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Abstract. - The formation of dislocations, disclinations and their dynamics is central to our
understanding of crystalline materials. Here, the dynamics of these topological defects in two-
dimensional (2D) clusters of charged classical particles interacting through a screened Coulomb
potential is investigated through the Molecular Dynamics (MD) simulation technique. The par-
ticles are confined by a harmonic potential and coupled to an Anderson heat reservoir. We
investigate cooling rate effects on the defect dynamics by decreasing the temperature of the heat
reservoir linear in time. We found that: i) the mobility of the defects strongly depends on the
number of nearest neighbors and the nature of those defects, ii) geometrically induced defects
have different dynamics than other defects because of spontaneous pinning of the defects at the
corners of the hexagon, and iii) if the cooling speed is large enough, the system ends up in a

non-equilibrium state and a glass like structure is formed.

Introduction. — When a liquid is cooled, it can so-
lidify in two very different ways. It can form an ordered
crystal or become a glass, depending on the cooling rate.
For slow cooling rates, the system will crystallize in a
metastable state containing defects close to the ground
state. A liquid undergoes a glass transition when crystal-
lization is avoided during the cooling process. Or in other
words, when the cooling rate exceeds the relaxation time
scale of the system, the system will be out of equilibrium
and it undergoes a glass transition.

An important aspect in the formation of crystals is
the dynamics of defects during the cooling process. The
phenomenology of crystals and glass formation has been
known for decades [2,3], but we are still far from under-
standing the relevant features of molecular motion. Ex-
periments have not allowed us to directly measure how
a molecule moves relatively to a particular neighbor in
a glass or to observe which local structures are prone to
reorganization. This is the reason why one started study-
ing two dimensional systems with charged particles like
e.g. colloids [4] and dusty plasma’s [5] which display sim-
ilar phase behaviour as atoms and molecules with the
added advantage that the micrometer size of the parti-
cles and their slower dynamics make them accessible for
real space imaging [6].

In a recent study of a 3D system consisting of hard
spheres [7] dynamical heterogeneities were found. Shortly
after this experiment a new experiment showed [8] that
fast moving particles were organized in clusters. The be-
haviour of the formed clusters indicated very inhomoge-
neous relaxations. This correlated motion can play a crit-
ical role in the dynamics of the sample near the glass tran-
sition, and its consequences must be incorporated in any
theoretical treatment. In this work we want to investi-
gate if similar effects that depend on the cooling rate are
present in finite 2D systems. Omne of the questions we
want to answer is: “can we find the analogue of a glass
transition in 2D finite systems?”.

In contrast to theoretical work, where it is possible to
find the ground state for such a finite system with a lim-
ited number of particles, experimentalists always find a
metastable state of the system when cooling and anneal-
ing the system to a very low temperature. Despite this
limitation, a very good agreement between experiment
and theory was found for the dynamical properties like
melting [1,9] and reentrant behaviour [10-12], and for the
static properties like shell structure formation [9]. It was
also found that melting of a large (i.e. N < 150) 2D clus-
ter was initiated by topological defects organized at the
six corners of a hexagon which were called geometrically
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induced defects [13].

But, important questions regarding the dynamics of de-
fects and cooling rate effects in these finite 2D systems
remained unanswered. In this paper we investigate the
importance of defect dynamics in finite two dimensional
systems during the cooling process and on the formation
of crystals or glasses by measuring single defect diffusion
and the potential energy of the system. In contrast to pre-
vious theoretical studies in which the melting properties
of two-dimensional Coulomb clusters were studied [16], we
investigate here the effects of the cooling rate on the de-
fect dynamics. Up to now, only one experimental study of
defect dynamics was reported for a 3D spherical colloidal
crystal [14] where it was found that the defects assemble
into scars.

In this paper we will first show the different diffusion
mechanisms that are active and the effect of a boundary
in a finite 2D system during the formation of crystals, i.e.
by slowly cooling the system. Further we show that if the
cooling rate is increased beyond the relaxation times of
the system a glass-like structure is formed.

Model system. — We study a 2D model system of N
equally charged particles and confined in a parabolic po-
tential interacting through a repulsive screened Coulomb
potential:

N
ey
i=1

where m is the mass of the particle, r; = (x;,y;) is the vec-
tor position of the ith particle, and « the inverse screening
length. If we take as units for length r’ = (¢2/~)'/?, for en-
ergy E' = yr'? and for time t' = v/2/wy with v = mw? /2,
the potential energy can be expressed in dimensionless
form:
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All the results are given in dimensionless units. For our
numerical study we take the dimensionless inverse screen-
ing length x = 5.

We simulate the cooling of the system by performing
molecular dynamics simulations in which the system is
coupled to a heat bath as was proposed by Andersen [17].
We decrease the temperature T'(¢) of the heat reservoir lin-
early in time, i.e. T(t) = T; —~t with «y the cooling rate of
the system, ¢ the time, and T; the initial temperature. The
equation of motion is integrated with the velocity form of
the Verlet algorithm with time step At = 1073 — 1074,
The thermostat is a stochastic collision procedure which
randomly substitutes the velocities of the particles accord-
ing to a Boltzmann distribution that corresponds to the
temperature of the heat bath. To improve the statistics we
start from 50 different uncorrelated initial positions and
average all the results over these 50 independent runs.

The cooling of the system is continued until the temper-
ature of the heat bath is zero. The final obtained config-
uration is further relaxed using the Newton optimization
technique [16]. The Newton optimization method is simi-
lar to molecular dynamics simulations at zero temperature
but with increased efficiency.

A defect is defined as a particle which does not have
six nearest neighbours. The defects in the system are
characterized in different ways. We call a particle with
5 nearest neighbours as a negative or a 5-fold coordinated
defect (with topological charge -1) and a particle with 7
nearest neighbours as a positive or 7-fold coordinated de-
fect (with topological charge +1). Furthermore, defects
can arrange themselves as dislocations or disclinations. A
dislocation consists of an equal number of tightly bound
positive and negative defects with a zero total topologi-
cal charge, a disclination is a single defect with 5 or
7 nearest neighbors or by extension an array of
defects with a total net charge. The number of discli-
nations in a finite size circular two dimensional cluster
is determined by Euler’s theorem and the total topolog-
ical charge is equal to -6. These six disclinations can be
considered as geometrically induced defects. The other
defects will be called randomly induced defects.

The simulation. — In order to analyse single defect
diffusion, a new variable was constructed, as was pro-
posed by S. Ratynskaia et al. [15]. At every time step
the cumulative sum &; = Y 7_, 6&; of the azimuthal po-
sition displacements is calculated for each particle, with
0&; = r;0p;. Here r; is the distance from the center of
the cluster at time idt, and d¢; is the increment in the
azimuthal angle from time (i — 1)dt to idt. The choice of
the quantity §; is motivated by the fact that the azimuthal
displacement is not limited by the boundary in contrast
to the radial displacement. A measure which character-
izes the azimuthal diffusion of each particle is now given
by A& (1) = &j4r/5¢ — &5 over the time lag 7 = 0.1, which
we call the azimuthal diffusion parameter. In the calcu-
lation of the azimuthal diffusion parameter we only take
into account the inner particles of the cluster. The az-
imuthal diffusion of the defects is obtained by averaging
this azimuthal diffusion parameter over particles with the
same number of nearest neighbours.

Defect dynamics during slow cooling. — A lot
of research in the past was directed to the study of low
dimensional crystals. However very little is known about
the formation of crystals and the defect dynamics during
the cooling process. Here we investigate how defects are
diffusing and relaxing during the cooling process.

As reference system we choose a 200 particle system
which is large enough to see already semi-bulk effects, but
small enough to obtain results within an acceptable time
period. To be sure that all particles are initially uncorre-
lated at the beginning of the simulation we started at a
sufficiently high temperature "= 0.1. A relatively simple
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quantity to study during the cooling process is the average
proportion of 7-fold and 5-fold coordinated defects in the
system. We show in Fig. 1 the defect density as function
of temperature for a cooling rate of v = 10~%. The red
dashed line presents the density of the 7-fold coordinated
defects, the blue dotted line the 5-fold coordinated de-
fects and the black full line the other ‘neutral’ particles.
As expected, the number of defects decreases during the
cooling process because the system tries to form a crys-
talline structure in order to minimize its potential energy.

How do these defects vanish in the system? A first in-
sight is given by investigating the defect density as func-
tion of the radial position for three fixed temperatures as
shown in the density profiles of Fig. 1. For high tem-
perature (Fig. 1(c) - liquid phase) the number of defects
is large and homogeneously distributed throughout the
system. When cooling the system, we notice from Fig. 1(a)
that beside a reduction of the defect density we also ob-
serve that the defects migrate from the center of the sys-
tem to the outer shells. The signature of crystallization is
seen as indicated by the oscillations in the density profile
curves as function of the radial coordinate indicating shell
formation. Note from Fig. 1(c) that the onset of the crys-
tallization process takes place in the center. This agrees
with the results in Ref. [1] where it was shown that in a 2D
system consisting of a finite number of repelling particles
which are held together by a circular harmonic potential,
the cluster patterns are determined by the need to balance
the tendency to form a triangular lattice against the for-
mation of a compact circular shape. These defects were
called geometrically induced defects and are located at the
six corners of a hexagon. It was shown that the melting
of such a cluster is initiated by these topological defects.
In our case we cool the system to zero temperature from
an initial temperature 7' = 0.1. First the system crystal-
izes in the center and ends with a symmetry breaking at
the six corners of a hexagon. The existence of geometri-
cally induced defects is clearly visible in Fig. 1 where the
density curve of the 5-fold coordinated defects is almost
an equidistance of the 7-fold coordinated defect density
curve. By analyzing this more closely we found that on
average there are six 5-fold coordinated defects more than
7-fold coordinated defects as should be according to Eu-
ler’s theorem.

Now we will investigate the possible different defect dy-
namics and the mechanisms that lead to an annihilation of
defects. Therefore we analysed the azimuthal diffusion of
the different kind of defects. In Fig. 2(a) the azimuthal dif-
fusion of the defects for a system consisting of 200 particles
is plotted. We can clearly distinguish three phases marked
by the vertical black dotted lines: The liquid phase (IIT)
where the azimuthal diffusion of the 5-fold coordinated de-
fects (blue line with open squares) is larger than the diffu-
sion of the neutral particles (black line with closed squares)
and the 7-fold coordinated defects (red line with triangles);
the crystalized phase (I) where the azimuthal diffusion of
the 5-fold coordinated and the 7-fold coordinated defects

particles are equal, and the transition phase (IT) where the
crystalisation of the neutral particles starts and where
the diffusion of the 7-fold coordinated particles changes its
behaviour.

In order to understand the differences between the dif-
fusion curves for neutral, 5-fold and 7-fold coordinated
particles in the liquid region we have to consider two prop-
erties, first the number of nearest neighbors and secondly
the preferential triangular structure. If we look at the
nearest neighbours only, we expect a larger diffusion for
the low coordinated particles because they have by def-
inition less nearest neighbours and are consequently less
confined by there neighbouring particles. However if we
look at region IIT we see that the diffusion of the 7-fold co-
ordinated defects is only slightly lower than the diffusion
of the neutral particles which is unexpected. To explain
this behaviour we have to take into account the distortion
of the triangular lattice by the 7-fold coordinated particles
which leads to a higher mobility of the particles around
the distortion. We can conclude that the distortion of the
lattice by the positive defects compensates the effect of
a lower coordination number leading to similar diffusion
properties as for neutral particles.

If we cool down the system further till region I, the geo-
metrically induced disclinations will occupy the 6 corners
of a hexagon. Those defects, which are 5-fold coordinated,
will be pinned at those corners because of geometrical con-
siderations and are less mobile than the randomly induced
defects. These disclinations will grow by adding 5-7 fold
coordinated pairs forming a chain of alternating 5-fold
and 7-fold coordinated defects. As a result, in region I
the motion of the 7-fold coordinated defects becomes cou-
pled with the motion of the 5-fold coordinated defects and
both diffusion curves become equal. Therefore the diffu-
sion of the 7-fold coordinated defects is first decreasing
(region IIT) and then increasing (region IT) with decreas-
ing temperature, which is a clear reentrant behaviour of
the azimuthal diffusion of 7-fold coordinated defects. To
investigate the pinning phenomenon more closely we tried
to make a distinction between geometrically and randomly
induced defects because we expected the geometrically in-
duced defects to be less mobile and more stable than ran-
domly induced defects. Therefore we studied the diffu-
sion of defects in a smaller system, where the number of
randomly induced defects is smaller and the geometrical
defects are more predominant. In Fig. 2(b) the diffusion
of defects in a system consisting of 100 particles is given.
Here we found the azimuthal diffusion of the 5-fold coor-
dinated defects indeed to be smaller than the diffusion of
the 7-fold coordinated particles.

Formation of a glass. — So far we discussed the
dislocation dynamics during slow cooling. Here, in this
section we will show the importance of the cooling speed
on the formation of crystals and glasses.

Like mentioned before the temperature of the system is
decreased linear in time by decreasing the temperature of
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Fig. 1: (color online) Probability of finding neutral and defect particles as function of temperature for a cooling rate of v = 107%.
The red dashed line shows the 7-fold coordinated defects and the blue dotted line the 5-fold coordinated defects. The inverse
screening length of interaction is k = 5. The figures at the right show the density profile of the z=5,6,7 coordinated
particles as function of radial distance at T=0.1 (labeled with (al) and (a2)), T=0.05 (labeled with (b)) and
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T=0.009 (labeled with (c)), respectively.
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Fig. 2: (color online) (a) The azimuthal diffusion of a system consisting of 200 particles as function of temperature. The red
triangles show the 7-fold coordinated defects, the blue squares the 5-fold coordinated defects and the black circles give the
results of the 6-fold coordinated particles. (b) The same as (a) but now for a system consisting of 100 particles.
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the heat reservoir. This heat reservoir is strongly coupled
to the system so that, when the system is cooled at very
high cooling rates, it will follow the temperature of the
heat reservoir. (A weakly thermal coupled system results
only in more noisy results because the timescale of the
internal dynamics becomes larger than the timescale of
cooling).

Often in the literature the glass transition is determined
as the point where the total energy-temperature curve is
bending. Because in our case the external work on the
system is zero and the kinetic energy is linearly decreasing
with temperature due to the strong thermal coupling, it
is appropriate to look for a bend in the potential energy
curve.

In Fig. 3 the potential energy as function of tempera-
ture is given for several cooling rates investigated for a 200
particle system. For decreasing cooling rate the system
approaches the behaviour given by the blue dotted curve.
This limit is reached when the cooling of the system is
sufficiently slow such that its potential energy can attain
its minimum. If a system exceeds this critical cooling rate
the system will no longer be in thermodynamic equilib-
rium and a glass transition occurs, or more precisely,
the system is not able anymore to stay closely to
a local or global minimum energy configuration.
The temperature at which a bend in the kinetic energy
occurs is identified as the glass transition temperature
(see Fig. 3(b)).

To show the influence of the cooling rate on the glass
transition, Fig. 4 shows the glass transition temperature
and the number of defects after cooling as function of the
cooling rate. A small increase of the glass transition tem-
perature is found but a sudden increase occurs if a critical
cooling rate is reached. This behaviour is explained by the
fact that for high cooling rates the system is no longer in
thermodynamic equilibrium and consequently the system
is no longer able to minimize its potential energy. If the
cooling rate is large enough the system will reach a config-
uration with maximal energy and number of defects which
is indicated by the red dash dot line in the potential curve
in Fig. 3(b).

Conclusions. — We have performed molecular dy-
namics simulations of a screened Coulomb clusters in order
to investigate the role of defect dynamics during the for-
mation of crystals and the influence of the cooling rate on
the formation of glasses.

Our analysis on the formation of crystals shows that
defects are vanishing in the center first and are pinned at
the corner of a hexagon at zero temperature. For large
clusters, a clear reentrant behaviour of the azimuthal dif-
fusion of 7-fold coordinated defects was observed. The
geometrically induced defects are shown to be less mobile
in comparison with the randomly induced defects.

Our analysis of the formation of glasses show a cooling
rate dependency of the glass structure. A glass was formed
when the cooling rate is so high that the relaxation times
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Fig. 4: Glass transition temperature (squares) and number of
defects after cooling (stars) as function of the cooling rate ~y

of the system at the glass transition temperature is no
longer able to equilibrate the system.
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