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Cancer is the second leading cause of death worldwide, and while science has advanced
significantly to improve the treatment outcome and quality of life in cancer patients, there are still
many issues with the current therapies, such as toxicity and the development of resistance to treatment.
The scientific community conducting oncological research is putting significant efforts into finding
new and efficient alternatives in order to reduce the harmful side effects caused by conventional cancer
therapies. One of these is cold atmospheric plasma (CAP), which involves the application of an ionized
gas, rich in ions, electrons, radicals and excited species, able to eliminate cancerous cells and contribute
to healing cancerous lesions [1,2]. Compared to traditional systemic anticancer therapies, CAP can
be administered locally and can modulate and activate multiple signaling pathways in cancer cells,
which contribute to their elimination [3]. Exciting advances made in the past few years in the field
of biomedical plasma have allowed scientists to explore its use in different types of cancer. To date,
some of the key events involved in the response to CAP-derived reactive oxygen species (ROS), such as
cell death, senescence and cell cycle arrest, among others [4–6], have been identified in cancer cells.
However, the response evoked by CAP in different populations of cells (cancerous, stromal, immune
cells) varies greatly and selectivity studies could help to unravel this issue. In addition, it is important
to consider the three-dimensional nature of solid tumors, where the tumor microenvironment plays an
important role in the response to therapy [7].

The scope of CAP for cancer therapy is rapidly expanding to address difficult targets which were
previously untreatable, including those with metastatic potential and resistance to drugs. To progress
towards a widespread clinical application of CAP, an integrated study of the multi-dimensional effect
of CAP in cancer treatment is essential.

This Special Issue on “Plasma in Cancer Treatment” brings together 16 original research
papers [8–23] and two insightful reviews [24,25]. The papers published in the Special Issue
provide valuable information regarding the efficacy of CAP against osteosarcoma, glioblastoma,
cholangiocarcinoma, melanoma, pancreatic, ovarian, breast, cervical and colorectal cancer. The article
collection includes studies on the fundamental mechanisms of action during oxidative stress and
chemotherapy [12], molecular mechanisms of action [24], cell cycle regulation [25], activation of cell
signaling pathways [14], effect on stromal and immune cells [8,17], metastatic potential [23], the tumor
microenvironment [17,25] and selectivity of CAP towards cancer cells [22]. CAP has been used in
combination with chemotherapeutics and radiation therapy to boost their cytotoxic activity [9,10] and
to restore sensitivity to chemotherapeutics [11]. In combination with low pulse electric fields, CAP
improves the permeabilization of cells [19], which could be beneficial for drug delivery. The addition
of gold quantum dots to CAP treatment can further boost the efficacy of the treatment [13]. In addition,
the use of non-thermally operated electrosurgical argon plasma devices for cancer therapy has
been explored [15,16], which presents an opportunity to use existing devices for cancer treatment.
Three reports have used plasma-treated Ringer’s saline and phosphate buffered-saline (PBS) solutions
with anticancer properties, supporting the potential of this alternative treatment modality [18,20,21].
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Two review papers complete this Special Issue. The first summarizes the current state of knowledge
on the molecular mechanisms of action of CAP [24] and the second explores the role of the tumor
microenvironment in the response to CAP treatment and presents useful three-dimensional in vitro
culture models for plasma research [25].

In summary, this Special Issue presents the effect of CAP on a wide range of cancer types,
highlighting the versatility of CAP and its future application in the field. The studies presented here
offer an opportunity to consider the application of CAP in the clinic to improve survival rates and
quality of life of cancer patients in the near future.

Conflicts of Interest: The authors declare that the present article also summarizes articles co-authored by them.
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