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Taking into account the bilinear coupling between the tunneling protons and the displacements
the electron shells of the surrounding PO4 groups, we present a new model of hydrogen-bonded ferro-
electrics. The model is an extension of both the tunneling model and the nonlinear polarizability mod
and includes the geometrical aspects of the hydrogen bond. It leads to a structural phase trans
and describes the isotope effect due to the substitution HyD in KH2PO4 and the pressure dependence.
[S0031-9007(98)05455-6]
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For a long time, the understanding of the structur
phase transitions in hydrogen-bonded ferroelectric ma
rials (for a review, see [1]) has been based on the qu
tum tunneling model introduced by Blinc [2,3]. In the
disordered phase at high temperature, each hydrogen
(proton) occupies with equal probability two equilibrium
positions in a symmetric double well potential. Proto
tunneling between these positions opposes localizati
With decreasing temperature, the tunnel mode frequen
decreases and its softening induces a structural ph
transition with long range order in the proton position
Within this model, the phase transition is driven by th
direct proton-proton interaction. The experimentally ob
served isotope effect [in KH2PO4 (KDP), the transition
temperature isTc ­ 122 K, while in KD2PO4 (DKDP),
Tc ­ 229 K] is attributed to a change in tunneling fre
quency caused by the mass change from H to D [2–
In the last ten years, high-resolution neutron diffractio
work [5] has provided increasing evidence that this vie
of the structural phase transition has to be extended.
has been shown that structural changes in the geome
of the hydrogen bond which accompany the HyD sub-
stitution (the so-called Ubbelohde effect [6]) are close
connected with the microscopic mechanism of the pha
transition. It is found that the distanced between the
two equilibrium positions of the proton increases upo
deuteration. The diffraction results [7] lead to the con
clusion thatd is the principal factor which determines
Tc. Since the geometry of the hydrogen bond depends
the surrounding lattice configuration, it is necessary [
to develop a theory which takes into account in a co
sistent way the coupled host-and-tunneling system. T
coupling between the proton tunneling mode and the o
tical mode vibration of thefK PO4g complex in KDP
has been treated previously by Kobayashi [9]. How
ever, the geometrical aspects of the hydrogen bond
not given special attention. The coupling of the optic
lattice mode to the tunneling mode is only a relative
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small effect, while the direct proton-proton interactio
drives the phase transition [9]. A different approach
hydrogen-bonded ferroelectrics has been proposed wit
the oxygen ion polarizability model [10–12], but there
too, the geometry of the hydrogen bond is not taken in
account.

In the following, we will present a new model for
hydrogen-bonded ferroelectrics where the structural co
figuration of the proton is included. Although we refer t
KDP-DKDP, the theory is also applicable to other system
like C4H2O4 (squaric acid) [13] and SCsNH2d2 (thiourea)
[14]. The model is based on the interplay between t
tunneling motion of the protons (deuterons), the polar
ability changes of the neighboring PO4 groups, and the
optical phonon mode of thefK-PO4g complexes. In or-
der to have an analytically tractable problem, we restr
ourselves to a two dimensional model of KDP, which
shown in Fig. 1. Here, a formula unit consists of a K1

ion, a PO4
2 group, and one single proton [the situatio

is analogous to PbHPO4 (LDP), which is an experimental
model system for the study of hydrogen ordering pha

FIG. 1. Hydrogen bond geometry (not to scale):1 and 2
are H1 positions dy2 and dy2, respectively;P and S are
PO4

22 core and shell; K1 is kalium ion; dotted lines indicate
contributions toCs $dd; ] is angleC.
© 1998 The American Physical Society 2173
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transitions [7] ]. We treat the PO4 group as a compos-
ite structure which consists of a central core of massMP

surrounded by its electron shell of massmS , and neglect
the tetrahedral shape of PO4. The displacement of the
electron shell along thez axis is an additional degree o
freedom which accounts for the nonlinear polarizabili
of PO4

22. The hydrogen bond is directed along the lin
which joins the centers of two neighboring PO4 groups,
parallel to they axis. The geometry of the H positions in
the paraelectric phase is inferred from diffraction expe
ments [5]. With respect to the center of the bond, the tw
equilibrium positions of the proton aresdyy2, dzy2d and
s2dyy2, 2dzy2d. Here,dy ­ d cosC anddz ­ d sinC,
whereC is the inclination angle between they axis and
the proton hopping trajectory. In KDP, high-resolutio
neutron diffraction experiments yield [5]C ­ 8.8± and
d ­ 0.3647 Å; in DKDP, C ­ 7.4± and d ­ 0.4462 Å.
The bond symmetry is C2h [15]. The Hamiltonian
i
e
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H ­ HT 1 HL 1 HTL (1)

consists of the tunneling protonsHT , the host latticeHL,
and a couplingHTL. The tunneling model [2] ofN
interacting protons is described by [16]

HT ­ 2
1
2

X
$q

Js $qdSzs $qdSzs2 $qd 2 VSxs $q ­ 0d
p

N .

(2)

The equilibrium positions of each proton to the right or t
the left of the bond center are described by the pseudos
Sz with values11 and21, respectively. In Fourier space
Js $qd is the proton-proton interaction with wave vector$q.
The operatorSx accounts for proton tunneling;V is the
tunnel frequency. The host lattice dynamics comprise
displacements along thez axis of the K1 ions, of the PO4
cores, and of the PO4 shells. We writeHL ­ TL 1 UL,
with potential energy
UL ­
1
2

X
$q

("
v2

Ps $qd 1
g

MP

#
f

y
Ps $qdfPs $qd 1

2f
mK

f
y
K s $qdfKs $qd

1 s2f 1 gduys $qdus $qd 2 2
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2f

p
mK

f
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Ks $qd 1
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MP
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Ps $qd
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us $qd

)
, (3a)
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and kinetic energy

TL ­
X
q

1
2

hpy
P s $qdpPs $qd 1 p

y
K s $qdpK s $qd

1 mS ÙuysqdÙusqdj . (3b)

Here,fPy
p

MP denotes the displacement of the PO4 core
center of mass,fKy

p
mK is the displacement of the K1

ion, and u and Ùu are the displacement and velocity o
the PO4 shell, respectively. The masses areMP , mK , and
mS , respectively;pP andpK are the momenta conjugate
to fP andfK . The HamiltonianHL is equivalent to the
one introduced for the nonlinear-polarizability model [12
of perovskites ABO3. The spring constantf couples the
motion of the K1 ions to the PO4 shell displacements.
The direct couplingf 0 between PO4 cores describes the
transverse acoustic modes and is irrelevant in the lo
wavelength limit, wherev2

Ps $qd vanishes. The local core-
shell couplingg consists of a harmonic attractive par
g2 and a fourth order repulsive anharmonic partg4. In
renormalized harmonic approximation, it reads

g ­ g2 1
3g4

N

3
X

$q

*√
uys $qd 2

f
y
Ps $qd

p
MP

! √
usqd 2

fPs $qd
p

MP

!+
. (4)

where the bracketsk l stand for a thermal average. The
interactionHTL between the host lattice and the tunnelin
system is modeled by two back to back Morse potentia
between each proton and the shells of the two neighbor
PO4

22 groups [17]. The shells play, alternatively, th
role of H1 donor or acceptor. For each proton, th
f
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ng
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potential reads

V ­
X
r

s1 1 erSzd
2

hV Mfj $Xrsrdjg 1 V Mfj $Xrsldjgj .

(5)

Here, the indexr stands for6, with ´1 ­ 11 and´2 ­
21. The distance between the proton and the center
the PO4 shell to the rightsrd or to the left sld side of
the bond center isj $X6sjdj ­ hsR 2 R0 7 ´jdyy2d2 1

fusjd 7 dzy2g2j1y2, with ´j ­ 11 or 21 for j ­ r or
l, respectively. The Morse potential reads

V Msj $Xjd ­ Dfe22aj $Xj 2 2e2aj $X jg , (6)

where2R is the equilibrium distance between the cente
of the two neighboring PO42 groups;D, a, and R0 are
potential parameters. For the case of zero displaceme
in the z direction, the potentialV , Eq. (5), becomes
a double minimum potential [17]. The experimenta
values [5] are2R ­ 2.4946 Å, dy ­ 0.3604 Å, anddz ­
0.0558 Å in KDP; and2R ­ 2.5230 Å, dy ­ 0.4424 Å,
anddz ­ 0.0575 Å in DKDP. ExpandingV with respect
to the shell displacementsu and summing over the lattice,
we obtain, in the long wavelength regime,

HTL ­ Cs $dd
X

$q

Syzs $qdus $qd , (7)

with

Cs $dd ­ 2
dz

2

"
1

j $X0
1srdj

≠V Mfj $X0
1srdjg

≠j $X0
1srdj

1
1

j $X0
2srdj

≠V Mfj $X0
2srdjg

≠j $X0
2srdj

#
. (8)



VOLUME 80, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 9 MARCH 1998

e

n
-
ts
h

]
en
e
n

d
o
a

-

Here, the index 0 indicates that$X0
6 are taken atu ­ 0.

Although Cs $dd changes sign under inversion of$d, physi-
cal quantities such asTc (see below) depend only on th
absolute value ofCs $dd. The absolute values ofCs $dd for
KDP and DKDP are given in Table I. The interactio
HTL, which is inspired from the theory of translation
rotation coupling in ionic molecular crystals [18], reflec
the difference in electronic structure [15] between t
donor and acceptor oxygen atoms.

We use standard Green’s functions techniques [19
describe the dynamics of protons and the displacem
of ions. Starting from the Hamiltonian (1), we hav
obtained equations of motion for the retarded Gree
functions kkAys $qd; Szs $qdllv, where the operatorA stands
for fP, fK, u, or Sz andSy , and wherev is the external
frequency. The PO4 shell displacements are eliminate
by the adiabatic approximation. The coupled motion
the K and PO4 core masses is transformed to optic
displacement coordinates:

js $qd ­
r

m

MP
fPs $qd 2

r
m

mK
fKs $qd , (9)
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TABLE I. Absolute values of couplingCs $dd (units KyÅ) for
several potential parametersa (units Å21), and R0 (units Å).
Values of2R, dx , anddy as given in the text;djDKDPydjKDP ­
1.22; D ­ 34 120 K; r ­ CjDKDP yCjKDP .

CjKDP CjDKDP r

a ­ 4.68 27 499.0 32 193.9 1.171
R0 ­ 1.00
a ­ 4.95 29 665.6 35 036.1 1.181
R0 ­ 1.00
a ­ 4.95 20 915.6 25 209.56 1.201
R0 ­ 0.95

where m ­ mK MPysmK 1 MPd is the reduced mass.
Treating the tunneling system in molecular field ap
proximation [3], we obtain, in the long wavelength
limit,

sv2 2 v2
0 d kkjys $qd; Szs $qdllv ­

C
p

m

sg 1 2fd

"
g

MP
2

2f
mK

#
3 kkSzys $qd; Szs $qdllv ,

(10)
sv2 2 Ṽ2d kkSzys $qd; Szs $qdllv ­ kSxlV

(
1 1

C
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"
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#
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)
. (11)
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Here, v
2
0 ­ 2fgyms2f 1 gd is the squared optica

mode frequency of the host lattice, whilẽV2 ­ V2 2

VkSxl fJ 1 C2ysg 1 2fdg, and T is the tempera-
ture. The direct proton-proton interaction is given
J ; Js $q ­ 0d . 0. In the following, we will always
assume thatV , T and, hence,kSxl ­ Vy4T . The
renormalized tunneling frequencỹV is modified by
the direct and by the PO4 shell mediated proton-proto
interaction. By studying the resonances of the coup
system (10) and (11) in the static limitv ­ 0, we find an
instability under the condition

Ṽ2v2
0 ­

C2VkSxlm
sg 1 2fd2

√
g

MP
2

2f
mK

!2

, (12)

which corresponds to a structural phase transition of s
ond order. SincekSxl and g depend onT , Eq. (12) de-
termines the transition temperatureTc. In the absence o
couplingC between protons and PO4 motion, Eq. (12) re-
duces toṼ

2
0v

2
0 ­ 0, whereṼ

2
0 ­ V2 2 VkSxlJ is the

resonance frequency of the tunneling model, whilev
2
0 is

the resonance frequency of the polarizability model.
phase transition occurs either at (i)Ṽ

2
0 ­ 0 (proton in-

duced) or at (ii)v2
0 ­ 0 (polarizability induced), depend

ing on which instability takes place first with decreasi
temperature.

In the presence of the couplingC, we first discuss ana
lytically limiting cases. For a large optical mode fre
quency [bothf andg are large, such thatJ ¿ C2ys2f 1

gd], the transition is driven by the condensation of the p
d

c-

-

ton motion. Relation (12) yields

Tc ­
1
4

(
J 1

C2

2f 1 g

"
1 1

m2

2fg

√
g

MP
2

2f
mK

!2#)
.

(13)
Here, we have assumed that the temperature depende
of g is negligible. The coupling of the protons to the
lattice tends to enhanceTc, but sincef and g are large,
this effect is small, in agreement with [9]. Oppositely, if
the direct interaction between protons is negligible,J ­
0, the phase transition is driven by the condensation of th
optical mode. Theng becomes small as a consequence o
the nonlinear polarizability: g , f; v

2
0 ø gym; Ṽ2 ø

V2. TheT dependence of the renormalized couplingg is
due to the second term on the right-hand side of Eq. (4
We eliminate the proton motion by means of Eq. (10) an
write, for the mean square displacements of the optic
mode,

1
N

X
$q

kjys $qdjs $qdl ø Tx0 , (14)

wherex0 is the single particle susceptibility. Since the
sum over$q suppresses critical behavior, we approximat
x0 by aT -independent constant.

We then obtain

gsTd ­ g2 1
3g4

m

"
T 1

m

mK

C2

4f

#
x0 , (15)
2175
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FIG. 2. Variation ofTc with absolute value of couplingCs $dd
(units 104 KyÅ).

and Eq. (12) reduces to

gsTcd 2

√
m

mK

!2
C2

4Tc
­ 0 . (16)

Here, gsTcd stands for the right-hand side of
Eq. (15), with T ­ Tc. Defining Ĉ ­ smymKd sCy2d,
ĝ4 ­ 3g4x0ym, f̂ ­ smymK df, and u ­ jg2jyĝ4, we
solve Eq. (16) forTc . 0,

Tc ­
u 2 Ĉ2yf̂ 1

q
su 2 Ĉ2yf̂d2 1 4Ĉ2yĝ4

2
. (17)

In the absence of the couplingC between the proton
and the PO4 shells, Tc ­ u, which is the transition
temperature of the nonlinear polarizability model [10
We recall that the coupling, Eq. (8), depends on th
geometry of the hydrogen bond and, hence, express
(17) allows us to discuss the isotope effect. Assumin
sĈ2yf̂d , u and s4Ĉ2yĝ4d1y2 , u, we expand the right-
hand side of Eq. (17) in terms ofC and obtainTc ­ u 1

aĈ2, wherea ­ s f̂ 2 jg2jdysjg2jf̂d. From the nonlinear
polarizability model [10], we infer that̂f . jg2j and,
hence, a . 0. The coupling C leads to an increase
of Tc and, sinceCjDKDP . CjKDP (see Table I), the
transition temperature is larger for DKDP than for KDP
We emphasize that the direct proton-proton interaction
negligible, while the interaction which is mediated by th
coupling of the proton to the PO4 shells is essential.

We have solved numerically, Eq. (12), forTc as a
function of the interaction parameters. We start from
a set of parameters which yieldsTc for KDP close to
the experimental value. ForC ­ 21 732 KyÅ and values
of g2, g4, and f close to the ones used for perovskit
oxides [12], we getTcjKDP ­ 115 K. In Fig. 2, we have
plottedTc as a function ofC, keeping the other parameters
fixed. Deuteration affectsC and, from Table I, we have
r ­ CjDKDPyCjKDP ø 1.2. From Fig. 2, we then find
TcjDKDP ­ 168 K. We have checked thatC depends
2176
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ion
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only weakly on J, g2, and g4, but strongly on f,
the coupling between the K1 ion and the PO4 shell.
However, the last effect should not depend on deuterati

Neutron diffraction experiments [5] have demonstrat
the reduction ofd with pressure. Our results (Table I
indicate thatC decreases with decreasingd and, from
Fig. 2, we see thatTc then decreases. Hence, the prese
theory accounts for the decrease ofTc with increasing
pressure [5,7].

We have presented a model for the phase tran
tion mechanism in hydrogen-bonded ferroelectrics, whi
takes into account the effect of the H separationd on
the PO4 shell displacements. The theory describes, in
consistent way, two important phenomena: the increase
Tc upon deuteration and the decrease ofTc with applied
pressure.
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