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Abstract

Self-motion is an essential but often overlooked component of sound localisation. As the

directional information of a source is implicitly contained in head-centred acoustic cues, that

acoustic input needs to be continuously combined with sensorimotor information about the

head orientation in order to decode to a world-centred frame of reference. When utilised,

head movements significantly reduce ambiguities in the directional information provided by

the incoming sound. In this work, we model human active sound localisation (considering

small head rotations) as an ideal observer. In the evaluation, we compared human perfor-

mance obtained in a free-field active localisation experiment with the predictions of a Bayes-

ian model. Model noise parameters were set a-priori based on behavioural results from

other studies, i.e., without any post-hoc parameter fitting to behavioural results. The model

predictions showed a general agreement with actual human performance. However, a spa-

tial analysis revealed that the ideal observer was not able to predict localisation behaviour

for each source direction. A more detailed investigation into the effects of various model

parameters indicated that uncertainty on head orientation significantly contributed to the

observed differences. Yet, the biases and spatial distribution of the human responses

remained partially unexplained by the presented ideal observer model, suggesting that

human sound localisation is sub-optimal.

Author summary

By moving our heads, we can obtain additional information about the direction of a

sound. This requires the integration of acoustic and sensorimotor information. To under-

stand this process better, we formulated an ideal observer model for active sound localisa-

tion, which provided the Bayesian optimal response, given the available information. We

then compared the model’s predictions to the results from a behavioural localisation

experiment with sources presented from loudspeakers at a wide distribution of directions.

While the model generally matched human performance, it could not accurately predict

the bias and spread of localisation estimates for stimuli from certain directions, most
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notably from above and behind the listener. We found that uncertainty about head posi-

tion played a significant role in this discrepancy. Still, the distributions of human

responses were not fully explained by our model, suggesting that humans may utilise the

information available to them sub-optimally.

Introduction

The acoustic cues acquired through head rotation are of crucial importance to spatial hearing.

Not only do they improve sound externalisation [1], they provide dynamic acoustic cues

which contribute to sound localisation. First and foremost, they reduce ambiguities between

the front and back [2, 3]. Second, under certain conditions, they can improve the elevation

estimation of a source through a relation between the rate of change in binaural cues and the

amount of performed head rotation, a phenomenon termed the ‘Wallach cue’ [2, 4]. Dynamic

acoustic cues become especially important when spectral cues are difficult to process, like in

reverberant [5] or virtual [6] environments, or when high-frequency cues are unavailable [7].

The movements that benefit sound localisation are not always voluntary. On the contrary,

for both sensorimotor [8] and behavioural [9, 10] reasons, the human head is rarely completely

still. Even when the only task given to subjects is to remain still, they continue to move by a

small but measurable amount [11]. Despite this constant motion, we perceive the auditory

world to be relatively stable. This suggests that there exists a mechanism that utilises positional

information about the head to compensate for self-motion and converts the head-centred

auditory cues into a stable, world-centred frame of reference [12, 13]. This notion is further

supported by the fact that moving sound sources do not provide the same benefits to localisa-

tion as the head movements that would theoretically cause similar acoustic cues [14].

If we are to include these unavoidable dynamic effects in future studies of sound localisa-

tion, it is apparent that there is a need for a tool to better investigate or predict the effects of

head movements in a reproducible manner. To this end, we previously proposed an ideal

observer model for active sound localisation based on Bayesian inference, which can process

dynamic cues obtained through self-motion. This model integrates acoustic and sensorimotor

information over time to simulate sound localisation through self-motion [15]. This model

serves as a performance ‘ceiling’, given the available acoustic cues. It also provides a bottom-up

approach to sound localisation, i.e., it lets one change the cues that are extracted from incom-

ing sound and the way that they are utilised (e.g. by adjusting the spatial prior or increasing

sensory noise), after which the effects on localisation performance can be tested.

In this paper, we investigated to what extent humans behave like an ideal observer during

active sound localisation. We did this by comparing the output of a Bayesian model for active

sound localisation to behavioural data over the full 2D sphere. First, we described the active

sound localisation model. This model continually collects auditory snapshots or ‘looks’, akin

to the multiple looks model [16]. Through recursive Bayesian estimation, these looks were

accumulated over time, reducing sensory ambiguity. The use of snapshots means that dynamic

cues were formed implicitly, i.e., the additional information obtained from head motion was

obtained through a series of static looks. Note that this model controls head movement irre-

spective of the incoming sound and, hence, does not encompass ‘closed-loop’ processes such

as triangulation or source tracking. Next, we described the localisation experiment and com-

pared the results obtained here to the model data. Finally, we adjusted a subset of the parame-

ters to investigate their effect on localisation performance. The present experiments focus on

small head rotations (10˚) along the yaw axis. Small head movements have been shown to
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comprise the majority of natural head movements [17], and can be considered, if necessary, as

a first step in a more complex movement framework. All experimental data, including the

localisation model, were made publicly available in the Auditory Modeling Toolbox (AMT)

[18].

Methods

Ethics statement

All subjects that participated in this study were adult volunteers. They were informed on the

procedure and were free to withdraw at any time. They gave written informed consent before

the experiment. The study applied the standard methodology of the Acoustics Research Insti-

tute (ARI) which has been approved by the Ethics Representatives of the ARI.

Template definition

The proposed model utilises a ‘template-matching’ procedure which requires a set of acoustic

templates TA that the observed information is compared to [19–21]. Each template in TA con-

tains the expected acoustic information from a specific direction. We assumed that TA is the

acoustic ‘knowledge’ that the brain has learned and stored over a lifetime of experience, and is

thus signal-independent.

To compute TA, a set of acoustic features was extracted from the subject’s head-related

transfer functions (HRTFs) and the signals received at each ear. This process is identical to the

feature extraction described in earlier work [21].

The ITD template Titd was computed as the difference between times of arrival (TOAs) of

the head-related impulse responses (HRIRs) at each ear. The TOA was defined as the time it

takes for the HRIR to reach a value 10 dB below its maxima. Each HRIR was low-pass filtered

at a cutoff frequency of 3000 Hz before deriving the TOA. Then, the ITDs (in time units) were

transformed into a scale of just-noticeable difference (JND) units, such that the error on the

ITD was modeled as an additive instead of multiplicative factor (for further explanation, see

[21]).

Next, we consider the directional filters for the left TL and right TR ear separately. The

HRIRs were passed through a Gammatone filterbank with 32 channels in equivalent rectangu-

lar bandwidths (ERBs), with centre frequencies ranging between 300 Hz and 15 kHz, as in

[21]. These processed signals were half-wave rectified, low-pass filtered using five sequential

first-order infinite impulse response (IIR) filters with a cut-off frequency of 2000 Hz, and then

transformed to a logarithmic domain (in dB). This stage simulates a simplified processing of

the inner hair cell [22]. Then, for each frequency channel, the root mean square of the signal

was computed. Thus, TL and TR denote vectors with monaural spectral information in dB

along the ERB channels.

Ultimately, the ITD and the monaural spectral vectors for both ears are combined into TA

which is a matrix containing the combined vectors per template source direction:

TA ¼ ½Titd;TL;TR� ð1Þ

In this article, TA consists of 2042 directions that are uniformly distributed over the sphere.

These directions were obtained through spherical-harmonics interpolation of the measured

HRTFs, involving Tikhonov regularisation to account for measured directions not covering

the full sphere [23].
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Generative model

We assume that the listener wants to determine the source direction based on all prior infor-

mation about the environment and all sensory information collected during the head move-

ment. This prior and sensory information is combined into a posterior probability density

function (PDF), from which finally a point estimate is retrieved.

To explain this process step-by-step, we first introduce the function of the spatial prior p
(ψ). Then we discuss how the likelihoods of the acoustic information LA and sensorimotor

information LH are computed. Finally we combine these factors into the posterior PDF and

obtain an estimate of the sound source direction from this distribution.

Spatial prior. In the Bayesian framework the probability of an occurring event may be

affected by prior knowledge about the event. The spatial prior p(ψ) quantifies the listener’s a-

priori assumptions about the source location before taking any sensory information into

account. Polar estimations show a general bias towards the audio-visual horizon [24, 25]. This

can be modelled with a Gaussian spatial prior around the horizontal plane with a limited SD of

about 12˚. However, the best fitting SD of the prior seems to depend on the decision rule used.

The spatial prior is only one example of possible prior information available to a listener.

Priors can be related to any variable, such as the number of sources [26], the movement prop-

erties of the sound source [27] or its spectral content [28]. In fact, the proposed model relies

on the assumption that the source spectrum is unknown, but is derived from an ecologically

valid prior.

Acoustic sensor model. The acoustic sensor model compares the stored template infor-

mation TA to a vector of acoustic features present in the observed sound signal, yA, which con-

sists of the noiseless ‘true’ state of the acoustic information, XA, corrupted with noise due to

uncertainties within the auditory system or caused by the environment:

yA ¼ ½yitd; yL; yR� ð2Þ

with

yitd ¼ Xitd þ ditd

yL ¼ XL � Ŝ þ dL þ dS
yR ¼ XR � Ŝ þ dR þ dS

where δitd is the error on the ITD measurement with standard deviation σitd, δL and δR are the

errors on the left and right monaural spectra measurements with covariance matrices

ΣL ¼ ΣR ¼ s
2
I � I, respectively. Thus, σI represents the noise on the spectral measurements.

Finally, Ŝ is the mean expected source spectrum and δS is the error due to imperfect knowledge

of the sound source with covariance matrix SS (assuming a central process, this is the same at

both ears). So, Ŝ and SS define the observer’s prior on the source spectrum:

PðSÞ ¼ N ðŜ;SSÞ ð3Þ

i.e., the observer assumes that the source has spectrum Ŝ with an uncertainty which is con-

tained by the source covariance matrix SS.
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With that, we define the full covariance matrix of the acoustic cues as:

ΣA ¼

s2
itd 0 0

0 ΣL þ ΣS ΣS

0 ΣS ΣR þ ΣS

2

6
6
6
4

3

7
7
7
5

ð4Þ

All error terms are assumed to be zero-mean Gaussian noise. Note that we assume the spec-

trum to be time-invariant and the source in the far field. We also assume here that each fre-

quency channel has the same sensory noise of σI. Several studies have shown that the JND

shows little dependence of signal frequency for sources louder than 50 dBA SPL [29, 30].

We then consider the acoustic sensor model:

LAðtiÞ ¼ pðyAðtiÞ j yHðtiÞ;cÞ ð5Þ

where yA(ti) and θH(ti) are the observed acoustic information and the true head orientation,

respectively, at time-step ti, and ψ is the true sound source direction, which here is assumed to

be independent of time.

The expression in Eq 5 is calculated by computing the Mahalanobis distance between the

measured acoustic cues yA(ti) and the set of acoustic cue templates TA and covariance matrix

SA. This is done at each sampled sound source direction, given the current head orientation

θH(ti).
Motor sensor model. The motor sensor model is defined as:

LHðtiÞ ¼ pðyHðtiÞ j yHðt0 : tiÞ; uðt0 : tiÞÞ ð6Þ

where θH(ti) and yH(ti) are the true and observed head orientations at each time step ti, respec-

tively, and u is the motor command signal, which is represented by the speed ω(ti) of rotating

the head around a given axis. These variables are defined as:

yHðtiÞ ¼ yHðtiÞ þ dH;

yHðtiþ1Þ ¼ yHðtiÞ þ uðtiÞDt þ du;
ð7Þ

The additive noise on both the movement equation and the sensor equation is again

assumed to be zero-mean white Gaussian noise du � N ð0; suÞ and dH � N ð0; sHÞ. Thus, σH
describes the noise on the head orientation observation at each time step and σu describes the

noise on the motor command that steers the head.

Assuming head orientation measurements to be independent of acoustic measurements,

we show in [15] that Eq 6 can be reformulated. The dependency on all sensor readings and all

head rotations executed so far can be expressed recursively as

LHðtiÞ ¼ pðyHðtiÞ j yHðt0 : tiÞ; uðt0 : tiÞÞ

¼ pðyHðtiÞ j ŷHðtiÞÞ
ð8Þ

with ŷHðtiÞ � N ðmyH ðtiÞ; syH ðtiÞÞ the estimated head orientation updated at each step through

a Kalman filter with:

myH ðtiþ1Þ ¼ ð1 � KÞ � ðmyH ðtiÞ þ uðtiÞDtÞ þ K � yHðtiþ1Þ;

s2
yH
ðtiþ1Þ ¼ ð1 � KÞ � ðs2

yH
ðtiÞ þ s2

uÞ
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and K the Kalman gain:

K ¼
s2
yH
ðtiÞ þ s2

u

s2
yH
ðtiÞ þ s2

u þ s
2
H

; ð9Þ

The expression in Eq 8 is calculated by computing the Mahalanobis distance between given

head orientation θH(ti) and ŷHðtiÞ.
At the initial time step t0 we define: myH ðt0Þ ¼ yHðt0Þ and s2

yH
ðt0Þ ¼ s2

H .

Posterior computation. By marginalisation over all possible head orientations and using

Bayes’ theorem, we can combine the spatial prior and sensor model output to obtain the joint

posterior PDF:

pti ¼ C � pti� 1
�

Z

yH

ðLH � LAÞdyH; ð10Þ

Turning to Bayesian terminology, pti is the posterior PDF, pti� 1
is the prior PDF and the

joint sensor model computes the likelihood. C is a normalisation constant. Note that the prior

at time step ti equals the posterior from time step ti−1. At the initiation of the cumulative pro-

cess, pti� 1
¼ pðcÞ, which is the spatial prior. The detailed derivation of this equation is

explained in [15].

Fig 1 illustrates how the posterior updates over time as more information arrives. Note that

in the numerical implementation of the model, the initial look contains all acoustic informa-

tion, and the following looks only consider changes in the ITD cue to update the posterior.

The reasoning for this is explained in the Methods.

Localisation decision rule. Eq 10 returns a probability distribution over the sphere, i.e., a

probability from a large but discrete set of source directions. The last step in the process is to

obtain a point estimate from this posterior PDF. To do so, a decision rule must be defined.

The present model uses the posterior matching (PM) strategy, where a weighted random sam-

ple is taken from the posterior PDF. However, it is easy to implement other strategies, such as

the maximum a posteriori (MAP) strategy, i.e., selecting the location at the maximum of the

posterior. It was found that localisation performance lies somewhere between the MAP and

PM strategies [24].

Model parameters

General. The stimulus was a broadband time-invariant Gaussian white noise burst. The

duration was the same as in the behavioural experiment, for both movement conditions. The

simulated head movement was copied directly from the experimental head tracker data. In

other words, for each simulated trial, the model executed the same head rotation as the subject

did during the experiment.

The template TA was listener-specific, i.e., derived from the individual’s measured HRTFs.

Earlier work suggests that the auditory system can detect changes (ITD [31], ILD [31, 32],

spectrum [28, 33]) on a short time scale of about 5ms. However, the full integration window of

acoustic information for sound localisation appears to be more in the range of 100-200ms [34,

35]. Furthermore, in localisation studies along the horizontal plane, the azimuth estimation

reached best performance for stimulus durations of only 3 ms [36]. In studies along the vertical

plane, a longer duration of 80 ms was required to reach the best performance in the elevation

estimation [28]. When head movements are allowed, a stimulus duration of approximately 100

ms seems to be required to provide a substantial benefit from the head movement [37]. For the
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Fig 1. Example posterior distribution of source direction at different time steps during yaw rotation. Darker areas

indicate higher probabilities. The blue ‘x’ is the true source direction.

https://doi.org/10.1371/journal.pcbi.1012108.g001
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above reasons, the time step size Δt for the updating of the posterior was set to 100ms. The

effects of other step sizes are reported in the discussion.

The localisation task was simulated for 33 source directions and repeated 20 times without

head movement, 20 times with a 10˚ rotation to the left, and 20 times to the right. This reflects

the sound directions and repetitions used in the behavioral experiment. The simulations were

repeated for each subject that participated in the behavioral experiment, then the results were

pooled for further statistical analyses.

The spatial prior was assumed to emphasise directions around the horizon [24, 38]. That is,

for elevation, the prior has a mean around zero and a restricted variance σp. In [24], the opti-

mal value of σp was found to be around 11.5˚. Initial simulations in the present model showed

that this prior is too strong, as will be shown in the discussion. An explanation may be that this

value was determined from a localisation experiment that only included source directions in

the elevation range of [−35˚, 35˚] in the frontal hemisphere. For better comparability with the

behavioural data, the model spatial prior was weakened to 30˚.

Acoustic information. In this implementation of the model, yL and yR were measured

once, and yitd was measured several times during stimulus presentation. The reason for this is

twofold. First, it was found that dynamic spectral cues are not informative for sound localisa-

tion during small head rotations, which makes it unnecessary to take several measurements of

the spectral information during head rotation [6]. Second, the model’s recursive estimation

process relies on the assumption that the measurements are independent and identically dis-

tributed. This assumption does not hold for natural source spectra: we found the spectra of

two subsequent segments of 100ms for sources from the ESC-50 database [39] to be highly cor-

related (ρ� 0.8).

The SD on the ITD measurement at each time step t, σitd, was set to 0.6 JND. The SD on the

measurement of the spectral content, σI, was set to 3.5 dB. These values and units were derived

earlier for the static localisation model in [21]. In the discussion, the effects of higher ITD mea-

surement noise are reported.

The covariance matrix of the knowledge of the spectral content of the incoming sound

source, SS, i.e., the source prior, was derived from the ESC-50 database [39], which is a collec-

tion of 2000 environmental audio recordings. Each of the sound files of the database were

chopped up in intervals of 0.2s and, for each of these intervals, the source log-magnitude spec-

trum was expressed as function of the ERB centre frequencies. The resulting spectra were

pooled in a single dataset, from which the average source spectrum Ŝ and the covariance

matrix SS were calculated.

Sensorimotor information. The SD on the measurement of the head orientation at each

time step t, σH, and the SD on the motor command steering the head rotation, σu, were both

initially set to 0˚. In other words, this assumed that the listener can perfectly estimate and con-

trol the head orientation. Human subjects are able to report motion and orientation percep-

tion with very high precision [40, 41]. In a seated position, the standard deviation of head

rotation around the starting position (notated in our model as σu) is around 2˚ [11]. In the dis-

cussion the effects of higher motor noise are reported.

As with virtually all sensory systems, motor imprecision increases with stimulus magnitude

[42, 43], i.e., noise increases with exerted force. However, motor noise (σH and σu) was

assumed here to be additive for simplicity.

Theoretically, Eq 10 requires marginalisation over all possible head rotations. However,

with low sensorimotor noise, the probability distribution of head orientations based on the

accumulated sensorimotor evidence will be near-zero for most orientations. Hence, a
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computational heuristic was used to only consider orientations within a range of 2σH from the

true orientation, so that about 95% of the orientations were considered.

Acoustic measurements and behavioural experiment

Apparatus. The behavioural localisation experiment and acoustic HRTF measurements

were conducted in a semi-anechoic room with 91 speakers (E301, KEF Inc.) distributed over

the sphere within the elevation angles −47˚ to 90˚. A head-mounted display (HMD, Oculus

Rift, CV1, Meta Inc.) was used for the visual presentation of the virtual environment: a sphere

with grid lines, which serve as anchor points to the subject’s orientation in space. Although

HMDs can minimally affect localisation performance [44, 45], this decision was made as a

higher precision error was found in darkness than when providing spatial information with an

HMD [46]. Three infrared cameras were used for the tracking of the listener within the six

degrees of freedom.

The experiment was controlled by a computer running a 64-bit Windows 10, equipped

with an 8-core, 3.6-GHz CPU (i7-11700KF, Intel Inc.), 16 GB of RAM, and a graphic card with

dedicated 8 GB of RAM (GeForce RTX 3070, NVIDIA Inc.). The experiment was controlled

by the ExpSuite 1.1 application LocaDyn, version 0.9.7.

The tracking system provided a translation accuracy of below 1 cm [47] and a rotation accu-

racy of below 1˚ (for a similar tracking system, [48]). The position and orientation of the sub-

ject’s head were recorded for later analyses and to simulate using the model.

Subjects. Eight normal-hearing subjects (four female, four male) participated in the

experiment. Their absolute hearing thresholds were within the average (±1 standard deviation,

SD) of the age-relevant norms [49, 50] within the frequency range from 0.125 to 12.5 kHz. The

age range of the subjects was between 22 and 33 years.

Stimuli. Stimuli were always played over loudspeakers using vector base amplitude pan-

ning (VBAP) [51]. Thirty-three source directions were distributed over the full sphere, at lat-

eral and polar steps of 30˚.

The acoustic stimulus used in this experiment was a wideband (20 to 20000 Hz) white noise

burst, gated with a 10-ms cosine ramp. Each trial used the same noise realisation. The stimulus

was gated off after 500 ms in the passive condition, and after 10˚ of head rotation for the active

condition. For the latter, this means that the stimulus duration depended on the rotation

velocity, with mean 634.9 ms and SD 335.7 ms.

Presentation level was measured to be 48 dBA SPL at the ear drum, with a ±2.5 dB level rov-

ing range between trials.

Procedure. The localisation task procedure was identical to that of [6]. At the start of each

trial, the subject kept the head still on the reference orientation at (0˚, 0˚). The stimulus was

then played and the subject remained still or initiated rotation depending on the movement

condition. At the end of the stimulus, the subject pointed towards their perceived source direc-

tion with a hand-tracking device to provide their localisation estimate. No feedback was pro-

vided about performance during or after the trials.

In the condition labelled ‘passive’, the subject was instructed to keep the head still for the

duration of the stimulus. For the condition labelled ‘active’, the subject was instructed to make

a single-sided rotation (either to the left or to the right) as soon as they heard the stimulus

onset. Half of the trials instructed a leftward rotation, the other half was rightward. The head

rotation speed was unrestricted, but was monitored through the tracking system of the VR

headset and recorded for analysis.

In total, the passive experiment consisted of 660 trials (33 directions and 20 repetitions) per

subject. The active experiment consisted of 1320 trials per subject: 660 for a leftward rotation
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and 660 for a rightward rotation. The trials were divided into 6 blocks, with trials and blocks

presented in random order. For passive localisation, trials which exceeded 2˚ of movement in

any direction were excluded (225 omissions in total). For active localisation, trials that resulted

in a total yaw rotation smaller than 7˚ or larger than 13˚, or with a pitch rotation larger than 6˚

were omitted (648 omissions in total).

Subjects were trained before commencing the experiment. The training consisted of 300 tri-

als with the 500ms white noise burst, played from a direction randomly selected from a uni-

form distribution within the range of available directions. Subjects were not excluded based on

their performance at the end of training.

Localisation metrics

There are many metrics available for sound localisation performance, this makes comparison

between localisation studies difficult. It is, however, generally accepted that a distinction needs

to be made between two types of errors [25]. The first type is the local error. Here we use the

lateral-polar coordinate system [52], (θ, ϕ), where θ 2 [−90, 90] and ϕ 2 (−180, 180], with (θ,

ϕ) = (0, 0) defined as straight ahead. The local error was expressed in root mean-squared error

(RMSE) value of the lateral and polar errors. Polar RMSE was only considered in the range of

±30˚ lateral angle, and estimates in the wrong hemisphere (i.e., front-back and up-down con-

fusions) were excluded from the local errors, following the definition by Middlebrooks [53].

The second type of error is the reversal error, which generally is reported as a percentage,

i.e., the rate of reversals in a given set of trials. The first reversal error considered was the quad-

rant error (QE) rate, which is defined as any polar error larger than 90˚. Additionally, we used

the front-back confusion (FBC) rate and the up-down confusion (UDC) rate, which are

defined as any response crossing the frontal plane and the horizontal plane, respectively. This

is the same definition as used by Carlile et al. [25], and thus allows for a direct comparison

between present and previous data. Note that this is a very coarse definition for the reversal

error, as it confounds FBCs and UDCs with local errors near the frontal or horizontal plane,

respectively.

Results

Global statistics

First, we present the global results, in order to compare to the existing literature. Table 1 pres-

ents the localisation data of both the behavioural (B) experiment and the model (M) simula-

tions (means and SDs averaged over the subjects), for passive (P) and active (A) conditions.

Local errors. The lateral errors in the behavioural results agreed with previous findings

from similar experimental setups [53, 54]. However, the model results were small compared to

Table 1. Averages and SDs of behavioural (B) and modelled (M) localisation performance in the passive (P) and active (A) conditions. The performance is repre-

sented as the lateral and polar RMSE (in degrees), QE, FBC, and UDC rates (in %). Means and SDs were computed over eight (virtual) subjects. For comparison, the results

from previous work are reported too [53]. N.R.: not reported.

Condition L. RMSE

(deg)

P. RMSE

(deg)

QE

(%)

FBC

(%)

UDC

(%)

BP [53] 10.6 ± 2.0 22.7 ± 5.1 4.6 ± 5.9 N.R. N.R.

BP 8.1 ± 1.4 25.1 ± 3.2 7.9 ± 4.5 10.7 ± 6.3 6.7 ± 4.2

BA 8.2 ± 1.8 20.5 ± 5.2 0.7 ± 1.1 1.5 ± 1.2 4.2 ± 4.1

MP 2.7 ± 0.5 21.8 ± 3.4 7.4 ± 2.0 4.0 ± 1.3 3.1 ± 0.5

MA 2.7 ± 0.2 18.4 ± 2.3 2.0 ± 1.1 1.1 ± 0.3 1.8 ± 0.7

https://doi.org/10.1371/journal.pcbi.1012108.t001
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the behavioural data. This may have been the result of σitd being set too small, or of the beha-

vioural responses being confounded with a ‘pointing’ error. The effect of the ITD noise on the

model performance is tested below.

The polar errors of the behavioural results were consistent with previous findings [6, 53].

Like the lateral error, the mean polar error of the simulated trials was lower than that of the

behavioural data. However, the difference here was smaller.

No decrease was seen in polar error in condition BA. This is evidence against the ‘Wallach

cue’ [3], and agrees with previous findings [6]. However, condition MA did show a decrease in

polar error. Although this improvement is still small, it is an indicator that the Wallach cue

may be theoretically informative, as the model was able to obtain elevation information from

yaw movement. The reason why this isn’t seen in humans could be due to motor noise. This is

investigated below.

Interestingly, the SD of the polar RMSE increased in condition BA, even though the mean

did not change much. This suggests that the effects of head movement may be subject-depen-

dent, e.g., motor noise during motion may be higher for some individuals.

Reversal errors. The QE rates in conditions BP and MP agreed with previous work [53].

Furthermore, the near-complete removal of QEs in conditions BA and MA also confirms the

consensus that head rotation resolves all reversal errors. [6].

The FBC rate in condition MP was notably lower than in condition BP. Looking at earlier

studies, FBC rates of normal hearing listeners were closer to 3–6% [25, 55, 56], although the

errors were highly subject-dependent. This means that the high FBC rate in this study is some-

what anomalous. Hence, the cause for the discrepancy here seems to lie in the behavioural

results, not in the model predictions.

There was also a slight decrease in the UDC rate. This reduction may have been caused by

the improved polar estimation obtained from the Wallach cue. It is possible that the rotation

made during some trials contained a significant roll-component, which helps distinguish

between the lower and upper hemispheres [15]. However, the tracker data shows that overall

roll rotation was small, with the mean absolute roll 0.82˚ and the SD 0.51˚.

The high SD in the reversal errors shows that this metric is highly subject dependent. The

SDs of reversal errors between model ‘virtual listeners’ were small compared to the behavioural

results. This is not surprising, as the individual differences between subjects are likely not fully

explained by the individual HRTFs. The same noise parameters were used for each individual,

while it is likely that they differ per individual [57]. Furthermore, higher level processes such

as listening strategies [58] or attention [59] will also be a cause for individual differences.

Spatial analysis

Following the methods of visualisation of previous work, the localisation responses were mod-

elled as elliptical Kent distributions [25, 60]. The centroids visualise the bias, i.e., the mean vec-

tor, of all responses for one source direction. The ellipsoid outlines visualise the equal

probability contours of the distribution of responses. The major and minor axes of the ellip-

soid are two SDs in length and represent the first two orthogonal ‘principal components’ of

the dataset that account for the maximum amount of variance in the data. Fig 2 illustrates the

Kent distribution of all responses for the frontal direction of condition BP.

Fig 3 visualises the behavioural and model localisation results per source direction on the

sphere around the listener. Quadrant errors were excluded.

Response bias. The direction of the centroids of condition BP are similar to those found

in [25]. More specifically, the centroids show a bias towards the audio-visual horizon and

towards the interaural axis, i.e. the left and right ear. This supports the already strong evidence
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for a spatial prior on the horizon [24]. Several other studies have shown that human sound

localisation displays a peripheral bias that increases with eccentricity [54, 61, 62].

In condition BA, the bias towards the horizon seemed to increase further. This can be

explained if we assume an increase in uncertainty on the orientation of the head, or perhaps

on the spectral cues during motion. Due to this increase in sensory noise, the relative strength

of the spatial prior towards the horizon would increase. The biases did not change between

conditions MP and MA. Possibly, this effect was not seen in the model because the head orien-

tation was assumed to be perfectly known. Below we investigate the influence of increased sen-

sorimotor noise.

Fig 2. Centroid and Kent distribution for condition BP and source direction (30˚, 30˚). Black dots are the

individual subject responses, from which the Kent distribution was calculated.

https://doi.org/10.1371/journal.pcbi.1012108.g002
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Two explanations for spatial biases have been proposed previously: 1) a Bayesian approach

describes a pre-existing spatial prior for certain locations that is added to the sensory informa-

tion, 2) alternatively, responses may be pulled to certain directions due to compressions and

expansions in the sensory representations of auditory (and visual) space [62, 63]. Fig 3 shows

that the selected spatial prior for the model results in vertical biases that are similar to the beha-

vioural data. This is evidence that the spatial biases can, at least in part, be explained by a prior.

Response variance. Similar to the Kent distributions in [25], condition BA shows larger

distributions for sources at higher elevations, and for sources in the rear hemisphere. The

response spread is also highest along the polar dimension, more specifically, along the cones of

confusion [64].

The spread in model responses also followed the cones of confusion. On the median plane

the response distributions appear fairly similar. However, the response spread for sources at

higher lateral angles was noticeably smaller than in the behavioural responses, especially for

the lateral responses. This was to be expected from the lower local errors that were seen earlier.

The biggest difference was seen for sources in the rear. For conditions MP and MA, the

response distributions for sources in the rear were nearly identical to those in front. On the

contrary, the behavioural data contained a much larger spread in the rear, especially along the

Fig 3. Centroids and Kent distributions of behavioural (B) and modelled (M) responses in the passive (P) and active (A) conditions, averaged over

eight subjects. The rows show the same data viewed towards the front, the right, and the back of the head. Quadrant errors were excluded.

https://doi.org/10.1371/journal.pcbi.1012108.g003
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lateral dimension. This suggests that the increase in variance, i.e., decrease in precision, found

in the rear hemisphere of the behavioural results cannot be (fully) attributed to a lower spatial

resolution in acoustic cues. Instead, a response or ‘pointing’ error may have been responsible.

Even if the auditory system can perfectly estimate a source location, the action of pointing in a

direction as a response may introduce an additional error. It is reasonable to hypothesise that

sources behind the listener are more difficult to point towards consistently. Pointing errors

have been modelled previously [20, 57], though only as a simple Gaussian noise source, which

does not take into account the source direction. More research is required to accurately model

the spatial dependence of a response error.

There were no large differences in Kent distributions between passive and active condi-

tions, neither for the behavioural data nor for the model. One exception is the source position

directly above the listener in the model predictions. In condition MP, a much higher polar

spread is predicted than in condition BP. This can be explained by the Gaussian shape of the

spatial prior, which affects sources at higher elevations more heavily than those around the

horizon. Interestingly, this spread isn’t visible in condition MA, which means that head rota-

tion significantly improved estimation of this source direction and outweighed the spatial

prior. This is another indicator of the available Wallach cue in the model simulations. This

suggests that either perfect knowledge of the head orientation or lower noise on the ITD made

head rotation more informative for the model than in the behavioural experiments.

Quadrant errors. The spatial distribution of QEs was visualised in Fig 4. Condition BP

reveals that QE rates were more common in the rear hemisphere than in the front: 59.4% and

40.6%, respectively. Most notable are the source directions directly in front of the listener,

which showed nearly no QEs at all. Condition MP also shows more QEs in the back than in

the front: 74.6% and 25.4%. This suggests that acoustic information accounts for most of the

quadrant errors found. However, as was found in the Kent distributions, the source positions

above the listener showed very different results between conditions BP and MP, this was

caused by the spatial prior towards the horizon.

Fig 4. Quadrant error rates [%] of behavioural (B) and modelled (M) responses in the passive (P) and active (A) conditions, averaged over eight

subjects. The rows show the same data viewed towards the front and the back of the head.

https://doi.org/10.1371/journal.pcbi.1012108.g004
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Previous studies have shown that the quantity and spatial distribution of reversal errors

were highly subject-dependent. For example, one study found an even higher percentage of

QEs to be located in the rear hemisphere than in the present study [53]. In another study, only

two subjects showed a significant majority of reversal errors in the rear, while two showed a

majority in the front, and two showed an equal distribution [56]. Similarly, this study con-

tained three subjects with a majority in the back, one with a majority in the front, and four

with no clear preference. For the localisation of low-pass stimuli, most confusions happened

for sources in the front, note that this may be because sources from behind undergo more fil-

tering than sources from the front [65].

From the present findings and the available literature, it is apparent that reversal errors

involve a complex process that differs between individuals.

Effect of the ITD noise

Table 1 shows that the lateral RMSE was too small compared to the behavioural results. Here,

we tested new values of σitd to investigate whether this parameter is the cause of the discrep-

ancy. The results are plotted in Fig 5.

The lateral error increased monotonically with σitd. However, even for σitd = 3˚, the errors

were still lower than the behavioural results. This shows that the ITD noise alone cannot

account for the discrepancy in lateral error. As expected, polar errors remained mostly unaf-

fected in the passive condition, as the static ITD contains little to no information on the polar

angle. However, the reduction in polar error in the active condition (due to the Wallach cue)

was only visible for σitd< 1.2˚. Minimising σitd led to a complete removal of QEs in the active

condition, whereas maximising it made the passive and active conditions near-identical.

Together, the results suggest that a low noise on the ITD cue is essential to utilise the dynamic

cue that resolves reversal errors when moving the head. They also show that the value of σitd =

0.6 that was derived from a previous experiment is a plausible value [21].

Fig 5. Lateral RMSE, polar RMSE and QE rate of the modelled data as a function of σitd (in units of the JND). Blue

markers are passive results, orange markers are active results. The markers and the error bars represent the mean and

standard deviation over the eight modelled subjects. For reference, the dashed lines and the coloured areas show the

behavioural means and standard deviations over the eight subjects, respectively.

https://doi.org/10.1371/journal.pcbi.1012108.g005
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Effect of the sensorimotor noise

For the initial simulations, the head orientation was assumed to be perfectly known. Here we

investigated the effects of an increased uncertainty on the head orientation. The simulations

were rerun with different values for σH and σu. The results are plotted in Fig 6.

The results show that a larger value for σH increased the lateral error, similar to σitd. There

appeared to be no interaction effect with σu.

Polar error monotonically increased with σH, though the active condition seemed to suffer

slightly more. In other words, the difference in polar error between condition MP and MA

became smaller as σH increased. This effect was even stronger with a high σu. This suggests that

uncertainty on the head position is the reason why the Wallach cue cannot be used by human

listeners.

For σu = 0˚, the QE rate was affected slightly for higher values of σH, notably less than when

σitd was increased. For σu = 8˚, the effects were larger, and even condition MP seemed to suffer

more QEs.

Together, this leads to the conclusion that the uncertainty on the sensorimotor measure-

ment of the head orientation, σH, can account for several (though not all) of the differences

found between the behavioural data and the model output, but that the noise on the execution

of the control signal, σu needs to be low.

Note that σH and σu will likely be higher in the active condition than in the passive condi-

tion, as motor noise is multiplicative [42].

Effect of the spatial prior

The bias vectors in the behavioural results appeared slightly stronger than for the simulations

with σp = 30. This implies that a stronger spatial prior may be necessary. There are many differ-

ent possible spatial prior shapes, e.g. a Laplace distribution [66], or prioritising the front or

Fig 6. Lateral RMSE, polar RMSE and QE rate of the modelled data as a function head orientation measurement

noise σH, with head control noise σu = 0˚ (left column) and σu = 8˚. Blue markers are passive results, orange markers

are active results. The markers and the error bars represent the mean and standard deviation over the eight modelled

subjects. For reference, the dashed lines and the coloured areas show the behavioural means and standard deviations

over the eight subjects, respectively.

https://doi.org/10.1371/journal.pcbi.1012108.g006
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high lateral angles [67]. In this study, the analysis was restricted to the horizontal prior. Fig 7

shows the elevation gain [24] (i.e., the slope of a linear regression between responses and true

directions) and QE rate for different values of σp. As we are interested in the ‘pull’ towards the

horizon, the elevation gain is a more appropriate indicator than the polar RMSE.

The plot suggests that the correct prior σp lies between 20˚ and 30˚, where the gain and the

QE rates are closest to the behavioural results. Thus, σp = 30 was again a fairly good estimate,

though the large standard deviations between subjects in the behavioural data suggest that the

strength of the prior may be subject-dependent. As σp increases, the prior approaches a uni-

form distribution and the relative weight of the sensory information will increase. The plot

shows that, as a result, the responses approach an elevation gain of 1. This suggests that the

bias present in human responses is not due to acoustic factors, but indeed due to a prior

towards the horizon.

However, there remains a problem in the distribution of the errors. First, it was noted that

the prior affects sources at higher elevations more heavily than those around the horizon,

resulting in an unrealistically high spread in responses and high QE rate for sources above the

listener (see Figs 3 and 4, condition MP). There also remains the lateral bias that is unac-

counted for with the spatial prior tested in this study. These discrepancies could mean that

humans have an additional auditory spatial bias upwards and towards higher lateral angles.

Alternatively, as stated earlier, it is possible that responses are pulled or ‘snap’ to certain direc-

tions due to the sensory representations of space [62, 67]. The latter explanation would be an

example of non-ideal observer behaviour.

Effect of the time step

To investigate the effect of the time step size Δt, the model was rerun with different update

rates. Note that each simulated trial always contained at least two time steps at the start and at

Fig 7. Elevation gain [24] and QE rate of the modelled data as a function of σp (in degrees). Blue markers are passive

results, orange markers are dynamic results. The markers and the error bars represent the mean and standard deviation

over the eight modelled subjects. For reference, the dashed lines and the coloured areas show the behavioural means and

standard deviations over the eight subjects, respectively.

https://doi.org/10.1371/journal.pcbi.1012108.g007
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the end of the stimulus duration, to make dynamic cues available. The results are shown in

Fig 8.

Generally, it seems that a smaller Δt makes localisation performance slightly more accurate,

this is the result of more looks being available. This improvement is mostly visible in the polar

RMSE of condition MA, which shows that the benefit of the Wallach cue becomes more preva-

lent if more ITD looks are allowed. Unsurprisingly, a similar effect was seen when the noise on

the ITD looks was kept low. For the other metrics, the improvement performance is surprisingly

small. Regarding the QE rate, it appears that two ITD looks (one at the start and one at the end

of rotation) were sufficient to prevent most errors, and that any look in between is somewhat

redundant. Finally, there appeared an unexpected dip in the QE rate of condition MP at Δt =

50ms. A repetition of the model simulations revealed that this was a statistical anomaly.

Conclusions

This article introduced a Bayesian ideal observer model that enables a bottom-up investigation

of human performance in the task of active sound localisation. In order to investigate to what

extent humans perform as ideal observers, the model output was compared to behavioral

results obtained in a free-field localisation experiment.

With parameters selected a priori, i.e., without the use of any post-hoc fit to the behavioral

data, the model predicted and explained the human performance in a general sense. This is an

encouraging finding, supporting the hypothesis that model parameters can be derived a-priori

based on general behavioural experiments. Furthermore, as the model reproduced human per-

formance while processing changes only in ITD, it also confirms the earlier finding that

humans do not utilise dynamic spectral cues for localisation, at least during small head rota-

tions [6].

In a more detailed spatial analysis, the model predictions deviated from the behavioral data.

The largest differences were found for sources to the rear and above the listener. We

Fig 8. Lateral RMSE, polar RMSE, and QE rates of the modelled data as a function of time step size Δt. The symbols

show the averages and the error bars represent ±1 SDs over the (virtual) subjects. For reference, the horizontal dashed

lines show the behavioural data.

https://doi.org/10.1371/journal.pcbi.1012108.g008
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investigated in detail the conditions where the model agreed or deviated from the behavioural

data by studying the effects of several model parameters on the predictions. The ITD noise

parameter revealed that the ITD cue alone does not account for the lateral RMSE and QE rate

found in behavioural data. The uncertainty on the head orientation had a significant effect and

was able to partially explain the behavioural data.

The discrepancies we found between the model predictions and behavioural data are

important for future investigations. First, there is a high variance in behavioral responses for

sources behind the listener, whereas the model showed little difference between the front and

rear hemisphere. This indicates that these errors result from non-acoustic factors, such as the

pointing error. Second, human listeners showed a response bias towards larger lateral angles,

which was not seen in the model predictions. The origins of this discrepancy remain an open

question, with a lateral spatial prior or a stretched sensory representation of space as potential

candidates. Third, the model predictions showed a higher response variance and QE rates for

sources placed above the listener. In the model, this might be an effect of the Gaussian spatial

prior towards the horizon, which might not fully reflect the spatial prior of the human listen-

ers, or even point to a more complex mechanisms at play.

Our framework can be applied in the future to a variety of phenomena that have been iden-

tified in previous studies on active sound localisation, such as the improvement of elevation

perception with yaw movements for low-pass stimuli [3], elimination of FBCs for low-pass sti-

muli [37], and the relative weight of dynamic ILD and ITD in the localisation process [68].
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