Fig. E.7 Mean and standard deviation of R2 of second-order surfaces fitted to each subject.
The yellow bar indicates the R2 value for the twisted surface with all six available parameters.
The blue bars indicate the R2 value for the surface with one parameter excluded. E.g. for R2

1:
a1 = 0, for R2

2: a2 = 0.

E.3.4 Gimbal scores
To quantify the twist in the surface fitted to the rotation trajectories, we can compute the gimbal
score, G, which describes the dependence of the roll component of the rotation vector on the
yaw and pitch components of the same vector as follows (Ceylan et al., 2000; Kunin et al.,
2007):

G =
rx
ryrz

(E.9)

The roll component (rx) of each trial was plotted against the pitch-yaw product (ryrz), for
conditions NT and PG in Fig. E.8. This was done for the same subjects as in Fig. E.6.

The gimbal score was then estimated by using linear regression on the plots of rx versus the
product ryrz, as was done in an earlier study (Kunin et al., 2007). Note that the assumption of a
linear relationship between rx and ryrz implies that only a1 and a5 affect the twisted surface fit.

Linear regressions were computed for extension and flexion separately, as it was found earlier
that positive pitch rotations can lead to different behaviour than negative rotations (Kunin et al.,
2007). The gimbal score defined in Eq. E.9 was reported for both signs of pitch for easier
comparison with previous work.

The mean gimbal scores during extension were close to −1. During flexion, the slopes were
somewhat steeper in condition NT and flatter in condition PG (NT extension: −0.988± 0.435,
NT flexion: −1.217 ± 1.474, PG extension: −0.928 ± 0.358, PG flexion: −0.684 ± 0.254).
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Fig. E.8 Roll component of rotation vector (rx) plotted against the pitch-yaw product (ryrz),
for conditions NT (top row) and PG (bottom row) and for subjects with the lowest, median and
highest absolute twist score (a5), respectively. Linear regressions were computed for extension
and flexion separately. The numbers in the bottom left corner of each plot indicate the gimbal
score G from Eq. E.9.

Note that the standard deviation in NT flexion is very high, the reason for this is discussed in
Section E.4.2.

E.3.5 k-gimbal model
We tested five different implementations of the k-gimbal model (Eq. E.7) for prediction of
the roll component of the rotation vectors (rx). The first implementation assumed zero roll
(k = 0.5). The second assumed a truncated Fick gimbal (k = 0). Third, we fitted a single
k-value to the trials combined over all subjects. This led to k = −0.04 for NT and k = 0.10

for PG. Fourth, a unique k value was fitted for each subject. Finally, a separate k was computed
for extension and flexion, leading to two values of k per subject. The k values were obtained by
minimising rx0 in Eq. E.7 using the nonlinear simplex method (fminsearch in MATLAB).

In Fig. E.9, we plot, per model approach, the standard deviation of the error between the true
and estimated rx in degrees, also referred to as the torsional thickness σ (Medendorp et al.,
1998), defined as:

σ = std(2 ∗ atan(r̂x − rx)), (E.10)

where r̂x is the value of rx predicted by the fitted twisted surface in Eq. E.6.

Statistical significance between the Fick gimbal (k0) and the other implementations of the k-
gimbal model was tested using two-tailed t-tests. Statistical significance was only found for the
zero-roll model (k0.5) for both conditions NT and PG.
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Fig. E.9 Torsional thickness σ (in degrees) of the k-gimbal model, for 5 different approaches
of setting the k value. Left window: NT, right window: PG. k0.5: Zero-roll, k0: Fick gimbal,
kall: single value fitted to all subjects, ki: k value fitted individually for each subject, kfe: two k
values fitted for extension and flexion, separately for each individual. Each boxplot shows the
statistics of all 17 subjects (median, first and third quartiles, minima and maxima, outliers).

E.4 Discussion

E.4.1 Rotations adhere to Donders’ law
The R2 values in Fig. E.7 support the notion that head movements generally adhered to Don-
ders’ law; in condition NT the mean R2 was 0.80, in condition PG it was 0.85. Furthermore,
from the mean values in Tab. E.1 and the R2 values in Fig. E.7, we can conclude that the
majority of the roll data was explained by the twist score, a5. When a1, a2, a4 or a6 was omitted
from the equation, there was almost no effect on R2. The only other factor that appeared to
have a small effect was a3, which suggests that there was a small linear relationship between
roll and yaw, regardless of the pitch position. This may, however, be a result of the resting head
position of some of the subjects. If the zero-pitch orientation of a subject does not properly
align the anatomical yaw axis of rotation with the world z-axis, then any yaw rotation will in-
herently have a roll component, resulting again from an ryrz interaction. The median thickness
scores of 2◦ in Fig. E.9 are in accordance with the scores found in Ceylan et al. (2000). This
suggests that adherence to Donders’ law was not influenced by the additional available auditory
information in this study. A standard deviation of 2◦ is small, but may still be significant, given
that the upper and lower quadrants of roll were very small (see Fig. E.4). For general modelling
purposes, however, Donders’ law appears to be an appropriate assumption.
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E.4.2 Roll is a linear function of pitch and yaw
The high dependence on the twist score, a5, shows that roll was almost strictly a function of the
pitch/yaw product. Looking at Fig. E.8, we see an almost linear relationship between rx and
ryrz. We also see that the fitted linear regressions nearly pass through the origin, indicating that
the relationship can be modelled as a slope, omitting the offset.

The majority of the gimbal scores (i.e., the slopes of the linear regressions) amongst all subject
were found to be negative. This supports the characterisation of head rotations as a Fick gimbal
as opposed to a Helmholtz gimbal (Glenn and Vilis, 1992). There were some exceptions for
flexion in condition NT, though the linear regressions in these instances are not very meaningful
due to the general lack of flexion performed, as could also be seen in Fig. E.4. The sign and
magnitudes of the gimbal scores are in general accord with previous studies, which reported
values between 0 and -2 (Ceylan et al., 2000; Kunin et al., 2007). Gimbal scores did differ
substantially between subjects, which means that there were differences in the amount of roll
that they deployed during head rotations.

Interestingly, only a few subjects showed a large difference in slope of the linear regression
between extension and flexion, given that the magnitude of flexion was large enough to correctly
fit the regression (see Fig. Roll component of rotation (rx) plotted against the pitch-yaw product
(ryrz), for each subject in condition NT. Linear regressions were computed for extension and
flexion separately. The numbers in the bottom left corner of each plot indicate the gimbal score
G from Eq. E.9.). For those subjects, it does seem necessary to differentiate between two
different gimbal models depending on the sign of pitch.

E.4.3 Rotations can be approximated by a truncated Fick
gimbal

Different models were tested to include more individualised data. However, Fig. E.9 presents
the somewhat surprising result that none of the individualisation approaches of the k-gimbal
model significantly improved the model performance. No statistical significance between the
different approaches of obtaining the k value means that, while individual differences in the
twist score do exist, the truncated Fick gimbal (i.e. k = 0) serves as a good approximation for
the roll component in the head rotations of the average subject. Thus, the differences in gimbal
scores between subjects were not large enough to make full individualisation necessary. This
is also confirmed by the k values found when fitting over all subjects, which were close to 0
(k = −0.04 for NT, k = 0.10 for PG). Note that there are a number of subjects where using
an individualised k value does improve modelling performance, but that the majority does not
appear to need this.

116



E.4.4 Pinhole goggles decrease variability in rotation
There were some observable differences between the NT and PG conditions. First of all, Fig.
E.6 and E.7 show that the a5 values were lower in condition PG, whereas the R2 values were
higher. This means that pinhole goggles decreased the amount of roll that subjects deployed,
while they also made the head movements adhere better to Donders’ law. Similarly, it was
found earlier that pinhole goggles constrain the head rotation vectors to a plane (i.e., Listing’s
law) (Ceylan et al., 2000). However, the results still could not be well predicted by a planar
surface (concluded from the very lowR2 score when a5 was omitted in Fig. E.7). In Tab. E.1 we
also see that the standard deviation of all fitted parameters decreased substantially in condition
PG, which means that the pinhole goggles caused the inter-subject differences to decrease. One
explanation could be that most of the head movement variability between subjects is caused
by the extra degrees of freedom from the eyes. Restricting this would then make the subjects
behave more consistently. However, the standard deviations in Medendorp et al. (1998) were
similarly small, while the subjects did not have any restricted vision here. Alternatively, the
lower standard deviation may be a result of more restricted start and end points, as condition
PG forced subjects to fully rotate their heads towards the visual targets (see Fig. E.5). In
condition NT, any end point that contains the target within the field of view is acceptable. This
appears to be a reasonable explanation, as the subjects in Medendorp et al. (1998) were required
to accurately point their head towards each target before moving to the next, which makes the
task performed more similar to condition PG. This is further supported by the twist scores of
Medendorp et al. (1998), which are most similar to those of condition PG. Interestingly, the R2

in condition PG is also lower than in condition NT when a5 is omitted. This means that, with
pinhole goggles, the twist score describes an even larger percentage of the data. Finally, Fig.
E.9 shows that thickness scores were consistently lower in condition PG.

E.4.5 Auditory cues keep head rotation behaviour consis-
tent.

Due to the restricted vision of condition PG, it was expected that the subjects would depend
more on auditory cues to localise the correct target, which in turn might lead to different head
movement strategies. From the data collected in conditions NT and PG, this did not appear
to be the case, as the trajectories (as seen in Fig. E.5) did not differ significantly except for
the lower deviation in start and end points, as explained in the section above. From this we can
conclude that the restricted vision did not fundamentally alter rotation behaviour, likely because
the available auditory cues kept head movement consistent.
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E.4.6 Limitations
As the aim of the present study was head rotation behaviour, we did not extensively investigate
head translation. The absolute maximum translations for the x, y and z-axes were substantial.
Condition NT: 15.4 cm, 9.5 cm and 4.9 cm; condition PG: 19.3 cm, 10.4 cm and 8.3 cm;
condition F: 20.8 cm, 14.6 cm and 5.3 cm. It is difficult to infer how much of this translation
was due to the definition of the origin of the coordinate system, which was defined slightly
above eye level and not on the exact axis of rotation of the head.

A second limitation is that no condition was tested with solely visual information. In the future,
it would be interesting to compare rotation behaviour to the present study when no auditory
information is available.

E.5 Conclusion

In this study, the head movements of seventeen subjects were tracked during an auditory-guided
visual search tasks. By fitting a second-order twisted surface to the rotation vectors over all
trials, it was shown that Donders’ law was generally met, i.e., humans used only two out of
three available rotational degrees of freedom. There were inter-subject differences in the gim-
bal score, i.e., the rotation angle around rx as a function of rotation angles around ry and rz.
Surprisingly, these differences did not lead to a statistically significant improvement when the
k-gimbal model, which was introduced in previous work (Kunin et al., 2007), was tested with
individualised k-values. This leads to the conclusion that the measured head rotations could be
described by the k-gimbal model with k = 0. This is equivalent to a truncated Fick gimbal,
which consists of a pitch axis nested within a yaw axis. Finally, subjects were more alike in
their movements when wearing pinhole goggles. This was likely because the restricted vision
enforced clear start and end points of each rotation, resulting in a new set of more consis-
tent—though potentially less natural—head rotations amongst subjects.

Taken together, subjects generally used similar search strategies following Donders’ law to
identify an audiovisual target. With restricted vision and, therefore, an increased dependency
on auditory cues, the executed rotations did not change fundamentally. From this we can con-
clude that visual conditions had little influence on movement behaviour because of the available
acoustic cues.

Future research might consider the head movements of hearing impaired individuals, as they
have been found to show more unpredictable movement behaviour Brimijoin et al. (2010);
Hendrikse et al. (2022). A second avenue for further investigation involves the neural control
mechanisms responsible for Donders’ law. The fact that head movements follow the same
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motor rules, whether auditory information is available or not, can provide insights into the
neural substrates of the control of head movements Crawford et al. (2003) and of the processing
of head-motion related sensory feedback McLachlan et al. (2021).
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E.6 Supplementary figures

Fig. SE.1 Roll component of rotation (rx) plotted against the pitch-yaw product (ryrz), for each
subject in condition NT. Linear regressions were computed for extension and flexion separately.
The numbers in the bottom left corner of each plot indicate the gimbal score G from Eq. E.9.
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Fig. SE.2 Roll component of rotation (rx) plotted against the pitch-yaw product (ryrz), for each
subject in condition PG. Linear regressions were computed for extension and flexion separately.
The numbers in the bottom left corner of each plot indicate the gimbal score G from Eq. E.9.
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