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PACS. 73.21.La – Quantum dots.

PACS. 73.20.Qt – Electron solids.

Abstract. – Pinning of magnetic-field–induced Wigner molecules (WMs) confined in parabolic
two-dimensional quantum dots by a charged defect is studied by an exact diagonalization ap-
proach. We found a re-entrant pinning of the WMs as a function of the magnetic field, a
magnetic-field–induced re-orientation of the WMs and a qualitatively different pinning be-
haviour in the presence of a positive and negative Coulomb impurity.

Low-density electron systems in bulk may form an ordered crystalline phase called Wigner
crystal [1] in which electron charges are spatially separated. A similar collective type of
electron localization in quantum dots (QDs) is called Wigner molecule (WM) [2]. WMs may
be formed in large QDs [2] or be induced by a strong magnetic field [3] in the quantum
Hall regime. Wigner localization is observed in the inner coordinates of the quantum system
whose charge density conserves the symmetry of the external potential [4]. Therefore, in
circular QDs [4, 5] the charge density will be circular symmetric even in the Wigner phase.
However, a perturbation of the potential may pin [6] the charge density at a fixed orientation
in the laboratory frame which should allow for the experimental observation [7] of Wigner
localization. Pinning of the magnetic-field–induced WMs by the anisotropy of the potential [8]
or by an attractive Gaussian impurity potential [9] in the absence of a magnetic field have been
studied previously. Here, we will show that the WM pinning is qualitatively very different in
the presence of a positive and negative impurity.

We consider WMs induced by a magnetic field in a two-dimensional harmonic QD. A
strong magnetic field polarizes the spins of the confined electrons and leads to the formation
of a so-called maximum density droplet (MDD) corresponding to the lowest Landau level
filling factor ν = 1. Stronger fields induce the MDD to decay into a molecular phase with
ν < 1, for which the distribution of electrons in the inner coordinates resembles the equilibrium
configuration of a classical point-charge system [10]. The external magnetic field increases the
absolute value of the angular momentum of the confined electron system inducing its changes
c© EDP Sciences
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between certain “magic” [11] values for which the classical distribution of electrons in the
inner (“rotating”) frame of reference can be realized.

In this letter we investigate the way in which the potential of a charged defect (donor
or acceptor ion) situated outside the QD symmetry axis stops the “rotation” of the electron
system and freezes the WM at a fixed orientation. We use the configuration interaction
approach which allows for an exact solution of the few-electron Schrödinger equation. We
found that at magnetic fields inducing the angular-momentum transitions the exact ground
state can correspond to broken-symmetry charge density with semi-classical localization in
the laboratory frame. Broken-symmetry charge distributions were previously obtained as
artifacts of mean-field methods [4]. The existence of exact broken-symmetry states makes the
WMs susceptible to pinning by an arbitrarily distant charge defect (donor or acceptor ion)
at the angular-momentum transitions. Consequently, a distant defect induces re-entrant WM
pinning as a function of the strength of the magnetic field. We show that the orientation of
the pinned WMs can change with the magnetic field and demonstrate an essentially different
pinning behavior for a positive and negative impurity.

We assume that the system of N electrons is spin-polarized by the external magnetic field
and that the electrons are confined to move in the z = 0 plane. The present configuration
interaction approach is constructed in the following way. The single-electron Hamiltonian for
the considered system reads

h = (−ih̄∇+ eA)2/2m∗ + m∗ω2
(
x2 + y2

)
/2 + Bszg

∗µB ± e2/4πεε0red , (1)

where m∗ is the electron band effective mass, h̄ω is the confinement potential energy, ε0 is the
static dielectric constant, (0, 0, B) is the magnetic-field vector, sz is the z-component of the
electron spin, g∗ is the effective Landé factor and red is the distance between the electron and
the charged defect. The sign in the last term of eq. (1) is − (+) for a positively (negatively)
charged defect. We apply the Landau gauge A = (−By, 0, 0) and adopt GaAs material
parameters m∗ = 0.067m0, ε = 12.9 and g∗ = −0.44 as well as h̄ω = 3meV. Hamiltonian (1)
is diagonalized in a multicenter basis Ψµ(r) =

∑M
i=1 cµ

i ψRi
(r) with

ψR(r) =
√

α exp
[ − α(r − R)2/4 + ieB(x − X)(y + Y )/2h̄

]
/
√
2π, (2)

where R = (X,Y ). The single-electron wave functions Ψµ are subsequently used for the
construction of M !/N !(M − N)! Slater determinants —the basis set for diagonalization of
the N -electron Hamiltonian. α and the positions of the centers Ri are chosen such that
they minimize the total energy. Function (2) with α = eB/h̄ is the lowest Landau level
eigenfunction. The basis set of displaced functions (2) allows for a very precise determination
of the exact Fock-Darwin [4] energy levels, including higher Fock-Darwin bands, which at
strong magnetic fields tend to excited Landau levels. We have verified the accuracy of the
present approach comparing its results with the standard exact diagonalization method [12].
We have taken 12 centers placed on a circle. Above the MDD decay (B > 5.8, 4.85 and
4.65T for 2, 3 and 4 electrons) and below 20T, the overestimation of the exact energy for
2, 3 and 4 electrons is lower than 0.01, 0.06 and 0.12meV, respectively. Few-electron wave
functions calculated in the Landau gauge are not eigenfunctions of the angular momentum,
but using the gauge-independent expectation value of its operator we can look at the angular-
momentum transformations of the confined system. The precision in the determination of the
critical fields inducing ground-state transformation is better than 0.15T. Previously, displaced
Landau level functions (2) were used in the investigation of the WMs with approximate
approaches, i.e., single-determinant of non-orthogonal wave functions [13], Hartree-Fock [14],
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Fig. 1 – (a) Two lowest-energy levels of the 4-electron unperturbed circular QD calculated with respect
to the lowest Landau level. Numbers denote L - angular momentum in h̄ units. Insets (A), (B) and
(C) display the charge densities of the states for B = 4.6T corresponding to L = −6, −10 and broken
symmetry, respectively (the darker the shade of grey the larger the density). (D), (E) and (F) show
the charge density of the degenerate states with L = −18, −22 and broken symmetry for B = 11.2T.
(b) Same as (a) but for 3 electrons. (A), (B) and (C) plotted for B = 4.2T correspond to L = −3,
−6 and broken symmetry, respectively. (D), (E) and (F) show the charge density of degenerate states
with L = −9, −12 and broken symmetry for B = 11.2T.

and rotated-electron-molecule approach [15]. Due to the arbitrariness in the choice of centers
the present configuration interaction approach can be easily applied to potentials without
circular symmetry. In the calculations for the perturbed QDs, we used 12 centers placed on
an ellipse, the size and its center of gravity were optimized variationally.

Figure 1 shows the two lowest 4- (a) and 3- (b) electron energy levels calculated with
respect to the lowest Landau level (E′ = E−N × 0.85 (meV/T)) as functions of the magnetic
field. E′ at high field tends to the potential energy of a classical point charge system [13]. At
lower magnetic fields, the ground state is the MDD with angular momentum −N(N − 1)h̄/2.
At larger magnetic fields, the angular momentum decreases by Nh̄ [4,5,11]. The ground-state
charge density after the MDD decay has a ring-like shape with a pronounced minimum at the
center of the dot. At each ground-state transformation, the central local minimum becomes
wider and the size of the charge puddle exhibits a stepwise increase. Between the ground-
state transformations, the magnetic field compresses the charge density which shrinks in a
continuous fashion [12].

At the angular momentum transformations, the ground-state charge density is twofold
degenerate. Consequently, each linear combination of the degenerate ground states Φ1 and
Φ2 is also an eigenstate. Consider the following combination: Φbs = (Φ1 + cΦ2)/

√
2, with

|c|2 = 1. Since the angular momenta of degenerate ground states differ by Nh̄, the angular
momentum in state Φbs is not defined and Φbs possesses a broken-symmetry charge distribu-
tion (cf. insets (C) and (F) in fig. 1). The charge density of the exact broken-symmetry states
resembles the approximate mean-field broken-symmetry solutions [4]. The broken-symmetry
charge distributions at high field tend [14] to the classical lowest-energy distribution of point
charges [10]. Superposition Φbs extracts the inner symmetry of the magic-angular-momenta
states into the laboratory frame of reference. The broken-symmetry charge distribution can
be oriented at an arbitrary angle depending on the phase of c.



704 EUROPHYSICS LETTERS

4 6 8 10 12
B [T]

20

21

22

23

24

25

E
'[

m
eV

]

(a)

-40-20 0 20 40
x [nm]

-40

-20

0

20

y
[n

m
]

-40 -20 0 20 40
x [nm]

-40

-20

0

20

y
[n

m
]

-40 -20 0 20 40

x [nm]

-40

-20

0

20

40

y
[n

m
]

4.8T 4.9T 4.95T

6.8T 6.86T

6.9T

-40 -20 0 20 40
x [nm]

-40

-20

0

20

40

y
[n

m
]

classical

4 8 12 16 20
B [T]

1

2

3

4

E
'[

m
eV

]

(b) 6.2T 8T

15T

-40-20 0 20 40
x [nm]

-40

-20

0

20

y
[n

m
]

18.8T

-40-20 0 20 40
x [nm]

-40

-20

0

20

40

y
[n

m
]

4T

-40 -20 0 20 40
x [nm]

-40

-20

0

20

40

y
[n

m
]

classical

Fig. 2 – (a) Two lowest-energy levels of the 4-electron system in a circular QD perturbed by a potential
of a positively charged defect situated at (20, 0, 40) nm. The insets show the ground-state charge den-
sities and the lowest-energy configuration of the classical system. (b) Same as (a) but for 2 electrons.

Let us now suppose that at a certain distance of the quantum dot plane there is an
impurity ion located off the symmetry axis of the dot. In vertical quantum dots [16] for which
the harmonic approximation of the potential is justified [17], and in which the MDD decay
has been observed [16], ionized [17] donor impurities are present at a distance of 20–30 nm
from the QD plane. The defect potential perturbs the QD circular symmetry and mixes the
angular-momentum eigenstates. Level crossings are replaced by avoided crossings. Figure 2(a)
shows the two lowest-energy levels and the ground-state charge density for 4 electrons with a
positively charged defect situated at point x = 20, y = 0, z = 40nm. The energy gaps in the
avoided crossings are very small (∼ 10−3 meV). At the avoided level crossings (see insets for
B = 4.9 and 6.86T) Wigner crystallization in the laboratory frame (i.e. WM pinning) can
be observed. The positions of the pinned charge density maxima coincide with the position
of classical electrons in the lowest energy configurations (cf. lowest inset of fig. 2(a)). The
charge density plots for the magnetic fields outside the avoided level crossings resembles the
unperturbed circular densities (cf. fig. 1(a)), although an increased density at the right end of
the charge puddle is visible. Since the “momentary” pinning is a consequence of the existence
of the exact broken-symmetry states, it appears for an arbitrarily far situated defect.

Figure 2(b) shows that the effect of the defect on the 2-electron spectrum and the charge
density is much stronger (energy gaps are about 5× 10−2 meV). The oscillatory character of
the pinning as a function of the magnetic field is visible. At avoided level crossings separation
of the electron charges is particularly pronounced (see insets for 6.2 and 18.8T). The effect
of the negatively charged defect at this rather large distance from the QD is similar, although
the molecules become pinned at different angles.

The pinning effect is stronger when the defect is closer to the QD plane. In the rest of the
paper we consider a defect located at (20, 0, 20) nm. Figure 3 shows the results for 2 electrons.
An attractive impurity (fig. 3(a)) enhances the harmonic QD potential which results in a
stronger charge localization and, as a consequence, shifts the anticrossings to higher values
of the magnetic field. The energy gap between the lowest levels is larger for repulsive defect
(fig. 3(b)). In both systems, an anticrossing related with the MDD breakdown is visible (∼ 7T
in (a) and ∼ 5T in (b)). Both systems present smooth non-oscillatory convergence to the
lowest-energy configuration of their classical counterparts.
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Fig. 3 – Two lowest-energy levels of the 2-electron system in a QD perturbed by (a) positively and
(b) negatively charged impurity situated at (20, 0, 20) nm. The insets show the ground-state charge
densities as well as the classical configurations on a background of potential profile (the equipotential
lines are spaced by 3meV).

Figure 4 shows the plots for an attractive impurity with N = 3 (a) and N = 4 (b). For
both N = 3 and 4, the energy gaps between the anticrossing levels remain small (around
0.01meV (0.04meV) for N = 4 (3)) and the pinning of the WMs exhibits anew the oscillatory
dependence on the magnetic field. The distribution of charge maxima in the WMs pinned
at the MDD breakdown (5.8T for N = 3 and 5.3T for N = 4) differs from their classical
counterparts. In classical systems, a single electron is trapped under the attractive impurity.
In the WM pinned at the MDD breakdown, 2 electrons fit in the local minimum of the
potential induced by the defect. At higher fields (9T for N = 3 and 10.15T for N = 4) the
pinning fixes the charge maxima near the equilibrium positions of classical electrons. Thus,
an interesting rotation of the pinned WM is found as a function of the magnetic field. The
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the classical lowest-energy configuration. (b) Same as (a) but for 4 electrons.
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Fig. 5 – (a) Same as fig. 4(b) but for a negatively charged defect. (b) Average value of the total
angular momentum for 4 electrons without the defect (solid line), in the presence of an attractive
(dotted lines) and a repulsive (dashed lines) defect at (20 nm, 0, zd).

change in the charge distribution in the WMs between the MDD decay and the classical limit
is similar to the magnetic-field–induced transformations of the WMs in circular dots for larger
N [14]. At high magnetic field, the 3-electron charge density acquires the semi-classical charge
distribution even between the anticrossings (cf. plots for 11 and 15.4T in fig. 4(a)). This is
not observed for N = 4 in the studied magnetic-field range.

The results for 4 electrons in the presence of a repulsive defect are shown in fig. 5. The
ground-state energy is a smooth function of the magnetic field and oscillations appear only in
the excited state. A continuous MDD decay appears around 4T. The charge density tends in
a non-oscillatory way to the classical limit of point charges.

The influence of the charged defects on the average value of the total angular momentum
for 4 electrons is shown in fig. 5(b). In the presence of a defect, the average values of angular
momentum take non-integer values and their dependence on the magnetic field becomes con-
tinuous; however, much of the stepwise character of a pure QD is conserved for the positive
impurity as well as for a distant negative defect. For the positive (negative) defect, the elec-
trons become localized closer to (further from) the origin which results in a decrease (increase)
of the absolute value of the angular momentum with respect to the unperturbed case. For a
negative defect closer to QD plane the average value is a smoothly decreasing function of the
magnetic field. This fast increase of the absolute value of angular momentum is related to the
localization of the charge density near the classical equilibrium points (cf. fig. 5). Results for
3 electrons for this position of the negative defect are qualitatively the same as for 4 electrons.

Comparing the results for an attractive with those of a repulsive defect (cf. figs. 4 and 5)
shows that the pinning is much more effective in case of a repulsive defect. The attractive
defect enhances the confinement potential of the QD, decreases its size and hinders the Wigner
crystallization itself. Moreover, it binds one of the electrons in its neighborhood. The potential
of the bound electron and the defect potential partially cancels and, as a consequence, the
other electrons see a nearly circular potential and the system in the external magnetic field
behaves essentially like a N − 1 electron system. On the other hand, the potential of the
repulsive defect is not screened, so it breaks the circular symmetry of the potential felt by
each of the electrons in a more pronounced manner.
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In conclusion, magnetic-field–induced WMs in circular dots are from their very nature
susceptible to pinning by the potential of an external charged defect at the angular-momentum
transitions. Our results can be summarized as follows: 1) At large distance between the QD
plane and the defect, the pinning has a re-entrant character, i.e., it appears only at the
energy level anticrossings, which are situated near the angular momentum transition fields of
the unperturbed system. 2) For an impurity placed closer to the QD plane, the pinning by
the repulsive defect is more effective and leads to a non-oscillatory convergence of the charge
density to the classical limit at high field for all N . The pinning effect of a positively charged
defect is strong only for two electrons. For larger numbers of electrons it is weakened by a
partial screening of the defect potential by an electron trapped in the defects neighborhood
so that the re-entrant pinning behaviour is conserved. 3) For a positively charged defect close
to the QD, a magnetic-field–induced re-orientation of the WM is predicted.
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