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Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent
because of the conduction and valence bands. We investigate the superfluid crossover properties as
functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a
significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the
conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein
condensate (BEC) regime at low densities. At a given larger density, a band gap Eg ∼ 80–120 meV can
carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for
realization of high-Tc superfluidity.
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The recent fabrication of two very close, but electrically
isolated, conducting bilayer graphene sheets, one contain-
ing electrons and the other holes [1–4], raises exciting
possibilities of observing high-temperature superfluidity
[5], since the electrons form pairs with the holes through
very strong Coulomb attraction [6,7].
In bilayer graphene, the Fermi energy can be tuned

continuously relative to the average strength of the
Coulomb interactions between carriers [5]. Metal gates can
be used to change the carrier densities [8] so as to tune each
sheet from the high-density regime ofweak interactions to the
low-density regime, where the average Coulomb interactions
between carriers are much larger than their kinetic energies.
However, the touchingof the conduction and valence bands at
the semimetallic point means that at low densities, carriers
from the two bands can strongly affect each other, and this
weakens the superfluid pairing. A tunable energy band gap
inserted between the conduction and valence bands by
application of electric fields perpendicular to the sheets [9]
can be used to decouple the conduction andvalence bands.By
contrast, in multicomponent high-Tc iron-based supercon-
ductors, the carrier densities are difficult to tune and their
energy band structure is fixed [10,11].
We investigate the effect of the multibands at zero

temperature on the superfluid BCS-BEC crossover and
Bose-Einstein condensate (BEC) regimes as functions of
the tunable carrier densities and energy band gap Eg, in
order to identify optimal combinations of the experimental
parameters for superfluidity. We find that the crossover
properties are sensitive to both the carrier densities and the
energy band gaps.
Our standard multiband Hamiltonian is specified in

Eq. (S1) of the Supplemental Material [12], which is based
on Refs. [13,14]. We include intraband pairing and
Josephson-like pair transfer between the conduction and

valence bands, which are labelled by γ ¼ �. Our neglect of
crosspairing is justified later in the Letter. The coupled
mean field gap equations at zero temperature for equal
electron and hole densities are [13],

Δγ
k ¼ −

X

k0;γ0
Fγγ0
kk0Vkk0

Δγ0
k0

2Eγ0
k0
; ð1Þ

where Eγ
k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξγkÞ2þðΔγ

kÞ2
q

and ξγk ¼ ðξðeÞγk þ ξðhÞγk Þ=2. The
form factor for the overlap of the single-particle state jki in
band γ with jk0i in band γ0 is given by [15]

Fγγ0
kk0 ¼ 1

2
½1þ γγ0ðcos αk cos αk0 þ sin αk sin αk0 cos 2ϕÞ�;

ð2Þ

where ϕ ¼ cos−1ðdkk0Þ and αk ¼ tan−1½ℏ2k2=ðm�EgÞ�. We

note the important dependence of Fγγ0
kk0 on Eg.

To determine the chemical potential μ, we take for the
density control parameter for each bilayer sheet [16,17],

nþ0 ¼ gsgv
X

k

½ðvþk Þ2 − ðu−k Þ2�: ð3Þ

gs ¼ gv ¼ 2 are the spin and valley degeneracy for bilayer
graphene, and the band-dependent Bogoliubov amplitudes
are ðvγkÞ2 ¼ ð1 − ξγk=E

γ
kÞ=2 and ðuγkÞ2 ¼ ð1þ ξγk=E

γ
kÞ=2. nþ0

is defined as the total number of carriers in the conduction
band, nþ ¼ gsgv

P
kðvþk Þ2, less the number of carriers in the

conduction band that have been excited from the valence
band. The number of such excited carriers in the con-
duction band equals the number of unoccupied states left
behind in the valence band, gsgv

P
kðu−k Þ2. μ is obtained by

solving Eqs. (1)–(3).
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The reason for this choice of control parameter [Eq. (3)]
is due to the influence of the valence band on the
conduction band. The presence of the valence band means
that the overall number of carriers in the conduction band,
nþ, is no longer controlled purely by doping or using the
metal gates, as is the case for the single band system,
since now there are additional carriers in the conduction
band excited from the valence band due to interactions.
This increase in the number of carriers in the conduction
band will push up the Fermi energy. We use nþ to define
an effective Fermi momentum k�F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnþ=gsgv

p
, and

effective Fermi energy in the conduction band E�
F ¼

ðℏk�FÞ2=2m�.
For large nþ0 , the average kinetic energy of the carriers in

the conduction band hKi is large relative to the average
strength of the Coulomb interactions hVi, and, sinceP

kðvþk Þ2 ≫
P

kðu−k Þ2, there are only a negligible number
of carriers excited out of the valence band. However, small
nþ0 does not necessarily imply that hKi ≪ hVi, since for
sufficiently small Eg, both

P
kðvþk Þ2 and

P
kðu−k Þ2 can be

large but nearly equal. We will see that both nþ0 and Eg play
important roles in determining the relative strength of the
Coulomb interactions.
We take the interaction term in Eq. (1) as unscreened,

Vkk0 ¼ −
2πe2

ϵ

e−djk−k0j

jk − k0j : ð4Þ

Few layers of a hexagonal boron nitride (hBN) insulating
barrier with thickness d ≥ 1 nm act as a good barrier to
electrically isolate the two graphene bilayer sheets [18]. We
take a barrier thickness d ¼ 1 nm. The barrier height is
∼1.5 eV. For bilayer graphene encapsulated in few-layer
hBN, the dielectric constant ϵ ∼ 2 [19].
By comparing the superfluid properties calculated using

diffusion quantum Monte Carlo [20] with the results for the
same system calculated within mean field without screening,
Ref. [21] demonstrated that neglecting screening is an
excellent approximation in the BEC regime where the strong
interactions tightly bind the pairs, making the pairs compact
on the scale of the intercarrier separations r0. For example, at
density nþ0 ¼ 1 × 1011 cm−2, r0 ¼ 18 nm is much larger
than the effectiveBohr radius in graphene. In theBECregime,
the gaps Δγ in the single-particle excitation spectrum are
much larger than the Fermi energies, and this suppresses the
long-wavelength excitations needed for screening [22].
Reference [21] also showed that the unscreened approxima-
tion remains surprisingly accurate even in the BCS-BEC
crossover regime at intermediate densities [5], predicting
superfluid gaps correctly to within ∼20% [21]. However, at
larger densities, nþ0 ≳ 5 × 1011 cm−2, in what would have
been the BCS regime, the unscreened approximation com-
pletely breaks down, since at these densities there is very
strong screeningwhichkills the superfluidity [5,22]. Thus,we
restrict our results to densities nþ0 ≤ 5 × 1011 cm−2.

We omit the intralayer interactions. This is justified by
comparing superfluid gaps calculated including correla-
tions between like species [23], with the gaps calculated
neglecting these correlations [24]. The intralayer correla-
tions are found to have a ≲10%–20% effect on the gaps.
In general, the regimes of the crossover phenomena in a

one-band system are conveniently characterized by the
superfluid condensate fraction c [25]. c is defined as the
fraction of carriers bound in pairs relative to the total
number of carriers. The usual classification is: for c > 0.8
the condensate is in the BEC regime, for c < 0.2 it is in the
BCS regime, and otherwise it is in the crossover regime.
However, we have here two partial condensate fractions,

c�, for the conduction and valence bands. For the con-
duction band the usual one-band expression is readily
generalized to the number of pairs divided by the total
number of carriers in the conduction band,

cþ ¼
P

kðuþk Þ2ðvþk Þ2P
kðvþk Þ2

; ð5Þ

but for the valence band the corresponding definition of c−

is the ratio of the number of pairs in the valence band to the
number of antiparticles in the valence band,

c− ¼
P

kðu−k Þ2ðv−k Þ2P
kðu−k Þ2

: ð6Þ

(We use the term antiparticle to refer to an empty single-
particle state in the valence band, since we reserve the term
hole to refer to the hole-doped bilayer sheet.) At zero
temperature, the valence band antiparticles are generated
exclusively as a result of the effect of interactions that
excite carriers out of the valence band up into the
conduction band. The pairs in the valence band are formed
from pairing of antiparticles of the two sheets.
Figure 1 compares the contributions to pair formation

from the conduction and valence bands as a function
of nþ0 . The ratios n

�
pair=ðnþpair þ n−pairÞ are shown for different

energy band gaps, where nγpair ¼
P

kðuγkÞ2ðvγkÞ2. As
expected, for large values of Eg, pair formation is confined

FIG. 1. Relative number of condensate pairs in conduction
band (solid lines) and valence band (dashed lines) as functions of
nþ0 for different values of energy band gap Eg.
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to the conduction band and is independent of nþ0 . However,
for smaller Eg, the ratios depend on n

þ
0 . We recall that large

nþ0 signifies a small valence band contribution because it
contains few antiparticles, while at small nþ0 both bands
contribute equally to the pair formation, whether the
interactions are strong or weak.
Figure 2 shows the condensate fractions and the chemi-

cal potential as functions of nþ0 . For a large band gap, Eg ¼
150 meV [Fig. 2(a)], the behavior of c� and μ is indeed
close to the results for a one-band system [26]. Here, for
nþ0 ∼ 5 × 1011 cm−2, the conduction band condensate is
already close to the crossover regime boundary, with
cþ ∼ 0.8. We recall for nþ0 > 5 × 1011 cm−2 screening is
expected to suppress superfluidity. As nþ0 decreases, cþ

becomes > 0.8, and the conduction band condensate enters
the BEC regime. The chemical potential is everywhere less
than E�

F, and it is negative because we are in the BEC
regime. As nþ0 goes to zero, the conduction band con-
densate enters the deep BEC limit and μ → −εB=2, half the
binding energy of an independent electron-hole pair [see
Fig. 2(d)]. We see that c− ∼ 1, the valence band condensate
remains in the BEC regime over the full range of nþ0 shown,
because there are so few antiparticles in the valence band
when Eg is large.
For a smaller gap, Eg ¼ 90 meV [Fig. 2(b)], the con-

duction band condensate is slower to enter the BEC regime
with decreasing nþ0 . This is because excitations from the
valence band now significantly increase the total popula-
tion of carriers in the conduction band. The chemical
potential μ therefore goes negative only at very low nþ0 . It is
interesting that in the zero nþ0 limit, μ now approaches the
midpoint of the band gap, μ → −Eg=2 instead of −εB=2,

behavior analogous to the intrinsic limit in a conventional
semiconductor.
Figure 2(c) is for Eg ¼ 0. In this case there are many

carriers in the conduction band excited from the valence
band. This makes the effective Fermi energy E�

F as a
function of nþ0 significantly larger than in Figs. 2(a)
and 2(b), and at the same time a large number of
antiparticles are created in the valence band. For this
reason, both the conduction and valence band condensates
are always in the crossover regime for all nþ0 and the
chemical potential μ remains positive. An interesting point
is that for a system with Eg ¼ 0, a negative value of μ
would signify only an inversion of the carrier populations
in the bands, so that even for negative values of μ, the
system would remain in the crossover regime.
Figure 3 shows the momentum-dependent superfluid

energy gaps Δ�
k . For large Eg, Fig. 3(a), the gap equations

[Eq. (1)] are nearly decoupled because the Eg term in the

form factor [Eq. (2)] suppresses Fγγ0
kk0 for γ ≠ γ0. Then

Δþ
k ≫ Δ−

k , because of the large energy denominator for Δ−
k

in Eq. (1). Consistent with the conclusion in Fig. 2(a), the
very broad peaks in Δ−

k for all nþ0 indicate that the valence
band condensate for large Eg always remains in the BEC
regime. The reason is that the number of paired antipar-
ticles in the valence band,

P
kðu−k Þ2, remains small for all

nþ0 . For the same reason, the conduction band contains very
few carriers excited from the valence band, so the evolution
of the conduction band condensate with nþ0 is very similar
to the one-band system: i.e., (i) for small nþ0 , Δ

þ
k ≫ EF, its

peak is at k ¼ 0 and it is very broad, which are character-
istics of the BEC regime, and (ii) for large nþ0 , the peak in
Δþ

k becomes of order E�
F, and it narrows and detaches from

FIG. 2. (a)–(c) Condensate fractions c�, chemical potential μ, and effective Fermi energy E�
F as functions of nþ0 . Upper panels show

condensate fraction in the conduction band (solid lines) and valence band (dashed lines). Lower panels show chemical potential (solid
lines) and effective Fermi energy (dashed lines). Gray shaded area is the band gap. Density region nþ0 > 5.0 × 1011 cm−2 is excluded
from our results since inclusion of screening will suppress the superfluidity there. (d) Limiting strong-coupling BEC low-density
behavior of chemical potential as a function of Eg.
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k ¼ 0, though never reaching k ¼ k�F, which are character-
istics of the crossover regime.
For smaller Eg, Figs. 3(b) and 3(c), the Δ�

k are compa-
rable and are not very sensitive to nþ0 . This is because the
Fγγ0
kk0 for γ ≠ γ0 are no longer small, and so strongly couple

the two gap equations. The insensitivity of the superfluid
gaps to nþ0 is a consequence of the large number of carriers
in the conduction band excited from the valence band for all
nþ0 . This means that the total number of carriers in the
conduction band remains large for all nþ0 . Thus, the
conduction band condensate remains trapped in the cross-
over regime and is unable to reach the BEC regime even
when nþ0 becomes very small.

Thus, since Fγγ0
kk0 controls the coupling of the two gap

equations, the dependence of Fγγ0
kk0 on Eg for γ ≠ γ0 means

that by tuning Eg we are able, for the first time, to tune the
magnitude of the Josephson-like pair transfer.
Our neglect of cross-pairing is justified both for large and

small gaps Eg. For large Eg it is clear because of the large
energy differences in the corresponding denominators. For
small Eg, the large number of carriers in the conduction
band excited from the valence band means a large effective
Fermi energy, so the cross-pairing terms again contain
large-energy-difference denominators, reflecting the large
energy separation of the carriers in the valence band from
the effective Fermi energy. In addition, the matrix elements
for the cross-pairing terms are expected to be small (see
Ref. [27]), and this would further reduce the cross-pairing
contribution.

Figure 4 further characterizes the multicomponent nature
of the superfluidity. As expected, for zero band gap the
maximum superfluid gap energy for the conduction band
Δþ is equal to Δ−, the maximum superfluid gap for the
valence band. We see in the figure that for smaller band
gaps, Eg ≲ 80–120 meV, there is still a significant boost of
both Δþ and Δ−, thanks to the multicomponent property
that the contributions from the condensates are additive.
For too large a band gap, the superfluidity will not be able
to take advantage of a proximate valence band, and for
Eg ≳ 150 meV the valence band condensate is essentially
completely decoupled from the conduction band conden-
sate. This results in Δþ ≫ Δ−, so there is then only one
significant superfluid gap and one significant condensate.
Thus, continuously tuning Eg up to higher values will
induce, in the same system, a switching over of the number
of superfluid components from 2 to 1. However, for optimal
conditions for superfluidity, the band gap Eg must also not
be too small; otherwise, excitations from the valence band
will maintain too high a density of carriers in the con-
duction band. We recall, as we have discussed, that a high
density of carriers inhibits superfluidity.
Thus, we conclude that a compromise is necessary

between selecting too large an Eg, which tends to weaken
the superfluidity since it excludes the additive contributions
from the valence band, and too small an Eg, which tends to
keep the conduction band in the high-density regime that is
not favorable for superfluidity. An optimal choice would be
in the range Eg ∼ 80–120 meV.
By using the tunable band gap Eg, we can move the

boundaries of the BCS-BEC crossover while keeping the
density fixed. When

P
kðvþk Þ2 ∼

P
kðu−k Þ2 the multi-

component character is evident. There are two distinct
regions: (i) For Eg ≪ E�

F, the small nþ0 region remains in
the crossover regime even when nþ0 is very small. The
conduction band condensate cannot enter the BEC regime
because excitations from the valence band, equal to
gsgv

P
kðu−k Þ2, maintain a large number of carriers in the

conduction band. (ii) When Eg ≳ E�
F, the conduction band

condensate can enter the BEC regime for small nþ0 because
a large Eg suppresses excitations from the valence band.

FIG. 3. The superfluid gap energy Δγ¼�
k in conduction and

valence bands. Dotted lines, nþ0 ¼ 0.5 × 1011 cm−2; dashed lines,
nþ0 ¼ 1.5 × 1011 cm−2; solid lines, nþ0 ¼ 5 × 1011 cm−2.

FIG. 4. Maximum superfluid gap energy Δ� in the conduction
and valence bands as functions of the energy band gap Eg. Dotted
lines, nþ0 ¼0.5×1011 cm−2; dashed lines, nþ0 ¼ 1.5 × 1011 cm−2;
solid lines, nþ0 ¼ 5 × 1011 cm−2.
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These multicomponent properties are reflected in the
asymptotic behavior of the chemical potential in the
small-nþ0 limit. Thus, for large Eg ≥ εB, the limiting
behavior of μ is the familiar BEC limit μ → −εB=2, as
for a single-component system, while for Eg < εB the
superfluid is blocked from entering the BEC regime even
in the low-density limit; it is interesting that the limiting
behavior of μ switches smoothly over to the midpoint of the
band gap, μ → −Eg=2.
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