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Abstract 
The optical cross sections of plasmonic nanoparticles are intricately linked to the morphology of 

the particle. If this connection can be made accurately enough, it would become possible to 

determine a particle’s shape solely from its measured optical cross sections. For that, 

electromagnetic simulations can be used to bridge the morphology and optical properties 

assuming that they can be performed in an accurate manner. In this paper, we study key factors 

that in�luence the accuracy of electromagnetic simulations. First, we compare several standard 

electromagnetic simulation methods and discuss in detail the effects of the meshing accuracy, 

choice of dielectric function and inclusion of a substrate for the boundary element method. To help 

the boundary element method’s complex parametrization, we develop a work�low including 

reconstruction, meshing and mesh simpli�ication steps to be able to use electron tomography data 

as input for these simulations. In particular, we analyze how the choice of reconstruction algorithm 

and the intricacies of image segmentation in�luence the simulated optical cross sections and 

correlate it to induced shape errors, which can be minimized in the data processing pipeline. In 

our case, optimal results could be obtained by using the Total Variation Minimization (TVM) 

reconstruction method in combination with Otsu thresholding and slight smoothing, which was 

important to create a reliable and watertight surface mesh using the marching cubes algorithm, 

especially for more complex shapes. 

 

Introduction 
Metal nanoparticles (MNPs) can be exploited in a large range of optical applications [1], such as 

optical data storage [2], [3], sensing [4], [5], or photocatalysis [6], [7], [8], [9], [10], [11] owing to 

their highly tuneable localized surface plasmon resonances (LSPRs) ranging from the UV to the IR 

region. Next to the plasmonic and surrounding material, the morphology of the MNP is the key 

ingredient in de�ining the optical response [12]. For that reason, a lot of effort has gone into 

developing new protocols for the colloidal synthesis of MNPs with varying shapes and 
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compositions [13], [14]. In particular, for gold NPs an amazing control over the morphology has 

been achieved and highly anisotropic NPs can now be routinely made [15], [16]. Examples include 

but are not limited to platelets [17], platonic solids [18], stars [19], [20], and even twisted [21] or 

wrinkled NPs [22], [23], [24]. The more complex the MNP shape, the less straightforward it 

becomes to correlate morphological and optical properties as several LSPR modes emerge. In 

addition, the polydispersity of the sample is often increasing for more complex shapes. An 

increased polydispersity leads to broader ensemble spectra, therefore possibly masking 

correlative features [25].   

Consequently, analysis on a level of single particles has become increasingly important in 

understanding the structure-property correlation [9], [26], [27], [28], [29]. For plasmonic MNPs, 

the optical properties of single entities are mostly measured by scattering techniques such as dark-

�ield scattering spectroscopy [30], [31], [32]. For a full picture, such optical data are then ideally 

correlated to morphological information on the same NP [33], [34], [35], [36], [37], [38], [39], [40]. 

Due to the small dimensions of typical plasmonic MNPs, electron microscopy cannot be avoided 

to obtain the necessary morphological information. Because of a simpler sample preparation and 

measurement work�low, scanning electron microscopy (SEM) is often preferred over transmission 

electron microscopy (TEM). In both cases, conventional SEM or TEM imaging provides 2D 

impressions of the 3D NPs. For the emerging increasingly more complex morphologies, however, 

2D information is not suf�icient and electron tomography (ET) has been established as a powerful 

technique to visualize but also quantify structural and morphological properties of MNPs [41], 

[42], [43], [44], [45], [46], [47], [48]. For crystalline materials, high-angle annular dark-�ield 

scanning TEM (HAADF–STEM) imaging is typically applied as the resulting signal satis�ies the 

projection requirement for tomographic reconstruction [49]. For ET, the holder containing the 

TEM grid with the NPs is tilted over the maximal possible range, in practice often limited to around 

±75° because of shadowing by the sample holder [50]. At every tilt angle a 2D projection image is 

acquired and �inally all projection images are combined to retrieve the 3D morphology using a 

reconstruction algorithm.  

Unfortunately, involving ET makes the correlative single particle work�low even more 

complex. For example, thin carbon-based TEM grids are well suited for ET but are ill-suited for 

optical scattering experiments. Using SiO2 TEM grids with a few tens of nanometers in thickness 

can result in good optical data [40], [51], but these grids are fragile in handling, non-conductive 

and can lead to charging artefacts and shadowing at high tilt angles in the TEM thereby limiting 

the available angular range further. A new leverage for addressing this dilemma in correlating 

optical and structural properties of nanoparticles can be gained by employing electromagnetic 

simulations. On the one hand, they can provide the optical response based on the morphological 

input, e.g. obtained by ET. In this manner, next to the far-�ield response, the near-�ield can be 



determined as well, which is often the property of interest for plasmonic applications [4], [5], [6], 

[9], [52], [53]. On the other hand, if performed accurately enough, electromagnetic simulations 

can help us to do the inverse: getting information on the morphology from optical scattering data, 

e.g. via machine learning approaches [54].  A particular strength of such an optics-based approach 

is that it can provide morphological information about nanoparticles exposed to various 

conditions, such as high temperatures and liquid or gaseous environments typical in catalysis 

applications, for example. Such environments are dif�icult to introduce in electron microscopes 

[42], which limits our knowledge of realistic particle morphologies in operando conditions. 

Obtaining such insight from optical data would therefore be invaluable in nanoplasmonics. 

  However, performing accurate electromagnetic simulations based on ET input is 

surprisingly non-straightforward as several factors need to be taken into [55]. First, several 

different electromagnetic simulation methods exist, each with their own advantages and 

disadvantages [35], [56], [57], [58]. Second, for each method different parameters in�luence the 

convergence results. In addition, for plasmonic simulations, the dielectric function of the metal 

and simulation of the accurate surrounding are critical [59], [60], [61], [62], [63]. Third, ET 

reconstructions need to be segmented and possibly surface-meshed to be useable as input for such 

simulations. To do so, a variety of different reconstruction [64], segmentation [65] and meshing 

algorithms exist [66]. So far, no comprehensive study exists that compares all these factors and the 

resulting parameter space quantitatively. 

In this study, we tackle such a quantitative comparison. After weighing several standard 

electromagnetic simulation methods against each other, we discuss the effects of the main 

parameters for the boundary element method (BEM). Finally, we carefully design a work�low to 

be able to use electron tomography data as input for our simulations. We focus the main discussion 

on Au nanorods but compare the work�low results on different shapes as well. We �irst discuss the 

effects of the meshing accuracy, choice of dielectric function, and the inclusion of a substrate. Then, 

we go into detail for our case study of a Au nanorod, in which we highlight the effect of the choice 

of reconstruction algorithm, and the intricacies of image segmentation. Ultimately, we compare 

how morphological changes, induced by different processing pipelines, in�luence the results of the 

BEM simulations. 

 

  



Results and Discussion 
Considerations for electromagnetic simulations 

We started by choosing a suitable electromagnetic simulation method. For ef�icient 

characterization of nanoparticles with complex geometries, we need fast and accurate 

electromagnetic simulations. To discover what method is best for our purpose, we performed 

careful convergence testing for the Discrete Dipole Approximation (DDA), the Finite-Difference 

Time-Domain (FDTD) method, the Discontinuous Galerkin Time-Domain (DGTD) method, and 

BEM. A description of the methods and computational details can be found in section S2.1 of the 

Supporting Information (SI). These classes of methods were chosen because they are the most 

widely used methods for simulating the optical properties of metal nanoparticles, with each of 

them representing a different way of morphology discretization [35], [56], [57], [58]. It should be 

noted that DGTD represents a class of �inite element method solvers, with COMSOL and CST being 

alternative commercial implementations. We applied the four different methods for a spherical Au 

nanoparticle, because the simulated cross sections can be quantitatively compared to the accurate 

analytical Mie solution [67]. However, for a fair comparison it is important to make sure that the 

different simulations are performed with the optimal parameters ensuring a good convergence 

for each method[68]. Convergence is reached when changing a parameter 𝑑𝑑, which is relevant for 

the accuracy of the simulation method, e.g. the discrete element size, does not signi�icantly change 

the result 𝜎𝜎 of the simulation, e.g. the scattering cross section spectrum. The magnitude of change 

𝛥𝛥𝛥𝛥 can be measured by various metrics, for example normalized root-mean-square deviation and 

re�lects the error due to discretization Equation 1. 

∆𝜎𝜎(𝑑𝑑𝑖𝑖) = �∫�𝜎𝜎�𝑑𝑑𝑖𝑖,𝜆𝜆� − 𝜎𝜎�𝑑𝑑𝑖𝑖−1,𝜆𝜆��
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(1) 

where 𝑑𝑑𝑖𝑖 = 𝑑𝑑1, … ,𝑑𝑑𝑛𝑛 is a monotonic sequence of simulation parameter values, 𝜎𝜎�𝑑𝑑𝑖𝑖,𝜆𝜆� is the 

wavelength-dependent simulation result, and 𝑑𝑑𝜆𝜆 is the wavelength step. Typically, the user 

optimizes the simulation by varying the value of 𝑑𝑑𝑖𝑖  until an acceptably small value of 𝛥𝛥𝛥𝛥 

(discretization error) is reached.  The same equation can be used for calculating the error of the 

scattering spectrum compared to a known reference spectrum: 

∆𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) = �∫�𝜎𝜎�𝑑𝑑𝑖𝑖,𝜆𝜆� − 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆)�
2
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∫𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟2 (𝜆𝜆)𝑑𝑑𝜆𝜆
 

(2) 



in which the exact error of the result 𝜎𝜎�𝑑𝑑𝑖𝑖,𝜆𝜆� can be calculated compared to a reference result 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆), e.g. the analytical Mie solution. 

The convergence of a simulation method can be affected by multiple interdependent 

parameters.  For instance, the simulation time and auto-shutoff parameter in FDTD strongly 

depend on each other. In case the simulation time is chosen too short, energy is still present in the 

simulation region when the simulation �inishes, leading to a non-converged result. Controlling the 

end of the simulation with the auto-shutoff parameter results in converged simulations, but an 

inconsistent simulation time.  Therefore, each relevant simulation parameter was optimized 

successively until the desired convergence threshold was reached for each of them. Details of the 

different parameters that were optimized for each method can be found in section S2.1 of the SI. 

Figure 1A compares the resulting scattering spectra of a Au sphere with a diameter of 50 

nm immersed in oil (n=1.51) for the four electromagnetic simulation methods to the analytical 

Mie solution. We limited ourselves to scattering since most experimental single particle setups 

measure scattering and not absorption. In order to quantitatively compare the different simulation 

methods, we used results obtained with a same discretization error of 2%, which was chosen as a 

trade-off between the accuracy and the simulation time. The zoomed inset shows that the cross 

section calculated by DGTD resembled Mie theory most. However, from the legend it becomes clear 

that it was not the fastest method, which instead was BEM. The reported times correspond to the 

simulation time it took to reach a discretization error of <2%, which resulted in a spectrum error 

of <5% compared to Mie theory for all methods (big circles in the green inset in Figure 1B). 

 
Figure 1. Comparison to Mie theory of simulated scattering spectra of a Au sphere with a diameter 

of 50 nm immersed in oil (n=1.51) using the Discontinuous Galerkin Time-Domain (DGTD) 

method, the Boundary Element Method (BEM), the Discrete Dipole Approximation (DDA), and the 

Finite-Difference Time-Domain (FDTD) method in a qualitative (A) and quantitative (B) manner. 

The times in the legend of (A) correspond to the times it took to produce the results in (B) that 

were the �irst in the optimization sweep to reach a discretization error of <2% and a spectrum 

error of <5% (within the green rectangle), except for FDTD which did not reach this error of 



discretization for the swept parameters. These displayed spectra in (A) are indicated with the 

enlarged markers in (B). 

 

Figure 1B displays the results of the convergence tests which were performed by sweeping 

the following discretization parameter for the different methods: the maximum edge length of the 

tetrahedral elements for DGTD, the number of triangles for BEM, the number of dipoles for DDA, 

and the edge length of the cubical elements for FDTD. These parameters were de�ined as the most 

critical for the respective simulation methods (see S2.1 in SI). The discretization error was 

calculated by comparing each re�inement step with the previous step using Equation 1. The errors 

of the obtained cross sections were calculated using Equation 2 with Mie theory as a reference. 

For instance, the rightmost point for DGTD was obtained by calculating the cross sections with 

edge length values of 15 and 10 nm. To calculate the discretization error, the result from 10 nm 

was taken as next step (i) in Equation 1, while the result from 15 nm was taken as initial step (i-

1). To calculate the spectrum error, the result from 10 nm was taken as the result in Equation 2 

and Mie theory was taken as the reference. This resulted in a discretization error of 17.0% and a 

spectrum error of 10.8%. 

As expected, the general trend is that re�inement of the mesh resulted in a lower 

discretization error and lower spectrum error compared to Mie theory. However, only BEM truly 

followed this trend in a straightforward manner. DDA showed an irregular trend in discretization 

error, while both FDTD and DGTD showed an irregular trend in spectrum error. For example, the 

resulting cross section from DGTD seemed to move away from Mie theory for a �iner meshing 

parameter, while the convergence still went down. This makes these methods less predictable, as 

it is unsure if a lower discretization error (and hence a better convergence) also results in a lower 

spectrum  error. 

Compared to the other simulation methods, BEM was also orders of magnitudes faster. The 

enhanced simulation speed stems from the fundamental difference of BEM: Maxwell’s equations 

only need to be solved at the surface of the nanoparticle and not for the whole volume as is the 

case for the other methods[58]. For FDTD, the �ields additionally need to be propagated in a large 

region outside the particle.  The spectrum error for BEM could be further reduced to 2.1% at the 

cost of a higher computation time (Figure 1B). BEM also converged fastest with respect to 

changing the meshing parameter. Although for DGTD the lowest spectrum error in Figure 1A was 

slightly smaller (1.1%), although at a higher discretization error (around 12% as shown in Figure 

1B), the 2700 times longer simulation time and unpredictable convergence behaviour made us 

favour BEM over DGTD. It should be noted that Trügler et al. also reported the faster computation 

speed of BEM compared to other methods but did not report quantitative differences in scattering 

cross sections when comparing different simulation methods [56]. Moreover, in that study the 



normalized scattering spectra were compared, and no convergence testing was mentioned in the 

discussion on computation time. Since we are interested in simulating absolute scattering cross-

section spectra, these small differences between methods become important. For our purposes, 

BEM delivered the best combination in terms of speed and accuracy. Therefore, we use BEM 

throughout the rest of the paper. 

Now that the need for convergence testing is clear, it is key to look at the individual 

simulation parameters of BEM in more detail. In this paper we discuss the three parameters that 

in�luence the resulting cross sections most: 

• Meshing of structure: Depending on the shape of the nanoparticle, the surface plasmon is 

localized around regions of high curvature or small gaps, e.g. at tips in nanorods. It is 

important to �inely mesh these parts to get accurate results. 

• Dielectric function of plasmonic material: Different experimentally determined dielectric 

functions yield signi�icantly different results. We would like to advocate for better 

awareness in its choice. 

• Substrate: The substrate is often excluded in electromagnetic simulations but cannot be 

neglected for accurate comparisons between simulations and experiments as in most 

single particle experiments the optical properties of the nanoparticles are measured on a 

substrate. 

In the remaining part of the section we focus the discussion on the nanorod as the particle 

morphology because it is the most widely used plasmonic anisotropic nanoparticle shape [69]. For 

a nanorod, the electric �ield enhancement is highest at the tips, which needs to be taken into 

account when meshing its surface. In the MNPBEM toolbox that we use for BEM simulations, a 

nanorod is de�ined with the three parameters listed below (Figure 2A). We determined the 

corresponding conversion into a physical size by looking at the resulting sizes of the surface 

triangles for a given parameter [70]: 

• The discretized polar component of a rod is denoted as 𝑛𝑛𝜑𝜑 and the conversion of the 

corresponding discretized size into nm is given by: 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈
𝜋𝜋(𝑑𝑑+1)
𝑛𝑛𝜑𝜑

 where 𝑑𝑑 is the diameter 

of the rod. 

• The discretized azimuthal component of the hemispherical caps is denoted as 𝑛𝑛𝜃𝜃 and the 

conversion of the corresponding discretized size into nm is given by: 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 ≈
𝑑𝑑+1
𝑛𝑛𝜃𝜃

 

• The discretized meshing along the cylinder length is denoted as 𝑛𝑛𝑧𝑧 and the conversion of 

the corresponding size size into nm is given by: 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 ≈
𝑙𝑙−𝑑𝑑+1
𝑛𝑛𝑧𝑧

 where 𝑙𝑙 is the length of the 

rod. 



We hope that these estimated physical sizes of the meshing elements can be useful when 

comparing different simulation methods. The provided analysis illustrates that it is important to 

optimize the number and distribution of triangles in the mesh to obtain accurate electromagnetic 

simulations in a realistically attainable time. For different shapes, the optimal values are expected 

to be different from this nanorod example, and we advise to perform the optimization described 

above to obtain accurate results. 

By changing the number of each component, convergence tests were performed. Figure 2B 

shows relative differences in discretization error (Equation 1) between simulations that were 

performed with different combinations of the three discretization parameters 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑, 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 , and 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 

for a Au nanorod with a diameter of 30.0 nm and a length of 96.5 nm (AR=3.2). The sweep direction 

in this plot goes from high 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 to low 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 values, and by changing 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 and 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 in parallel, the 

effect of all parameters is displayed at once. Here, a lower value and brighter colour indicates that 

the simulation has converged more, which is what we aim for. As was discussed for Figure 1, the 

convergence in BEM can be directly translated into the simulation accuracy and is therefore a good 

metric for the parameter sweep. 

 
Figure 2. The effect of discretization for a Au nanorod with a diameter of 30.0 nm and a length of 

96.5 nm (AR=3.2). (A) Visualization of the surface mesh where the discretization values are 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 ≈

3 nm, 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 ≈ 1 nm, and 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈ 3 nm. (B) Relative differences in discretization error and 

corresponding simulation times as a function of (C) different discretization parameters and (D) 

the total number of faces. 

 

The general message from Figure 2B is that changing 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 in�luenced the discretization error 

most, but without small values for 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 and 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 the discretization error did not reach an 

acceptable level. For instance, when we decreased 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 from 12 to 3 nm, while keeping 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈ 10 



nm and 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 ≈ 5 nm, the discretization error dropped from 27.6% to 6.6%, which is still above 

our above de�ined threshold of 2%. Then, when we changed 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 from 10 to 2 nm, we obtained a 

discretization error of 0.3%, which is well below our above de�ined threshold of 2%. It might be 

surprising that 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 in�luenced the discretization error most although it is connected to the least 

curved part of the particle. We believe that one explanation might be that a large difference 

between 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 and 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 leads to highly non-equilateral meshing triangles, which are known to be 

detrimental for �inite element simulations [71], [72]. 

The simulation time for the meshing with the smallest 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 was already 25 minutes (Figure 

2C), which was signi�icantly longer than for the more simple spherical geometry discussed in 

Figure 1. Figure 2C demonstrates that the variation of meshing parameters had a strongly non-

linear effect on the simulation time. Therefore, for rods and other anisotropic shapes, the balance 

between accuracy and speed needs to be adjusted. By allowing a discretization error of 3.9%, for 

example, the simulation time could be decreased to 2.6 min for 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 ≈ 3 nm, 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈ 5 nm, and 

𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 ≈ 3 nm. The simulation time is directly linked to the total number of faces (Figure 2D), which 

can be estimated according to Equation 3. It should be noted, that this an empirical estimate and 

not derived from mathematical arguments. However, it is a helpful estimate when deciding on the 

meshing accuracy at least in the case of nanorods. From Equation 3 it can be seen, that 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 should 

in�luence the simulation time least and this is indeed observed in Figure 2C.  

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 = 𝑛𝑛𝜑𝜑(𝑛𝑛𝑧𝑧 + 2𝑛𝑛𝜃𝜃) 

(3) 

From Figure 2 we can conclude that the following approach should be followed for a 

nanorod. A low value for 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 is ideally chosen to reach a low base discretization error, like 3 nm 

for this nanorod. Luckily, this can be achieved without paying a high penalty in simulation time. It 

should be kept in mind to avoid large distortions of the triangles by choosing similar values for 

𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 compared to 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑. To obtain an even lower discretization error, �ine meshing with 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 and 

𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 is required, on the order of 1 nm for both for our speci�ic nanorod. However, these parameters 

heavily affect the simulation time as a low 𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 leads to higher number of faces (Figure 2C and 

Equation 3) and a compromise in terms of size should be made for one of them. For high aspect 

ratio rods, the effect of 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 on the simulation time is expected to increase even more since the 

parameter affects the meshing of the whole rod because it gets multiplied with 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧, which in turn 

needs to be more �inely meshed to not distort the triangles. Equation 3 and Figure 2D can help to 

estimate what the expected simulation time is for a speci�ic combination of parameters. To keep 

the comparison as general as possible between different rods the following parameters were used 

throughout the remainder of this section: 

 



• 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈ 3 nm 

• 𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃 ≈ 1 nm 

• 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 ≈ 3 nm 

 

Next to the meshing parameters, the choice of dielectric function of the plasmonic material 

in�luences the simulated scattering cross sections. In Figure 3A we compare BEM simulations with 

common choices of Au dielectric functions for a Au nanorod of the same size as used for Figure 2 

and for the above determined mesh size parameters [73], [74], [75], [76]. The peak position and 

height of the LSPR obviously strongly depended on the chosen dielectric function. For example, for 

the simulations using the dielectric function from the single crystalline, but rough sample from 

Olmon et al. [73] and the polycrystalline, but smooth sample from McPeak et al. [76] the peak 

positions were 1.45 eV (855.1 nm) and 1.52 eV (816.7 nm), respectively, which is a relative 

difference of 4.5% (4.69%). The peak heights were 45946 nm2 and 55940 nm2, respectively, which 

is a relative difference of 17.9%. It is remarkable that these dramatic peak changes arose from 

relatively small differences in the 𝑛𝑛 and 𝑘𝑘 values (Figure 3B), which stem from the difference in 

the preparation protocol of the metal �ilms. Two main parameters play an important role here: the 

crystal grain size and the surface roughness [76], [77]. The larger the grain size and the smaller 

the surface roughness, the better is the plasmonic performance. For the longitudinal plasmon of 

the studied Au NR a better �ilm should therefore result in a higher energy resonance and larger 

cross section. When using the dielectric function for Au of McPeak et al., we obtained the highest 

cross section and highest energy LSPR. This is expected as the authors put in a lot of effort to 

optimize the optical performance of their Au �ilms with large grain sizes and low surface 

roughness. For us it was surprising to see, however, that the single-crystalline �ilm of Olmon et al. 

displayed a signi�icantly red-shifted and lower scattering cross section. Although the grain sizes 

might be expected to be bigger, the surface roughness of their prepared �ilms must have been 

larger than for McPeak et al. as also evidenced from their AFM data. In the end, the choice of 

dielectric function needs to be made on a case-by-case basis depending on the nanostructure 

preparation. Ideally, for our system we should use a dielectric function that is measured on a single 

particle, but, to our knowledge, this has only been done for a small wavelength range [78]. 

Therefore, we settle for the dielectric function measured by McPeak et al. It should be noted that 

other effects, such as surface damping need to be added to the dielectric function for small 

nanoparticles [39], [40], [79], [80]. However, for our 30 nm diameter nanorod surface damping is 

negligible. In addition, for nanoparticle sizes below 5 nm, quantum size effects need to be 

considered as well, which can also be incorporated into the dielectric function [81]. 



 
Figure 3. The effect of the dielectric function for a Au nanorod with a diameter of 30.0 nm and a 

length of 96.5 nm (AR=3.2), discretized with 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 ≈ 3 nm, 𝑑𝑑𝑑𝑑𝑑𝑑1 ≈ 5 nm, and 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈ 3 nm and 

immersed in oil (n=1.51) (A and B), or on top of a substrate (C and D). (A) BEM scattering spectra 

simulations using the single-crystalline (SC), evaporated (EV), and template-stripped (TS) data 

from Olmon et al. [73], the data from Johnson and Christy [74], the data from Palik [75], and the 

data from McPeak et al. [76]with their corresponding 𝑛𝑛 and 𝑘𝑘 values shown in (B). (C) BEM 

scattering spectra simulations using the data from McPeak et al. for the nanorod on different 

substrates, surrounded by immersion oil (n=1.51), using the substrate dielectric constants from 

references [82], [83], [84] for an in�initely thick substrate. (D) The peak position of the LSPR for 

different substrate thicknesses using the system in (C) where the brown dashed line is the peak 

position of the simulation without a substrate. 

 

For almost all single-particle optical experiments, such as in the commonly used dark-�ield 

scattering spectroscopy, a substrate is used on which the sample is deposited, often standard glass 

slides. However, for correlative studies on MNPs a substrate is required that can be used both for 

optical and electron tomography measurements. It therefore needs to be electron transparent and 

typical TEM substrate thicknesses are below 50 nm. In Figure 3C BEM simulations of the same Au 

nanorod including a substrate surrounded by immersion oil are shown for three common 

materials for TEM grids: SiO2, Si3N4 and C [82], [83], [84]. The signi�icant difference in material 

clearly affected the LSPR of the nanorod. For instance, the lossy nature and high refractive index 



of C (Figure S1) damped and red shifted the LSPR signi�icantly. Finally, as expected [61], the 

substrate thickness mattered as well (Figure 3D). The LSPR shift with increasing substrate 

thickness was largest for C due to the largest dielectric constant discrepancy with respect to the 

surrounding oil. Since SiO2 is much better index matched to the surrounding oil, the shift was 

marginal. To exclude thickness effects, due to e.g. locally varying thicknesses, SiO2 TEM grids 

immersed in oil during the optical measurements are therefore ideal. When the optical 

measurements are done in non-index matched environments, the thickness of the underlying 

substrate needs to be clearly considered when performing quantitative electromagnetic 

simulations. 

It should be noted that the choice of substrate, dielectric function and meshing accuracy 

does not only in�luence the far-�ield properties as highlighted here, but also need to be considered 

for near-�ield simulations. It should also be noted that our simulated gold nanorod is a 

spherocylinder and that synthesized crystalline nanorods contain crystal facets. Depending on the 

contact area on the substrate, this in�luences the optical cross sections as well [85], [86]. When 

comparing the simulated spectra to experimentally measured ones, this effect is automatically 

included with our work�low as the input shape is based on the experimentally measured 

morphology from tomography as detailed in the next section. 

 

From electron tomography to mesh 

When correlating optical and structural properties of single plasmonic nanoparticles, the most 

straightforward approach is to use 2D SEM or TEM images to retrieve the structure of the 

nanoparticle. As discussed in the introduction, this approach is not applicable to complex shapes, 

and one needs to resort to electron tomography. But even for seemingly symmetric particles 

extracting a 3D structure from 2D images might lead to incorrect estimation of morphological 

parameters, complicating the structure-property interpretation. An example is shown in Figure 4 

for a Au nanorod imaged by HAADF-STEM (Figure 4A). In order to extract the length and width of 

the Au nanorod, the image needs to be segmented to differentiate the particle from the background 

signal. The corresponding pixel intensity histogram of the image in Figure 4A is displayed in green 

in Figure 4C, revealing two peaks in the intensity distribution. The peak at lower intensities 

corresponds to the background, while the peak at higher intensities corresponds to the 

foreground.  



 
Figure 4. The effect of segmentation of high-angle annular dark-�ield scanning TEM (HAADF–

STEM) projections and a reconstruction thereof. (A) HAADF-STEM image of a Au nanorod on a 

homemade holey-C Cu TEM grid at 0° tilt angle. (B) Different segmentations of the tip for which 

the colors correspond to (C) and (D). (C) Pixel intensity distributions with corresponding Otsu 

thresholds or fractions thereof (0.5: blue, 0.75: orange, 1: green, 1.25: red, 1.5: purple) of 

reconstructed data from the complete 3D data set (pink) and the 2D data shown in (A) (green). 

(D) Simulated BEM scattering spectra of Au nanorods with sizes corresponding to the legend, 

resulting from the different segmentation thresholds in (B) and our 2D �itting algorithm (S2.2.5), 

discretized with 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 ≈ 3 nm, 𝑑𝑑𝑑𝑑𝑑𝑑1 ≈ 5 nm, and 𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑 ≈ 3 nm and immersed in oil (n=1.51) using 

the gold dielectric function measured by McPeak et al. [76]. 

 

One problem for 2D data like the one in Figure 4A is the rather smooth transition between 

the two distributions due to the thickness-dependent HAADF–STEM intensity and the strong 

in�luence of Poisson noise, which makes it dif�icult to segment the particle [87]. Several algorithms 

exist for segmentation, with the most common one being Otsu’s method [88], [89], but none of 

them are designed for the case of a smooth transition between two intensity distributions. 

Therefore, choosing a threshold value in this is not straightforward as demonstrated in Figure 

4B,C. The vertical lines in Figure 4C correspond to threshold values using Otsu’s method (green 

line) or fractions thereof (0.5: blue, 0.75: orange, 1.25: red, 1.5: purple). All these values could 

seem like a reasonable choice for separating the two distributions. However, the effect of this 



choice can be seen directly in Figure 4B, where the colors correspond to the threshold choice. In 

combination with the �inite pixel size, the choice of threshold for the 2D HAADF–STEM image 

resulted in highly changing extracted dimensions of the nanorod. The changing nanorod sizes 

directly in�luenced the simulated LSPR of the MNP tremendously, which is shown in Figure 4D by 

performing BEM simulations with models of �itted sizes using the 2D �itting algorithm described 

in section S2.2.5 of the SI. This illustrates the uncertainty of relying on 2D data when aiming for 

accurate simulations of electromagnetic properties of plasmonic nanoparticles. 

We proceeded by comparing the 2D pixel intensity histograms to the voxel intensity 

histogram of the 3D data set. The latter was obtained by acquiring a set of 2D projection images in 

the tilt range of -77° to +72° (details in section S1.2 of the SI), which were subsequently 

reconstructed using the total variation minimization (TVM) algorithm. The in�luence of the choice 

of reconstruction algorithm and segmentation method will be detailed later. For now, the pink 

histogram in Figure 4D demonstrates another advantage of using ET in addition to providing the 

realistic 3D morphology: The separation of the background and foreground became signi�icantly 

clearer after reconstructing an experimental tilt series of the Au nanorod, reducing the uncertainty 

in the segmentation process. Segmenting and �itting the 3D reconstruction of our experimental 

example resulted in a diameter of 30.0 nm and a length of 96.5 nm (AR=3.2). It should be noted 

that �itting the nanorod shape to the 3D data was done for the sake of comparing the sizes to the 

2D results. However, in the following we use the 3D output of the tomographic reconstruction 

directly. This approach becomes particularly important for simulations of MNPs with complex 

geometries, where it is not possible to guess a 3D shape from 2D images. To make the output of 

the tomographic reconstruction suitable for BEM simulations, the voxelized reconstruction needs 

to be transformed into a triangular surface mesh requiring segmentation of the particle as an 

intermediate step. In the following, we discuss considerations for an optimized work�low to 

achieve this. 

To evaluate the importance of the possible errors that are introduced during the different 

steps along the way, we used a well-de�ined ground truth. For that, we simulated electron 

tomography data for a nanorod using the sizes from the �it to the experimental 3D data from Figure 

4. Since electron microscopy data contains noise and image artefacts, we need to account for this 

when simulating the 2D projection images. The most prominent contributions to this are Gaussian 

blurring caused by defocus and astigmatism, and Poisson noise arising from the discrete nature of 

the recorded signal [87]. Additionally, the background signal from the sample support needs to be 

taken into account for a realistic representation of STEM images. The STEM images were simulated 

by forward projecting a voxelized model of a nanorod with the �itted sizes using the ASTRA toolbox 

2.1.0 for the experimental tilt angles (details in S1.2) [90]. Then, for each 2D projection a Gaussian 

�ilter was applied to model blurring, followed by simulating the background signal from the 



sample support. To stay as close to experimental parameters as possible, we modeled the relative 

background signal level by calculating the mean of the background values for every experimental 

projection image from the Au nanorod from Figure 4. We did that by �irst removing the particle 

from the 2D image through segmentation using a threshold that made sure that the whole particle 

was removed and calculating the mean of the remaining image. Figure 5A shows that the 

background level increased with increasing tilt angle because of carbon contamination deposition 

throughout the experiment, which can be clearly observed when comparing a 2D HAADF–STEM 

image taken before and after the tilt series (see insets). The sharp increase at the �irst and last tilt 

angle can be attributed to detector shadowing. The estimated background level was added to each 

simulated projection image independently, and Poisson noise was applied on a pixel-by-pixel basis 

after manually tuning the scaling of the signal for the particle and the background to match the 

experimental noise levels. To assess the result of noise addition to the simulated data, line pro�iles 

were compared between simulated and experimental data. The insets in Figure 5B show 

representative projections from both experimental and simulated electron tomography data and 

the extracted line pro�iles show a good qualitative match. 

 
Figure 5. Simulating electron tomography data with realistic experimental input. (A) shows the 

mean values of the background of the data from Figure 4 at different tilt angles. The inset shows a 

projection image at 0° before and after tilting with a logarithmic intensity scale to show the 

background more clearly. (B) compares representative line pro�iles of experimental (blue) and 

simulated (orange) 2D projection data. The inset shows the corresponding projection images and 

lines along which the pro�iles were extracted. 

 

Using the tomography data simulated for the ground truth shape, it becomes possible to 

compare different methods for the different steps in our processing pipeline. For a quantitative 

comparison we used the ground truth shape on a voxel grid with the same voxel size as used in 

the experiments as a reference for calculating the shape error 𝐸𝐸𝑆𝑆 induced by the different choices 

in the data processing steps: 



𝐸𝐸𝑆𝑆 =
∑�𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑉𝑉𝑉𝑉𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟�

∑�𝑉𝑉𝑉𝑉𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟�
∙ 100% 

(4) 

The shape error takes into account misclassi�ied voxels and therefore reveals shape 

deviations and possible misalignments of two structures even if the total volume is the same. In 

the case of our simulated data, there is no effect of misalignment but it needs to be kept in mind 

when using experimental data, for which careful object registration needs to be performed �irst 

for an accurate shape error calculation [45]. To calculate the shape errors, the reconstructions 

needed to be segmented. For the comparison here, we used the Minimum method [65], which 

outperformed other methods for the nanorod shape as detailed below. A more in-depth discussion 

of the segmentation method is found provided in section S2.2.3 of the SI with Figures S2 and S3. 

As a �irst step, we compared different pre-processing methods applied to the input 

projection images before performing tomographic reconstruction. It was observed that pre-

processing had negligible in�luence on the �inal result due to the high signal-to-noise ratios for our 

data (details in section S2.2.4 of the SI). Interestingly, smoothing the input projection images 

resulted in the same marginally improved shape error as smoothing the 3D reconstruction as a 

whole in the case of a low noise reconstruction (see Figure S5 in section S2.2.4 of the SI). Therefore, 

in the following discussion we used the unprocessed projection data. Next, three common iterative 

tomographic reconstruction algorithms were compared: expectation-maximization (EM) [91], 

simultaneous iterative reconstruction technique (SIRT) and total variation minimization (TVM) 

[64]. These algorithms utilize different assumptions about the reconstructed object: EM and SIRT 

algorithms produce maximum likelihood reconstructions in case the input data are coming from 

Poisson or normal distributions, respectively. Both of these algorithms minimize the discrepancy 

between the input data and the projection of the reconstructed object, and TVM incorporates an 

additional objective of minimizing intensity variations in the solution, thereby promoting smooth, 

piecewise-constant reconstructions. 

Figure 6 shows the obtained shape errors with reference to the voxelized ground truth for 

a variety of different reconstructions for which the reconstruction method, the number of 

algorithm iterations, the object shape, and the angular sampling range were varied. Figure 6A 

displays the effect of the number of iterations, illustrated using the EM algorithm. Increasing the 

number of iterations from 15 to 25 decreased the shape error but more iterations led to its 

increase. This effect is common to the iterative algorithms that minimize the discrepancy between 

the reconstruction and the noisy input data. At lower iterations the algorithm converges to the 

true solution, but eventually the reconstruction is over�itted to experimental noise, and the error 

compared to the ground truth increases. Thereby, there is an optimal number of iterations 

depending on the noise level in the input data, which in our case was around 25 iterations [91]. 



The effect of the limited angular sampling range was evaluated by comparing the shape errors for 

the reconstructions obtained for different tilt ranges with 25 iterations of EM (Figure 6B). Non-

surprisingly, the shape error increased when the number of tilt angles decreased. The ‘residual’ 

error of 1.18% for a full tilt range of ±90° is a combination of the discrete tilt step and 

segmentation process [50]. For the experimental tilt range of -77° to +72° the shape error 

increased marginally to 1.63%. However, when the tilt range was signi�icantly decreased to ±45° 

the shape error severely increased to 7.26%. 

 
Figure 6. The effect of the number of iterations (A), the angular sampling range (B), and the 

reconstruction algorithm on the shape error (C) when reconstructing our simulated data from 

Figure 5B. (D) Comparison of EM and TVM for three different shapes using the Minimum and Otsu 

segmentation methods. 

 

When comparing different reconstruction algorithms, EM signi�icantly outperformed the 

more commonly used SIRT algorithm (Figure 6C). This is not surprising since it is suitable for 

Poisson distributed data typical in STEM imaging, whereas SIRT is based on normally distributed 

data [64]. EM was even more outperformed by TVM with a remarkably low resulting shape error 

of 0.58% for a tilt range of -77° to +72°. This is expected, since TVM incorporates additional prior 

knowledge about the smoothness of the reconstructed object, which allows for compensating the 

noise and limited angular sampling range artefacts. The same conclusion was drawn for more 



complex reconstructed object shapes, such as a triangle and an octopod (Figure 6D). The triangle 

served as an example of a shape that is more susceptible to the limited angular sampling range 

artefacts, which stems from the alignment of the particle with respect to the tilt axis. Whereas for 

elongated shapes like nanorods, the missing information can be reduced by positioning the 

nanorod perpendicular to the tilt axis as done here, a triangle cannot be rotated in a similar 

optimal manner. An octopod, on the other hand, is an example of a shape with smaller and sharper 

geometrical features. For both of these more challenging shapes, utilizing TVM led to the 

reconstructions with the smallest shape error similar to the nanorod case.  

Figure 6D also demonstrates that the choice of segmentation method becomes crucial 

when the limited angular sample range produces larger artefacts as is the case for the triangle. In 

the case of the nanorod or the octopod, using the Minimum or Otsu segmentation method resulted 

in similar shape errors, although the Minimum method slightly outperformed the Otsu one for 

both the TVM and EM reconstructions. However, for the nanotriangle the segmentation method 

had a signi�icant in�luence. Using the Minimum threshold almost tripled the shape error compared 

to the Otsu method for the TVM and EM reconstructions. The reason behind this is detailed in 

section S2.2.3 in the SI. In short, the Minimum method used here calculates the minimum in the 

smoothed intensity histogram, which is much more sensitive to noise in the reconstruction and 

therefore produces less predictable segmentation results. The Otsu method, on the other hand, 

minimizes the inter-class variance, which is signi�icantly more robust in the case of noisier and 

lower quality data. Hence, the Minimum method can be assumed to work less well for noisier data, 

which includes shapes that suffer from a larger in�luence due to a limited angular range, and 

should be applied to high signal-to-noise data only. It is advisable to look at the actual histograms 

to help with the judgement (see Figure S4). 

The 3D visualizations of the �inal segmented TVM reconstructions of the three simulated 

particle shapes are displayed in Figure 7A-C. The high quality of the reconstruction and 

segmentation as evidenced by the low shape errors is clearly visually reproduced. Figure 7D-I 

demonstrates why TVM led to a smaller shape error, in particular for the triangle and the octopod. 

Representative slices of reconstructions using either EM (Figure 7D-F) or TVM (Figure 7G-I) for 

the three different shapes are shown. Strikingly, the TVM reconstructions had a signi�icantly 

higher subjective quality than the EM reconstructions, as they were less noisy and displayed a less 

signi�icant effect of the limited angular sampling range. This is also re�lected in the voxel intensity 

histograms, which displayed clearer separation of the foreground and background compared to 

EM (Figure S4). Consequently, segmentation (segmented boundaries are displayed in light blue) 

was easier and more robust on the TVM data. As a result, the quantitative shape errors obtained 

for the TVM reconstructions were surprisingly low even for the more challenging shapes. 



 
Figure 7. 3D visualizations of the (A) nanorod reconstructed with TVM and segmented with the 

Minimum threshold, (B) triangle reconstructed with TVM and segmented with Otsu threshold and 

(C) the octopod reconstructed with TVM and segmented with the Minimum threshold. Slices 

through the (D-F) EM and (G-I) TVM reconstructions before segmentation highlight the 

differences in the reconstruction methods. The slices were taken along the blue planes in (A-C). 

The light blue outlines in (D-I) correspond to the segmentations mentioned above and the double-

sloped colormap is used to aid in visualizing both background and foreground noise in these 

segmentations. 

 

To proceed with electromagnetic simulations based on the BEM method, the obtained 

reconstructions need to be converted to surface meshes. One possible approach is to �it a 3D model 

of a particle to the reconstruction data as we did for the experimental data to obtain the length 

and diameter for our ground truth simulations (Figure S6). However, this introduces an additional 

shape error because it is just an approximation of the shape. In fact, for the experimentally 

measured nanorod in Figure 4, the discrepancy between shape �itting and directly meshing of the 

particle resulted in a shape error of almost 5%. It is therefore bene�icial to create the surface mesh 



from voxel data directly. The most popular algorithm for achieving this task is the marching cubes 

method [92], [93]. In this algorithm, segmented 3D data on a voxel grid are converted into a mesh 

by placing triangles at the boundary of the object with their orientations determined from the 

local arrangement of voxels in the segmentation. Surface meshing of the reconstructions did not 

result in signi�icantly larger shape errors compared to Figure 6, see section S2.2.7 and Figure S8 

for details. We observed small but noticeable differences in obtained shape error for different 

implementations of the marching cubes algorithm (see section S2.2.7 for a full discussion). It 

should be noted that we had to slightly smooth the reconstructions with Gaussian of pixel size 1 

to be able to create surface meshes for all reconstructions presented in Figure 6. Without 

smoothing, some of the created meshes contained otherwise holes, which could not always be 

�ixed. Whereas we did not see an effect of smoothing of the reconstructed 3D data set for the less 

noisy reconstructions (Figure S5), smoothing led to a signi�icantly decreased shape error for the 

reconstructions performed by SIRT and 100 iterations of EM, which were noisier compared to the 

rest. In that case of a more limited angular tilt range of ±50° the actual missing information could 

non-surprisingly not be retrieved through smoothing (Figure S9). 

The marching cubes algorithm usually produces a mesh with the same resolution as the 

input voxel data, which leads to a number of triangles on the order of 106 in our case. In fact, the 

3D visualizations in Figure 7A-C are these surface meshes. Such a large mesh size makes it 

computationally intractable to perform electromagnetic simulations [40]. For this reason, we used 

a mesh simpli�ication algorithm that reduced the number of triangles to a user speci�ied value 

[94]. After comparing several algorithms in terms of the shape error introduced by mesh 

simpli�ication (see Figure S8 in the SI), we chose to use the so-called fast simpli�ication algorithm, 

a quadric error metric-based algorithm, which iteratively removes mesh edges that contribute the 

least to the �inal simpli�ication error. For this fast simpli�ication algorithm, an aggression 

parameter needs to be chosen, which determines how aggressively faces are removed from the 

mesh. We found that 7 was a suitable aggression parameter (Figure S7).  

The �inal test is to identify how the different processing steps in�luence the simulated 

scattering cross sections, which is displayed in Figure 8.  Figure 8A displays the scattering cross 

sections and Figure 8B plots the corresponding spectrum errors (Equation 2) as a function of the 

shape errors with respect to the voxelized ground truth for the nanorod (same as reported in 

Figure 6). The ground truth for the spectrum error was based on a spherocylinder mesh with the 

dimensions of 30 nm x 96.5 nm and optimal discretization (see Figure 2), corresponding to 4960 

triangles. For a direct comparison, all other meshes were simpli�ied to the same number of 

triangles. Note that because of mesh simpli�ication, even the ground truth model for spectrum 

error has a shape error of about 1%. 



 
Figure 8. The effect of the shape error on the spectrum error. (A) Simulated BEM scattering 

spectra of meshes created by reconstructing, segmenting, smoothing, meshing, and simplifying 

simulated HAADF-STEM data of the rod. (B) Their corresponding shape and spectrum errors. (C) 

The shape and spectrum errors for the triangle meshes and (D) for the octopod meshes. It should 

be noted that all results from Figure 6 are included, which means that there are two different 

thresholded results for TVM (dashed line and triangle markers) and EM (dotted line and square 

markers), i.e. using the Minimum (blue) and Otsu (orange) methods. The numbered labels 

correspond to results that were reconstructed using a different number of EM iterations. 'Half' 

and 'Full' correspond to the used angular sampling range for the reconstruction. The labels '50' 

and '100' also correspond to the number of iterations for the EM reconstruction using the 

experimental angular range, which was the same as for 25 iterations, labelled here 

'25/EM/Experimental'. 

 

We �irst compared the simpli�ied surface meshes based on the segmented reconstructions 

obtained with different tilt ranges, reconstruction algorithms and segmentation methods from 

Figure 6 for the nanorod shape. Both spectrum and shape errors for the majority of cases were 

very low, below 1% and 2%, respectively. This is because a nanorod is a simple, symmetric shape 



and different investigated data processing steps, such as reconstruction smoothing and mesh 

simpli�ication, are effective in removing artifacts originating from noise and suboptimal 

reconstruction parameters. In turn, the remaining small shape deviations do not signi�icantly 

in�luence the spectral response, and there is no clear correlation between the shape and spectral 

error in this regime. In contrast to the data processing parameters, limited input data, as in the 

case of strongly restricted angular range reconstruction (pentagon symbol in Figure 8B), led to 

signi�icant shape and spectrum errors. 

The fact that the spectrum errors for the different reconstruction and data processing 

parameters were mainly below 1% with our work�low demonstrates that our meshing pipeline is 

rather robust and can create low spectrum errors even in the case of sub-optimal reconstruction 

choices. However, from Figure 6D we know that the nanorod is actually the most forgiving shape 

in terms of reconstruction and segmentation work�low. The situation is indeed different for the 

more challenging shapes of the triangle and octopod shown in Figure 8C and D (with their 

corresponding scattering spectra in Figure S10A,B). In both cases we meshed the voxelized ground 

truth from Figure 7B,C to use as the reference for the spectrum error. Same as for the nanorod 

shape, mesh simpli�ication led to a small shape error of below 1%. For the ground truth mesh two 

general observations can be made for these more complex shapes. First, the higher shape errors 

compared to the nanorod shape led to signi�icantly higher spectrum errors. Second, even with 

comparable shape errors, the spectrum errors were signi�icantly higher for shapes with higher 

complexity. Whereas a 5% shape error for the nanotriangle still resulted in a spectrum error 

around 2%, for the octopod the spectrum error increased to 15% for a similar shape error. The 

reason is that more important morphological features are affected by the missing shape 

information. For triangles, the reconstructed shape inaccuracy mainly resulted in thickness 

variations (Figure 7E). For octopods, a higher shape error was connected to blunting of the tips, 

which blue-shifted and decreased the scattering cross section (Figure S10B). Thus, the more 

complex the shape, the better the reconstruction needs to be for a successful electromagnetic 

simulation. In our comparison, TVM performed signi�icantly better than other algorithms because 

of incorporating additional prior knowledge about the reconstructed object. A promising future 

direction could be employing reconstruction methods based on mesh representation [95], which 

would allow for minimizing shape errors stemming from mesh simpli�ication. 



 
Figure 9. The overall proposed work�low in which HAADF-STEM tomography is performed on a 

nanorod. The resulting projections are aligned and reconstructed with TVM. These voxelized data 

are segmented with the Otsu method and smoothed before meshing with marching cubes. The 

resulting mesh is simpli�ied using the fast simpli�ication algorithm and the result is used as input 

for a simulation with BEM. 

 

The overall proposed work�low and main �indings are summarized in Figure 9. For optimal 

results, and in particular for complex shapes, we recommend to use TVM as a reconstruction 

algorithm together with Otsu segmentation, which proved to be more generally robust compared 

to other segmentation methods. To transform the segmented reconstruction into a surface mesh, 

the marching cubes algorithm worked well for all shapes analyzed here. We recommend to smooth 

the segmented reconstruction with 1 px before meshing to create a watertight mesh. We further 

recommend to use the fast simpli�ication algorithm with an aggression parameter of 7 to reduce 

the number of surface elements. This is needed to ensure that the electromagnetic simulations can 

be performed in a feasible time. For the simulations itself, we found that BEM performed the best 

for our purpose in terms of accuracy and speed. Finally, special attention should be given to the 

dielectric function and accurate description of the local dielectric surrounding. 

 

Conclusion 
In conclusion, performing electromagnetic simulations of plasmonic nanoparticles is an intricate 

interplay between different factors that play a role. In this work, we quanti�ied possible error 

sources for a simulation work�low taking gold nanoparticles as an example system. First, we 



identi�ied that BEM was a reliable simulation method with a clear convergence behavior and 

orders of magnitude faster simulation times compared to other conventional methods. Second, we 

demonstrated that even supposedly less important meshing parameters can be critical in the 

accuracy of the simulations and that the meshing accuracy needs to be tuned more thoroughly as 

is normally done. In addition, the choice of metal dielectric function ideally re�lects the 

experimental system as it has a signi�icant in�luence on the simulated optical cross sections and 

for accurate results, the substrate needs to be included as well. Third, BEM is known for its rather 

complex parametrization as it requires a triangular surface mesh as input, which is often seen as 

a hindrance for using it for complex morphologies. We demonstrated that using morphologies 

obtained from electron tomography can circumvent that problem and we developed an optimal 

work�low to turn a voxel-based reconstruction into a surface mesh by quantifying the introduced 

shape errors for different steps. Although for volume-based simulation methods the voxelized 

tomography output can be directly used as an input for the simulations, the less predictable 

convergence behaviour might not be favourable. In the end, turning the reconstruction into a 

surface mesh to be able to use BEM can be completely automated when following our steps. In 

terms of reconstruction algorithm, for all nanoparticle shapes, TVM signi�icantly outperformed 

EM and SIRT. The optimal segmentation method depended on the nanoparticle shape. In general, 

the Otsu method was more robust and is likely the best method for single nanoparticle shapes like 

the ones studied here. However, for high quality and low noise data, the Minimum method 

performed slightly better although it is more dif�icult to evaluate its performance without knowing 

the ground truth. We demonstrated that these different processing steps can alter the �inal input 

morphology, which can in turn result in errors when simulating the optical response. Although 

slight smoothing of the reconstruction and the necessary surface mesh simpli�ication could 

additionally lower the shape error of the object, we observed that the best approach is to enforce 

object smoothness during the reconstruction process rather than before. We also observed that 

the same shape error did not translate into a similar spectrum error for the different nanoparticle 

shapes, in particular when high curvature features are affected by the shape inaccuracies. The 

discussed topics in our work can help to achieve more accurate simulations and therefore bridge 

the gap between experimental optical cross sections and simulated ones by minimizing arti�icial 

discrepancies stemming from sub-optimal morphology retrieval, and thereby possibly allowing 

for a more accurate retrieval of the nanoparticle morphology from optical data alone. Similar 

considerations are valid for correlation of electron-based spectroscopies and electron tomography 

data and our work�low can be applied in that case as well. 
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