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In honeycomb Dirac systems with broken inversion symmetry, orbital magnetic moments coupled to the valley
degree of freedom arise due to the topology of the band structure, leading to valley-selective optical dichroism. On
the other hand, in Dirac systems with prominent spin-orbit coupling, similar orbital magnetic moments emerge as
well. These moments are coupled to spin, but otherwise have the same functional form as the moments stemming
from spatial inversion breaking. After reviewing the basic properties of these moments, which are relevant for a
whole set of newly discovered materials, such as silicene and germanene, we study the particular impact that these
moments have on graphene nanoengineered barriers with artificially enhanced spin-orbit coupling. We examine
transmission properties of such barriers in the presence of a magnetic field. The orbital moments are found to
manifest in transport characteristics through spin-dependent transmission and conductance, making them directly
accessible in experiments. Moreover, the Zeeman-type effects appear without explicitly incorporating the Zeeman
term in the models, i.e., by using minimal coupling and Peierls substitution in continuum and the tight-binding
methods, respectively. We find that a quasiclassical view is able to explain all the observed phenomena.
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I. INTRODUCTION

One of the most intriguing recent developments in the field
of graphene research is the artificial generation of properties
that are otherwise vanishing in intrinsic samples. For instance,
carrier mass can be created by sandwiching graphene with
hexagonal boron nitride (hBN), in which case a gap arises
for sufficiently aligned layers [1,2]. The occurrence of the
gap is dictated by the interplay of the elastic energy of the
graphene lattice and the potential energy landscape stemming
from hBN [3]. The energetically preferred commensurate
structure, in which a carbon atom sits on top of a boron
atom, will maximize its area at the expense of other stacking
configurations by stretching the graphene layer. This in turn
leads to the appearance of an average gap in the resulting van
der Waals heterostructure [2].

On the other hand, it was postulated that spin-orbit coupling
(SOC) in graphene can be enhanced by hydrogen adsorption,
which forces local rehybridization of bonds [4]. Note that
quantum spin Hall transport signatures introduced by random
adatoms are well described by models taking into account a
renormalized and uniform SOC [5,6]. Moreover, the proximity
effect caused by an appropriate substrate was speculated to lead
to SOC enhancement as well. Both of these mechanisms were
recently confirmed experimentally, opening new avenues for
theoretical research [7,8].

While in graphene the carrier mass and SOC have to be
artificially engineered, they are ubiquitous in other group IV
monolayers such as silicene, germanene, and stanene, thanks
to their buckled structure and the heavier constituent atoms
[9–11]. Given their honeycomb lattice, they also belong to
the same class of materials as graphene, with relativistic
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quasiparticles described by the Dirac equation. From the
theoretical point of view, both of the aforementioned param-
eters appear in a similar form in the low-energy continuum
picture. They are captured by staggered potential terms �

and �SO in the case of mass and SOC, respectively [12].
The term “staggered potential” originates in the language of
the tight-binding method, and it refers to the breaking of the
sublattice symmetry by a traceless potential. Unlike SOC, for
which the staggered potential changes sign depending on the
spin and valley of the electron, � opens up a topologically
trivial band gap in the vicinity of the K and K ′ points through
inversion symmetry breaking [13].

At the same time, however, the inversion symmetry
breaking leads to a nontrivial alteration of the semiclassical
equations of motion on a honeycomb lattice [14,15]. The
quantum corrections, which reflect the impact of the Berry
phase and are therefore topological in nature, are twofold.
On the one hand, when subjected to an electric field in the
plane, massive Dirac fermions will attain a velocity component
transverse to the field, which is opposite in the two valleys,
thus giving rise to the valley Hall effect. This effect was
recently observed experimentally in a MoS2 device, as well as
in graphene-hBN heterostructures [16,17]. On the other hand,
self-rotation of electron wave packets near the two valleys will
produce valley-contrasting orbital magnetism [15].

It is well established that the valley Hall and intrinsic
spin Hall effects share the same origin, reflecting the Berry
curvature properties of the underlying insulating systems,
generated by � and �SO terms, respectively. Therefore,
the two Hall effects are fully analogous [18,19]. Valley-
contrasting magnetism was first reported in Ref. [15]. On the
other hand, we recently found evidence of the corresponding
spin-contrasting magnetism in transport calculations involving
spin-orbit barriers in bulk graphene [20], which motivated
us to explore the subject more thoroughly. This type of
orbital magnetization was previously investigated in a more
generalized analysis of the family of Hall effects (and the
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accompanying set of orbital moments), found in multilayer
graphene systems in Ref. [21]. There, the electron-electron
interaction leads to various broken symmetry phases, denoted
by the general term “pseudospin ferromagnetism” [22–25],
which are captured with a diverse set of mass terms in the
low-energy continuum approximation, in models analogous to
the ones studied in this paper.

This emerging orbital magnetism is a mechanism that
effectively alters the Zeeman energy, and it is the subject of
this paper, particularly the moments associated with spin-orbit
coupling in monolayer Dirac systems. We first review how the
intrinsic SOC in honeycomb monolayers gives rise to orbital
magnetic moments coupled to spin, in the same way in which
inversion symmetry breaking gives rise to moments coupled to
the valley degree of freedom. These moments are completely
analogous in nature, and they share exactly the same functional
form, apart from coupling to different degrees of freedom. We
derive expressions for the moments using both tight-binding
and continuum theories, and we show their impact on the
Landau level (LL) quantization in the presence of a magnetic
field.

Finally, we investigate the influence of the moments on the
magnetotransport properties, where we look at the transmis-
sion through a barrier with enhanced spin-orbit coupling in
graphene. Such a barrier could be realized by an appropriately
formed van der Waals heterostructure in an otherwise fully
ultrarelativistic material [5–8]. We discuss this case in great
detail from the semiclassical point of view, and we present
conclusions that are of practical relevance, namely how
the device conductance is affected by orbital magnetism.
In the end, we show that the results are identical whether
one uses the continuum Dirac theory or the tight-binding
nonequilibrium Green-function method (TB NEGF) when cal-
culating the transport properties. Remarkably, both approaches
yield Zeeman-type transport signatures while employing the
magnetic field only through kinetic terms, without actually
enforcing the coupling of the spin with the magnetic field,
which reflects the orbital nature of the magnetic moments.

II. ORBITAL MOMENTS IN THE TIGHT-BINDING
PICTURE

We start with the low-energy tight-binding Kane-Mele
Hamiltonian valid for a whole set of Dirac materials with
prominent intrinsic spin-orbit coupling [26],

H = �vF [τkxσx + kyσy] + sτ�SOσz, (1)

where vF is the Fermi velocity, �SO is spin-orbit coupling
energy, σz is a Pauli matrix operating in the sublattice subspace,
s = +1/−1 labels the spin ↑/↓, and τ = +1/−1 labels the
valley K/K ′. As already mentioned, this form of SOC is
universal to all group IV monolayers other than graphene,
in which, on the other hand, it could be artificially generated.
Note that here kx and ky are only parameters and not operators.
The dispersion relations extracted from Eq. (1) are shown by
solid black curves in Fig. 1(a).

The Hamiltonian (1) describes a two-state, electron-hole
symmetric system. For such systems, the orbital magnetic
moment (m) is directly proportional to the Berry curvature
(�), m ∼ � [15,21,27]. On the other hand, the system is also
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FIG. 1. (Color online) The orbital magnetic moments of the spin-
up (spin-down) states shown by thick red (dashed blue) lines, and the
corresponding low-energy band structure, shown in black, for (a)
� = 0 and �SO = 30 meV, and (b) � = 30 meV and �SO = 0. Note
that in (b) the orbital magnetic moments for the two spins are equal,
due to the absence of SOC.

time-reversal invariant, and since we disregard the staggered
potential � at the moment, inversion symmetry is not broken
either. Since for spatial-inversion and time-reversal symmetric
systems Berry curvature vanishes [28,29], one might conclude
that the orbital moments must vanish as well. However, it is
rarely stressed that this only holds for spinless electrons, which
is not the case considered here [30]. In fact, the Hamiltonian
(1) describes a topological insulator, having a nonzero and
opposite Chern number for opposite spins [26]. This is because
the Kane-Mele model is formed by two opposite copies of the
Haldane model [31], thus breaking the time-reversal symmetry
separately in each spin sector. Since the Chern number is
obtained as an integral of � over the Brillouin zone, the Berry
curvature is nontrivial, and consequently the orbital magnetic
moments will be nonzero.

The orbital moments are perpendicular to the monolayer
and originate from the self-rotation of the electron wave packet
around its center of mass, and they can be obtained from the
tight-binding Bloch eigenfunctions |u(k)〉 [15,21,28]

m = −i
e

2�
〈∇ku| × [H − E(k)]|∇ku〉, (2)

which makes their topological origin much clearer. For the
particular Hamiltonian in Eq. (1), we have

|u(k)〉 =
⎛
⎝

√
E+sτ�SO

2E

τ

√
E−sτ�SO

2E
eiτφ

⎞
⎠ , (3)

where E is the electron energy, and φ = arctan ky/kx . It is then
straightforward to show that the expression for the magnetic
moments that arise from the spin-orbit coupling reads

m = −s
e�v2

F �SO

2
(
�2

SO + �2v2
F k2

) . (4)
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Variations of the orbital moments in the vicinity of the Dirac
points are shown for both spins in Fig. 1(a). They are maximum
near the band edges, decay away from the two Dirac points,
and are obviously opposite for opposite spins.

One can compare these moments with the valley-
contrasting moments, arising for �SO = 0 and � 	= 0 [15,28].
Their magnitude is given by

m = −τ
e�v2

F �

2
(
�2 + �2v2

F k2
) , (5)

and they are depicted in Fig. 1(b). It is clear that the two sets
of moments share a similar functional form, except the former
couple to spin while the latter couple to the valley degree
of freedom [21]. The energy region where the moments are
prominent was termed the Berry curvature hot spot in Ref. [17].
There it was unequivocally shown that the gap in well-aligned
graphene-hBN van der Waals heterostructures is accompanied
by the introduction of nontrivial Berry curvature.

Finally, in the case of both nonzero �SO and �, and in the
low-energy limit, the magnetic moment is given by

m = − e�v2
F

2(s�SO + τ�)
. (6)

The orbital magnetic moments are responsible for the
optical selection rules of light absorption in Dirac materials,
through the so-called circular dichroism effect [19,27,32].
Note that the orbital moments in Eq. (4) can dominate the Zee-
man response of a system, since they can be orders of magni-
tude stronger than the free-electron Bohr magneton for realistic
SOC strengths found in typical Dirac materials [15,21,25,28].
In other words, they will lead to a renormalization of the Landé
g factor, which was recently observed for transition-metal
dichalcogenides from first-principles calculations [33].

III. LANDAU LEVELS, PSEUDOSPIN POLARIZATION,
AND ORBITAL MOMENTS IN THE CONTINUUM

PICTURE

A. Landau levels

We proceed with the case of an applied perpendicular
magnetic field B = Bez, which is included in the Hamiltonian
through minimal coupling,

H = �vF

[
τkxσx +

(
ky + e

�
Ay

)
σy

]
+ sτ�SOσz + �σz.

(7)

This equation could be employed to solve the electron
spectrum in the Dirac system in the presence of �SO,
�, and magnetic field. It will subsequently lead us to
resolve the magnetic moments. Here, the Landau gauge
A = (0,Ay) with Ay = Bx is chosen. In this gauge, ky is
a good quantum number and the solutions have the form
�(x,y) = exp(ikyy)(ψA(x),ψB(x))T . Introducing �vF ε = E,
�vF δ = sτ�SO + �, one can obtain the LLs in the infinite
graphene sheet. In solving the LL spectrum, it is useful to adopt
the operators b†τ = −i(lB/

√
2)(τkx + iky + ieAy/�) and bτ ,

where lB = √
�/eB denotes the magnetic length. b†τ and bτ

are the bosonic ladder operators, and they satisfy [bτ ,b
†
τ ] = τ .

It could be useful to define these operators such that they fully

correspond to the standard ladder operators of the quantum
harmonic oscillator (QHO) shifted by x0 = kyl

2
B and having

the mass m = �
2/l4

Bk. Then the eigenstates will be given by
the standard (obviously shifted and rescaled) QHO solutions

〈x|n〉 = 1√
2nn!

e−(x/lB+ky lB)2
/2Hn

(
x

lB
+ kylB

)
, (8)

where Hn are Hermite polynomials. The problem can now be
solved in terms of these solutions for the case of the regular
two-dimensional (2D) electron gas in a magnetic field, having
in mind that b

†
1|n〉 = √

n + 1|n + 1〉, b1|n〉 = √
n|n − 1〉, and

b1|0〉 = 0, and that the ladder operators change character in
the K ′ valley. The system of coupled equations with ladder
operators is now given by

δψA − i
ωc

vF

bτψB = εψA, (9)

i
ωc

vF

b†τψA − δψB = εψB, (10)

where ωc = √
2vF /lB is the cyclotron frequency for Dirac-

Weyl electrons. Then for n � 1 the energies of the LLs are
given by

εn,s,τ,± = ±
√

δ2 + nω2
c/v

2
F . (11)

The s and τ quantum numbers are contained implicitly in the
definition of δ. The joint spinor for the two valleys can be
written as

|n,s,τ,±〉 =
( ∣∣n − τ

2 − 1
2

〉
±i

[
ωc

√
n

(ε+τδ)vF

]τ ∣∣n + τ
2 − 1

2

〉
)

. (12)

The case of n = 0 needs special attention, since the solution,
Eq. (12), is not valid in this case. Then, the appropriate choice
for the solution is

|0,s,τ 〉 = (−τ/2 + 1/2,τ/2 + 1/2)T |0〉, (13)

while the energies are expressed as [34]

ε0,s,τ = −τδ. (14)

It is worth pointing out, however, that observation of the
conductance plateaus corresponding to the derived spectrum
can depend on the symmetry class of the disorder present
in the samples [35]. Note also that these eigenvectors and
eigenvalues reduce to the ones for the massless fermions,
under the requirement δ → 0, collapsing the level (14) to
zero energy. Nevertheless, massless fermions can also display
quantum Hall signatures, such as a magnetic-field-independent
plateau at zero filling factor, which originate from valley
mixing scattering processes [35].

Thus the SOC and mass terms split and shift the zeroth LLs
away from zero energy as depicted in Fig. 2, which shows the
low-lying Landau levels for (a) only �SO 	= 0, (b) only � 	= 0,
and (c) �SO = � 	= 0 at B = 2 T. We also depict the bands, as
well as the emerging magnetic moments, given by Eqs. (4) and
(5). The orientation of the moments is related to the position
of the n = 0 Landau level, which is shown by the horizontal
solid black lines. Note that the zeroth LLs always reside on the
edges of the appropriate bands. The duality �SO ↔ �, s ↔ τ

present in Eq. (14) is evident in Fig. 2. In other words, SOC
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(c)

(b)

(a)

↑ K ↑ K′ ↓ K ↓ K′

FIG. 2. (Color online) Several lowest Landau levels of all spin
and valley flavors for (a) �SO = 30 meV and � = 0, (b) �SO = 0
and � = 30 meV, and (c) �SO = � = 30 meV. The n = 0 Landau
level is depicted by the horizontal solid black line. Also shown are
the bulk bands as red (spin-up) and blue (spin-down) shaded regions,
as well as the sketch of the corresponding orbital moments, with the
length of the arrow being proportional to the intensity.

couples the LLs to spin in the same way that mass couples
them to the valley degree of freedom [34,36,37]. The state
depicted in Fig. 2(c) is dubbed spin-valley-polarized metal
[38], and it hosts both a massless (lacking the orbital moments)
and a massive relativistic Landau spectrum. It can appear in
silicene subjected to a perpendicular electric field, for instance.
On the other hand, in transition-metal dichalcogenides, both
parameters are inherently present, with � > �SO, and SOC
splits only the LLs in the valence band, yielding a unique set
of Hall plateaus [39].

B. Orbital moments

The underlying explanation for the behavior of the LL
spectrum can be sought in the existence of orbital magnetic
moments [15,40,41]. In a similar fashion to Ref. [41], we can
obtain the effective Bohr magneton in the presence of �SO,
starting from the Dirac-Weyl equation, and expanding near
the conduction-band bottom. We first point out that near the
bottom of the conduction bands, the sublattice pseudospins
get polarized perpendicular to the graphene sheet, with the
majority of the weight concentrated on the A (B) sublattice
for δ > 0 (δ < 0). Likewise, at the top of the valence band,
most of the weight is found on the A (B) sublattice for δ < 0
(δ > 0). This is obvious for the zeroth LLs, and it occurs in
the δ = 0 limit as well [42,43], but to see it for higher levels
it is helpful to derive the expectation value for the sublattice

pseudospin,

〈n,s,τ, ± |σz|n,s,τ,±〉 = δ

ε
, (15)

which is exactly the same as in the absence of SOC and
magnetic field [44], only now it is to be used for the discrete
energy values corresponding to the Landau levels. Therefore,
perfect pseudospin polarization is achieved in the bottom (top)
of the conduction (valence) band.

On the other hand, decoupling the Dirac equation gives[
k2
x +

(
ky + x

l2
B

)2

± τ

l2
B

]
ψA/B = (ε2 − δ2)ψA/B. (16)

Therefore, there is a spatially uniform term proportional to
the magnetic field, with opposite signs on opposite sublattices
and opposite valleys. Consider the importance of this term
for states whose sublattice pseudospin mostly lies in the
graphene plane, i.e., for states far away from the band gap,
Eq. (15). For such states, the two signs play a tug of war,
effectively canceling each other out. However, near the band
gap, sublattice polarization occurs, and the term corresponding
to a majority sublattice starts dominating over the other,
giving rise to an effective paramagnetic moment. For instance,
when δ > 0, sublattice A dominates for low electron energies,
and the upper sign starts impacting the electron motion. To
fully appreciate this fact, and to write the equation in a
manifestly paramagnetic form, one needs to perform a low-
energy expansion for the equation of the majority sublattice.
After reintroducing E, �, and �SO explicitly, we can write
E = ξ + (sτ�SO + �) for δ > 0 and E = ξ − (sτ�SO + �)
for δ < 0. Taking the limit ξ → 0, the following equation is
obtained for the bottom of the conduction band:[

p2
x

2meff
+ (py + eAy)2

2meff
+ e�v2

F B

2(s�SO + τ�)

]
ψ = ξψ, (17)

where meff = |sτ�SO + �|/v2
F is the electron effective mass

due to the band gap. This is the form of the Schrödinger
equation in the presence of a magnetic field in which the
emerging magnetic moments are obviously manifested. Once
again, we see the duality of the orbital moments of the same
nature as mentioned previously in the case of LLs: the moments
are coupled to SOC through spin and to mass through the
valley degree of freedom. Moreover, it is obvious that the
expression for the magnetic moment is equal to the results of
the low-energy expansion given in Eq. (6). Having in mind
that these moments effectively shift the low-energy parabolic
bands, one can use the same argument as in Ref. [40] to show
that the separation between the lowest LL and the bottom of
each shifted band is for each spin, valley, and band to first order
equal to half the separation between this and the first excited
LL. This is in analogy with the LLs in a 2D massive-electron
gas, where the lowest level sits at half the cyclotron frequency
[40,41]. The difference for higher-energy LLs is a consequence
of the deviation of the dispersion from the quadratic one.

IV. MANIFESTATION OF ORBITAL MOMENTS ON
MAGNETOTRANSPORT

We proceed with considering how the emerging magnetic
moments affect the transport properties. In particular, we
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FIG. 3. (Color online) Contour plots of the transmission coeffi-
cient as a function of incident angle and energy for �SO = 30 meV,
� = 0, and W = 200 nm. The magnetic field equals 0 T in (a) and (b),
0.1 T in (c) and (d), 0.2 T in (e) and (f), and 0.3 T in (g) and (h). The
results are shown for both spin orientations. The semiclassical critical
boundaries εcr0 and εcrW are depicted by dash-dotted and dotted lines,
respectively.

analyze transport through a single 1D barrier in bulk graphene,
extending from x = 0 up to x = W , and along the y direction,
in which the intrinsic SOC is modified. The magnetic field is
included only in the barrier, so we choose the following vector
potential (within the Landau gauge):

Ay =

⎧⎪⎨
⎪⎩

0, x < 0,

Bx, 0 � x � W,

BW, x > W.

(18)

The explicit derivation of the transmission coefficient is given
in Appendix.

Since we analyze a barrier made exclusively out of
SOC, the valley degree of freedom plays no role in the
electron transmission, which can be concluded from the theory
presented in Secs. II and III. Therefore, the contour plots of the
transmission coefficient T = |t |2, for the two spin flavors and
for the 200-nm-wide barrier as a function of energy and the
incident angle of the incoming electron, are shown in Fig. 3.
Each horizontal panel in this figure corresponds to a specific
value of the magnetic field, which is 0, 0.1, 0.2, to 0.3 T from
top to bottom. Because of the duality �SO ↔ � and s ↔ τ ,
the results presented below also apply for transmission through
a barrier when � 	= 0 and �SO = 0. But for this case, the spin
and valley quantum numbers should be interchanged.

For both barrier types, we found that the magnetic field
causes cyclotron motion, whose main feature is the appearance

of a transmission window dependent on energy and incident
angle φ [20,45]. Outside of this window, the waves after the
barrier become evanescent, and therefore no transmission takes
place. This occurs when the longitudinal momentum k′

x =√
ε2 − k′

y of each electron state in the region after the barrier
becomes imaginary. The transmission window is given by

ε >
γ

1 − sin φ
, (19)

where γ = W/l2
B . The transmission windows for different B

are shown by solid black curves in Fig. 3.
When the magnetic field increases, the transmission asym-

metry with respect to the incident angle becomes larger, due to
the cyclotron motion, as shown in Fig. 3. In addition, whereas
transmission coefficients are identical for both spins when no
magnetic field is present, T↑ and T↓ differ when B 	= 0, which
is a consequence of the SOC-induced magnetic moments. In
fact, it is clear from Eq. (16) that a quasiclassical longitudinal
momentum qx ,

qx(x) =
√

ε2 − δ2 − (
ky + x/l2

B

)2 − s/ l2
B, (20)

can be assigned to the sublattice-polarized states.
To understand the effects of the emerging magnetic mo-

ments on the transmission characteristics, it is instructive to
investigate how classical turning points vary with ε and φ.
Those turning points are extracted from qx(x) = 0, where qx

is given by Eq. (20), and they are given by

x1,2 = −εl2
B sin φ ∓ l2

B

√
ε2 − δ2 − μ, (21)

where μ = s/ l2
B is the magnetic moment term, which appears

in the expression for the quasiclassical momentum in Eq. (20).
Given that the barrier extends from 0 to W , the condition that
no turning points are found within the barrier is obtained by
requiring x1 < 0 and x2 > W . The former condition leads to

x1 < 0 ⇒
{

ε >

√
δ2+μ

cos φ
, φ < 0,

ε >
√

δ2 + μ, φ > 0,
(22)

while the latter results in

x2 >W ⇒
{
ε >

√
δ2 + μ, ε sin φ + γ < 0,

ε >
γ sin φ+

√
γ 2+(δ2+μ) cos2 φ

cos2 φ
, ε sin φ + γ > 0.

(23)

On the other hand, both classically forbidden and classically
allowed regions will be present in the barrier if 0 < x1 <

x2 < W . The two extreme cases of vanishing allowed regions
occur when the leftmost turning point approaches the right
interface of the barrier,

x1 <W ⇒
⎧⎨
⎩ε >

γ sin φ +
√

γ 2 + (δ2+μ) cos2 φ

cos2 φ
, ε sin φ +,γ < 0,

ε >
√

δ2 + μ, ε sin φ + γ > 0,

(24)

and when the rightmost turning point approaches the left
barrier interface,

x2 > 0 ⇒
{

ε >
√

δ2 + μ, φ < 0,

ε >

√
δ2+μ

cos φ
, φ > 0.

(25)
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shaded regions, demarcated by the two critical boundaries. (b) A
family of four different classical trajectories, which correspond to the
states labeled by numbered crosses in each region of (a).

From the angle-dependent functions in the last four equations,
one might define the critical energies

εcr0 =
√

δ2 + μ

cos φ
(26)

and

εcrW = γ sin φ +
√

γ 2 + (δ2 + μ) cos2 φ

cos2 φ
, (27)

for which the classical turning points are located exactly at the
two interfaces, i.e., they are obtained by solving qx(0) = 0 and
qx(W ) = 0, respectively. Those critical boundaries are plotted
as dash-dotted and dotted curves in Fig. 3.

To elucidate the quasiclassical behavior, in Fig. 4(a) we plot
the zones corresponding to different configurations of turning
points by different colors. The same set of parameters is used
as in Fig. 3(e) (�SO = 30 meV, W = 200 nm, B = 0.2 T, and
s = +1). In Fig. 4(b), we plot a set of classical trajectories
that correspond to the zones shown in Fig. 4(a). As could be
inferred from Fig. 2, for ε larger than both εcr0 and εcrW [green
colored region in Fig. 4(a)], there is no classically forbidden
region inside the barrier. However, if the electron energy is
between the two critical energies [red or blue colored region
in Fig. 4(a)], a classically forbidden energy range will appear
on either end of the barrier. In other words, the electron will
have to tunnel through a part of the barrier adjacent to one of
its interfaces, whereas propagation is free in the other part. For
the most extreme case displayed as the magenta colored region
in Fig. 4(a), the electron has to tunnel through both ends of the
barrier.

One may notice that the two critical energies whose
variation with φ is depicted by dash-dotted and dotted lines in
Fig. 3 are almost identical for the two spins. Also, by careful
inspection of Fig. 3 it becomes evident that the quasiclassical
zones we derived explain the observed transmission very well,
especially for the spin-up states. For the spin-down states,
however, transmission is enhanced with respect to the spin-up
states in the zones for which the electron waves must tunnel
through a region of the barrier [the red and blue energy zones
in Fig. 4(a)]. This could be understood if one recalls that the
WKB expression for the tunneling coefficient is given by

T ≈ e−2 Im
∫

qx (x)dx, (28)

where the integration is over a classically forbidden region.
Having this in mind, it is obvious that for �SOC 	= 0 and
B 	= 0, spin-up states decay faster than the spin-down states
in classically forbidden regions, due to the paramagnetic term.
This difference increases at higher magnetic fields, which leads
to a growing contrast between the transmission coefficients
for the two spins, as Fig. 3 clearly demonstrates. When
the magnetic field is absent, the emerging paramagnetism
vanishes, and therefore the transmission characteristics for the
two spins are identical [see Figs. 3(a) and 3(b)].

Next, we explore how the presence of the magnetic
moments affects the interference pattern shown in Fig. 3.
This could be the most important effect from a practical point
of view. In the Fabry-Pérot model, the interference pattern
depends on the phase the electron wave function accumulates
between the barrier interfaces and the bounces from the
interface(s) and/or turning point(s),

α = αWKB + α1 + α2, (29)

where α1 and α2 are the backreflection phases whereas αWKB

is the WKB phase,

αWKB = 2
∫ min(W,x2)

max(0,x1)
qx(x)dx. (30)

To analyze how the orbital magnetic moments influence the
fringe pattern, we could once again invoke Eq. (20) and
the associated diagram in Fig. 4. It follows that Fabry-Pérot
resonances have different character in the different zones.
Whenever B 	= 0, the WKB phase is accumulated throughout
the entire barrier for ε > max(εcr0,εcrW ), but only in region
[x1,W ] for εcr0 > ε > εcrW [the red-shaded region in Fig. 4(a)].
Consequently, in the latter case the transmission maxima
(depicted by the red color in Fig. 3) are almost linear functions
of φ, whereas in the former case their dependence on φ is
nonlinear.

The crucial point, however, is that the phase accumulated
during the propagation differs for the different spin orien-
tations. This occurs because magnetic moments associated
with opposite spins contribute to αWKB in opposite ways [see
Eq. (20)]. To see this clearly, and to provide experimentally
verifiable predictions, it is important to consider the conduc-
tivity of the entire studied structure, given as [46]

G(ε) = G0

∫ π/2

−π/2
T (ε,φ)ε cos φ dφ, (31)
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FIG. 5. (Color online) The derivative of the conductance vs
incident energy for (a) 0.1 T, (b) 0.2 T, and (c) 0.3 T. All other
parameters are the same as in Fig. 3. Insets show the variation of
the conductance with incident energy for the corresponding magnetic
field.

where G0 = e2L/2�π2, with L denoting the lateral width of
the entire structure in the y direction.

Since the effects of magnetic moments are most vividly
manifested in the dependence of dG/dE on energy, we display
this quantity in Fig. 5 for the same set of parameters as in
Fig. 3. Along with dG/dE, the corresponding conductance is
shown in the insets for each case. As can be seen from these
insets, G only depicts the fact that the spin-down conductance
is increased with respect to the spin-up conductance, due to
the enhanced transmission through the classically forbidden
regions, as already discussed. On the other hand, the first
derivative of the conductance with respect to energy conveys
the information of the interference pattern, where the effects
of the orbital moments are more transparent. Two issues are
of importance here: (i) The difference between the two spins
is clearly more pronounced at higher magnetic fields. This
happens because in such a case the orbital moments have a
larger impact on the electron dynamics, as pointed out before.
(ii) The distinction between the two spins is more prominent at
lower energies. This is a consequence of the larger emerging
orbital magnetic moments of the electrons whose energies are
close to the band edges than of more energetic electrons, as
Eq. (4) and Fig. 1(a) demonstrate.

Finally, we would like to point out that the manifestation
of orbital moments in transport properties can be captured by
the tight-binding nonequilibrium Green-function formalism as
well. To show this, in Fig. 6(a) we plot a set of transmission
curves obtained using the derived transmission amplitude,
while in Fig. 6(b) we plot the results of our numerical transport
simulations within the TB NEGF method for the same barrier
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FIG. 6. (Color online) Transmission curves calculated using
(a) the continuum and (b) the TB NEGF method. The parameters
are W = 200 nm, B = 0.3 T, and E = 100 meV.

parameters. The phenomenological model used to describe
graphene in this case is given by

H = −t
∑

〈i,j〉,α
eiϕij c

†
iαcjα + iλSO

∑
〈〈i,j〉〉,α,β

νij e
iϕij c

†
iαsz

αβcjβ .

(32)

The first term describes the usual hopping between nearest-
neighbor pz orbitals in graphene, which extends beyond the
barrier. The second term describes the intrinsic spin-orbit
interaction found in the barrier, through the next-nearest-
neighbor (NNN) hopping amplitude λSO (�SO = 3

√
3λSO).

Note that νij determines the sign of the hopping; it is positive
(negative) if an electron makes a right (left) turn at the
intermediate atom in hopping from site j to site i. The Peierls
term ϕij = e

�

∫ rj

ri
A · dl accounts for the phase the electron

acquires while traveling in the presence of the magnetic
field. The details of the NEGF procedure can be found in
Refs. [47–50].

Although the continuum and the TB NEGF schemes differ
substantially as far as the formalism and implementation
are concerned, they give practically indistinguishable results.
This is not surprising, having in mind that the continuum
Dirac picture is the effective theory corresponding to the
low-energy tight-binding method. Therefore, both approaches
display these Zeeman-type effects, even though we use only
minimal coupling and the Peierls substitution, to account for
the influence of the magnetic field. Since strain in honeycomb
lattices effectively induces time-reversal invariant pseudomag-
netic fields [51], stretching of insulating Dirac monolayers will
inevitable galvanize orbital moments as well [20].

Note that the TB NEGF method could prove handy for
studying the effects of disorder and imperfections on the man-
ifestation of the spin-contrasting orbital moments. However,
unlike the orbital moments coupled to the spin, the valley-
contrasting orbital moments cannot be distinguished by the
TB NEGF transport simulations, since the contributions from
the two valleys are inherently summed together and cannot
be separated. In this case, only the continuum calculations,
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where the valley degree of freedom is explicit, can elucidate
the underlying physics.

V. CONCLUSION

In this paper, we addressed the orbital magnetic moments
emerging from the topology of insulating Dirac systems, as
well as their manifestation on transport characteristics. In
particular, we first closely examined the moments coupled to
the spin degree of freedom, arising due to strong spin-orbit
coupling, and thus leading to the renormalization of the
g factor. Their duality with the valley-contrasting orbital
moments found in honeycomb lattices with broken spatial
symmetry is reviewed, along with the duality of the Landau
spectrum, particularly manifested in the behavior of the zeroth
Landau level.

After establishing that magnetic properties couple with �SO

and the spin quantum number on the one hand, and � and the
valley quantum number on the other hand in an analogous
fashion, we go on to explore the influence of the orbital
magnetic moments on the transport properties. In particular,
we focused on the transmission through a single 1D barrier
made of artificially enhanced spin-orbit coupling in graphene.
We have shown that certain Zeeman-like magnetotransport
signatures are a clear manifestation of the induced moments.
The conductance G through the device for the two spins
starts deviating from each other with increasing magnetic
field. The effects of the moments on the fringe pattern of
the transmission coefficients are most clearly observed in the
energy dependence of the derivative of the conductance with
respect to the electron energy dG/dE. This quantity reflects
the increasing shifts in the interference maxima of opposite
spins with increasing magnetic field; they are largest near the
band edges, and they decrease for larger energies due to the
decrease of the orbital magnetic moments themselves.

Because of the analogy between the mass and the SOC
terms and the orbital moments they induce, the results
presented here are also valid for valley transmission through
a barrier with only � 	= 0. This, however, cannot be captured
by numerical techniques such as the TB NEGF method, which
is only able to account for the spin degree of freedom, and
the associated orbital moments. Nevertheless, this behavior
should be present in real devices, even in the absence of a
clearly observable transport gap, since the Berry curvature hot
spot can extend over a wide energy range.
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APPENDIX: TRANSMISSION THROUGH A BARRIER IN
BULK GRAPHENE

The studied structure and the chosen gauge for the vector
potential [Eq. (18)] ensure translational invariance along
the y direction, so ky is a good quantum number and the
solutions have the form �(x,y) = exp(ikyy)(ψA(x),ψB(x))T .
The following coupled system of differential equations for the

amplitudes on the two sublattices can then be obtained:

(
τkx ∓ iky ∓ i

e

�
Ay

)
ψB/A ± δψA/B = εψA/B. (A1)

Reducing the coupled system to a set of two independent
second-order differential equations leads to

[
∂2
x ∓ τ

e

�
(∂xAy) −

(
ky + e

�
Ay

)2

+ ε2 − δ2

]
ψA/B = 0.

(A2)

Having in mind the form of the vector potential, the
differential equation in the barrier becomes

[
∂2
x ∓ τ

l2
B

−
(

ky + x

l2
B

)2

+ ε2 − δ2

]
ψA/B = 0. (A3)

By using the transformation z = √
2(kylB + x/lB ), the fol-

lowing equation is obtained:

[
∂2
z + 1/2 − 1/2 ∓ τ

1

2
+ (

ε2 − δ2
) l2

B

2
− z2

4

]
ψA/B = 0,

(A4)

which is of the form of the parabolic cylinder (Webers)
differential equation

y ′′ +
(

ν + 1

2
− z2

4

)
y = 0, (A5)

whose solutions are given in terms of parabolic cylinder
functions,

y = C1Dν(z) + C2Dν(−z). (A6)

Finally, the solution for the first sublattice is given by

ψA = C1DνA
[
√

2(kylB + x/lB)]

+C2DνA
[−

√
2(kylB + x/lB)], (A7)

where νA = (ε2 − δ2)l2
B/2 − τ/2 − 1/2. For the other sublat-

tice, after employing the recurrence relations

∂Dν(z)

∂z

= 1

2
zDν(z) − Dν+1(z) (A8)
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and the relationship (A1), one obtains the following expres-
sion:

ψB = C1gDνB
[
√

2(kylB + x/lB)]

−C2gDνB
[−

√
2(kylB + x/lB)], (A9)

where νB = (ε2 − δ2)l2
B/2 + τ/2 − 1/2, and

g = i

[ √
2

(ε + τδ) lB

]τ

. (A10)

If the relation

Dν (z) = 2−ν/2e−z2/4Hν

(
z√
2

)
(A11)

is employed, the spinor multiplied by C1 in Eqs. (A7) and (A9)
reduces to the solution (12) once the incident energy is equal
to a particular Landau level, as could be expected.

The incident wave function is given by

ψI = eikxx

(
1

τeiτφ

)
+ re−ikxx

(
1

τeiτ (π−φ)

)
, (A12)

where φ = arctan ky/kx .
Finally, in the third region, the vector potential is a nonzero

constant, and employing the standard plane-wave ansatz, the
solution is given by

ψIII = t

√
kx

k′
x

eik′
xx

(
1

τeiτθ

)
, (A13)

with the energy of the plane wave given by ε = α
√

k′2
x + k′2

y ,
k′
x = ε cos θ , the effective transverse momentum after the

barrier k′
y = ε sin θ = ky + W/l2

B , and θ being the angle of
energy propagation with respect to the direction transverse
to the barrier. The additional factor under the square root
follows from current conservation [52]. Again, by replacing
the expression for the momenta before and after the barrier, one
obtains the effective law of refraction for a barrier of thickness
W with nonzero �, �SO, and B as

ε sin θ = ε sin φ + W/l2
B. (A14)

The expressions for the wave functions in different regions,
(A12), (A7), (A9), and (A13), are then matched at the inter-
faces x = 0 and x = W , which gives a system of equations
whose solution yields the transmission amplitude t ,

t = 2gτ cos(τφ)(G+
AG−

B + G−
AG+

B )

eik′
xWf

√
k′
x

kx

, (A15)

where

f = g2(F+
B G−

B − F−
B G+

B ) + eiτ (θ−φ)(F+
A G−

A − F−
A G+

A)

+ gτeiτθ (F−
B G+

A + F+
B G−

A)

+ gτe−iτφ(F+
A G−

B + F−
A G+

B ). (A16)

Here the coefficients F± and G± are given by

F±
A/B = DνA/B

[±
√

2kylB], (A17)

G±
A/B = DνA/B

[
±

√
2

(
kylB + W

lB

)]
. (A18)
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[43] M. Grujić, M. Zarenia, A. Chaves, M. Tadić, G. A. Farias, and
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