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The saddle points of the free energy separating the stable states with a different number of vort
are obtained numerically. In contrast to known surface and geometrical barrier models, we find tha
a wide range of magnetic fields below the penetration field, the saddle point state for flux penetra
into a disk does not correspond to a vortex located near the sample boundary, but to a region
suppressed superconductivity at the disk edge with no winding of the current, and which isa nucleus
for the following vortex creation. The height of thisnucleation barrier, which determines the time of
flux penetration, is calculated for different disk radii and magnetic fields.
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The study of magnetic flux penetration and expulsion
type-II superconductors has traditionally attracted much a
tention in view of important technological and fundamenta
questions concerning hysteretic behavior and phase tra
tions in bounded samples. The vortex creation problem
also related to phase transitions in superfluids. It is we
known [1] that for type-II superconductors (l�j . 1�

p
2;

l, j are the penetration and coherence lengths, resp
tively), the Meissner state becomes energetically unf
vorable with increasing magnetic field atH � Hc1 in
comparison to the Abrikosov vortex lattice. In a finite
system these two states, which correspond to minima
the superconductor free energy, are separated by a b
rier. Therefore, a first-order transition between the Meis
ner and Abrikosov states takes some time which decrea
with temperature and approximately follows an Arrheniu
law t ~ exp�U�kT �, whereU, T are the barrier height and
sample temperature, respectively. ForT � 0, the Meiss-
ner state survives up to the penetration fieldHp and transits
suddenly to the Abrikosov state due to dynamic instabili
of the order parameter [2]. With decreasing the magne
field at zero temperature, the vortex state remains sta
up to the expulsion fieldHe , Hc1 and then goes to the
Meissner state due to vortex expulsion.

The origin of barriers for flux penetration and expulsio
has been discussed during the last thirty years. Accord
to the Bean-Livingston (BL) model [3], thesurface barrier
appears due to a competition between the vortex attract
to the sample walls by its mirror image and its repulsio
by screening currents. This model was further develop
for (i) cylindrical samples, where the vortex shape wa
assumed not to be an infinite line but a semicircle [4
(ii) thin disks [5], and (iii) strips [6], where shielding, due
to finite size effects, does not decay exponentially. F
samples with a nonelliptical cross section, thegeometrical
barrier arises because of Meissner screening curren
flowing on the top and bottom surfaces of a flat strip [7]. I
addition,vortex pinning by defects can play an important
role in the delay of vortex expulsion or promotion o
vortex penetration. It should be stressed that the abo
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mentioned barrier models, which are based on the Lond
theory, do not account for the process of vortex formati
and describe only the vortex motion far from the samp
boundary. The Ginzburg-Landau (GL) theory has be
previously applied for the study of barriers only for th
1D cases of narrow wires and rings [8]. The approach
based on solving time-dependent GL equations [2] allo
one to treat flux penetration (expulsion) only for magne
fields higher (lower) than the penetration (expulsion) fie
In this Letter, starting from the nonlinear GL theory w
present an approach for finding the saddle point states
thin disks and calculate numerically the heights of the fr
energy barriers separating the stable states with a diffe
number of vortices.

We consider a superconducting defect-free disk with
diusR and thicknessd immersed in an insulating medium
in the presence of a perpendicular uniform magnetic fie
H. For thin disksRd ø l2 we can neglect the distortion
of the magnetic field, which are induced by screening a
vortex currents, and write the GL functional as

G � Gn 1
Z

d �r

√
ajCj2 1

b

2
jCj4 1 C�L̂C

!
, (1)

whereG, Gn are the free energies of the superconducti
and normal states;C is the complex order parameter;L̂ �
�2ih̄ �= 2 e� �A�c�2�2m� is the kinetic energy operator for
Cooper pairs of chargee� � 2e and massm� � 2m; �A �
�efHr�2 is the vector potential of the uniform magneti
field written in cylindrical coordinatesf, r; and a, b

are the GL coefficients depending on the sample tempe
ture. Expanding the order parameterC �

PN
i Cici in the

orthonormal eigenfunctions of the kinetic energy oper
tor L̂ci � eici [9–11] we go from the functional form (1)
to the free energy written in terms of complex variables

G 2 Gn � �a 1 ei�CiC
�
i 1

b

2
A

ij
klC

�
i C

�
j CkCl , (2)

where the matrix elementsA
ij
kl �

R
d �r c

�
i c

�
j ckcl are cal-

culated numerically. Note that the sample geometry ent
in the calculations only through the eigenenergiesei and
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eigenfunctions ci , which are well known for the disk case
[10,12]. In thin (d ø j) disks these eigenfunctions have
the form ci��l,n� � exp�ilf�fn�r�, where l is the angular
momentum and the index n counts different states with the
same l. In contrast to the approaches [9–11], we do not
restrict ourselves to the lowest Landau level approxima-
tion (i.e., n � 1) and expand the order parameter over all
eigenfunctions with ei , e�, where the cutting parameter
e� is chosen such that increasing it does not influence our
results. The typical number of complex components used
are in the range N � 30 50. Thus the superconducting
state is mapped into a 2D cluster of N classical particles
�x, y� $ ���Re�C�, Im�C����, which is governed by the Hamil-
tonian (2).

To find a saddle point, which presents an extremum
of the free energy, we use a technique similar to the
following eigenvector method [13]. We start with some
set of coefficients C. In the vicinity of this point the
free energy dG � G�Cn� 2 G�C� can be represented as
a quadratic form for small deviations d � Cn 2 C:

dG � Fmd�
m 1 Bmndnd�

m 1 Dmnd�
nd�

m 1 c.c. , (3)

whereFm � �a 1 ei�Cm 1 bA
mj
kl CjC

�
kCl , Bmn � �a 1

em�Imn 1 2bAmn
kl CkC

�
l , Dmn � bAmn

kl CkCl , and Imn is
the unit matrix. The quadratic form (3), which is Her-
mitian, can be rewritten in normal coordinates dm �
xkQk

m as dG � 2�gkxk 1 hkx
2
k �, where gk � Qk

mFm, the
eigenvalues hk and eigenvectors Qk are found by solving
numerically the following equation:Ç
B 1 Re�D� Im�D�

Im�D� B 2 Re�D�

Ç
?

Ç
Re�Qk�
Im�Qk�

Ç
� hk

Ç
Re�Qk�
Im�Qk�

Ç
.

Moving in the direction with negative free energy gradient
2gk we will approach a minimum of the free energy
corresponding to the ground or a metastable state. In
order to find a saddle point we move to a minimum
of the free energy in all directions xkfil � 2gk��e 1

hk� except one, which has the lowest eigenvalue, and
for which we go to a maximum xl � gl��2e 1 hl�,
and find Cn

m � Cm 1 xkQk
m for all k. The iteration

parameter e . 0 controls the convergency, which is
always reached for any initial state close enough to a
saddle point. Starting from different initial states, for
which the coefficients C are chosen randomly, we find
the saddle points for different magnetic fields (Fig. 1).
Because of fluctuations (i.e., thermal, etc.) the system
will be able to reach the saddle point and can then
transfer to the other superconducting state. When the
magnetic field approaches the expulsion or penetration
field, the attraction region of a saddle point state decreases
and random searching becomes inefficient. Therefore, to
trace the saddle point evolution in the vicinity of the
penetration (expulsion) field we start from the saddle point
state and increase (decrease) the magnetic field up to the
penetration (expulsion) field, when the lowest eigenvalue
goes to zero (see Fig. 2, dashed curve).
2410
FIG. 1. Schematical view of the free energy in functional
space depicting two minima with L � 2 and L � 3 vortices
and the saddle point connecting them. The Cooper pair
densities of these three states are shown in the insets.

The spatial distributions of the superconducting elec-
tron density jCj2 and velocity �V � h̄ �=S 2 2e �A�c [C �
F exp�iS�] in the saddle point state corresponding to the
transition from the Meissner state to the vortex state are
depicted in Figs. 3 and 4 for different magnetic fields and
disk radius R � 4.8j. These figures demonstrate two dif-
ferent stages in the saddle point evolution. Below the
penetration field, the saddle point state corresponds to a
region of suppressed superconductivity [Fig. 3(d)] with a
minimum of jCj2, which is located at the disk boundary.
While the minimum value of the order parameter remains
different from zero, the vorticity L �

R
d�l ≠S�≠�l�2p ,

where integration is performed along the disk boundary,
equals zero and the supervelocity distribution is simi-
lar to that of the Meissner state [Fig. 4(a)]. When the

FIG. 2. The minimal density of superconducting electrons
jCj2 at a point of the disk boundary (solid curve), measured in
2a�b, and the curvature h (dashed curve) of the free energy
curve for the transition between the Meissner and vortex states.
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FIG. 3. Density of superconducting electrons jCj2 in the
saddle point states corresponding to the transition 0 $ 1 for the
disk radius R � 4.8j and different magnetic fields. The signs
(1), (2) denote the maxima and minima of jCj2, respectively.

order parameter reaches its zero value at the nucleation
field Hn (Fig. 2, solid curve), the vorticity transits sud-
denly to L � 1. For lower magnetic fields H , Hn, the
saddle point state presents a vortexlike state with closed
velocity circulation [Fig. 4(b)]. Note that this transition is
not followed by any discontinuity in the free energy or the
curvature h of the potential curve. With further decreas-
ing of the magnetic field, the saddle point corresponds to a
vortex closer to the disk center [Figs. 3(b) and 3(a)]. This
physical picture of flux expulsion and penetration remains
valid for other transitions L $ L 1 1 with different L,
independently of the disk radius and the type (giant vor-
tex or multivortex [11]) of superconducting state.

The free energy, measured in the condensation energy
G0 � a2pR2d�2b, is shown in Fig. 5 for the saddle
point (dotted curves) and stable (solid curves) states
for the disk radius R � 4.8j. The difference between

FIG. 4. The velocity of superconducting electrons in the
saddle point states corresponding to the transition 0 $ 1 for
the disk radius R � 4.8j and for two different magnetic fields.
the free energy of the saddle point state and the nearby
metastable state corresponds to the transition barrier
shown in the inset in Fig. 5 for transition 0 $ 1. As
seen from Fig. 5, the penetration barrier grows more
slowly deep inside the metastable region than the expul-
sion barrier. Therefore, we expect a larger fluctuation
of the penetration field at a finite sample temperature,
which agrees with recent experimental observations by
Geim [14].

Below the nucleation field, when the saddle point state
is similar to a vortex state, the penetration and expulsion
barriers (see Fig. 6) can be estimated from the London
theory, which leads to the following expression for the
vortex free energy [15]

G1

4pG�
� ln

√
R2 2 r2

rcR

!
2 F

√
1 2

r2

R2

!

1
1
4

√
F2 2

R2

j2

!
, (4)

where G� � a2j2d�2b � G0j2�pR2, r is the radial
vortex position, rc � j is the vortex core radius, F �
pHR2�F0 is the unitless magnetic flux, and F0 � hc�2e
is the flux quantum. Note that (i) the expulsion field He �
F0�pR2, (ii) the vortex position rs � R

p
1 2 1�F in

the saddle point, and (iii) the BL expulsion barrier U �
G1�rs� 2 G1�0� � 4pG��F 2 1 2 ln F� does not de-
pend on the vortex core energy, which is represented by the
first term in Eq. (4). As seen from Fig. 6(a), the London

FIG. 5. The free energy of the stable (solid) and saddle point
(dotted curves) states as a function of the magnetic field,
measured in Hc2 � F0�2pj2, for different angular momenta
L. The inset shows the expulsion (solid circles) and penetration
(open circles) barriers found with our modified Bean-Livingston
model (symbols) which are compared to our GL approach
(curves) for the transition 0 $ 1.
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FIG. 6. The expulsion (a) and penetration (b) barrier as a
function of the magnetic field for different disk radii. The
dashed curve corresponds to the London limit for the expulsion
barrier. The solid circles correspond to the penetration barrier
at the nucleation field.

theory prediction for the expulsion barriers are confirmed
by the GL theory in the limit of large disks R ¿ j. We
extended the BL model to arbitrary R�j by taking into ac-
count the spatial nonuniformity of the modulus of the order
parameter, which obeys the first GL equation

2
h̄2

2m�

"
�F 2

√
�=S 2

2e
h̄c

�A

!2

F

#
� 2aF 1 bF3,

(5)
with the boundary condition �≠F�≠r�r�R � 0. Follow-
ing the BL model we assume that the phase distribution
is created by a vortex and its mirror image, which are
located at the distances ry ,R2�ry from the disk center
[5,15], respectively. Solving Eq. (5) numerically for dif-
ferent vortex positions ry we find the expulsion (solid
circles) and penetration (open circles) barriers shown in the
inset in Fig. 5. Below the nucleation field there is an ex-
cellent quantitative agreement between our GL theory and
this improved BL model. Nevertheless, this model breaks
down in the range Hn , H , Hp . Note that the barrier
height at H � Hn increases with disk radius and the role of
the nucleation barrier may become even more important
in macroscopic systems, where possible 3D (for d . j)
and demagnetization (for Rd . l2) effects must also be
taken into account. In the unitless variables 2pHjR�F0
(F�F0), the penetration (expulsion) barriers measured in
G� are proportional to the disk thickness and increase
slightly with the disk radius.

In conclusion, we have demonstrated that in a wide
range of magnetic fields Hn , H , Hp the saddle point
state presents a vortex nucleus, which is a region of
suppressed superconductivity surrounded by a background
of Meissner state, which transits to a vortex state at
H , Hn. We have found the penetration field and the
corresponding nucleation barriers for thin disks. For
lower magnetic fields He , H , Hn, the saddle point
2412
state can be reasonably described by the conventional
London theory. We also extended the BL model to finite
disk radius.
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