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Nonlinear response to electric field in extended Hubbard models
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The electric-field response of a one-dimensional ring of interacting fermions, where the interactions are
described by the extended Hubbard model, is investigated. By using an accurate real-time propagation scheme
based on the Chebyshev expansion of the evolution operator, we uncover various nonlinear regimes for a range
of interaction parameters that allows modeling of metallic and insulating (either charge density wave or spin
density wave insulators) rings. The metallic regime appears at the phase boundary between the two insulating
phases and provides the opportunity to describe either weakly or strongly correlated metals. We find that the
fidelity susceptibility of the ground state as a function of magnetic flux piercing the ring provides a very good
measure of the short-time response. Even completely different interacting regimes behave in a similar manner at
short time scales as long as the ground-state fidelity susceptibility is the same. Depending on the strength of the
electric field we find various types of responses: persistent currents in the insulating phase, a dissipative regime,
or damped Bloch-like oscillations with varying frequencies or even irregular in nature. Furthermore, we also
consider the dimerization of the ring and describe the response of a correlated band insulator. In this case the
distribution of the energy levels is more clustered and the Bloch-like oscillations become even more irregular.
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I. INTRODUCTION

The investigation of real-time dynamics of a closed
system consisting of interacting particles is important not
only for the evaluation of experimentally relevant quan-
tities, but also supplies reliable information about the
general properties of the Hamiltonian as long as one measures
an appropriate set of observables throughout the propagation
process [1]. This is of particular interest when the dimension
of the Hilbert space is very large in which case it is not possible
to access the whole energy spectrum.

There exist several approaches for solving the problem of
real-time propagation of closed interacting systems. Among
them are the numerically exact polynomial expansions [2,3] or
the approximate Lanczos propagation method [4], the state-of-
the-art time-dependent density matrix renormalization group
(tDMRG) [5], and nonequilibrium dynamical mean field the-
ory (nDMFT) [6,7]. Among the others are the time-dependent
numerical renormalization group [8], unitary perturbation
theory [9], nonequilibrium Monte Carlo schemes [10], the
real-time-dependent renormalization group scheme [11], and
transfer matrix approaches [12].

The common thread for all these methods is that it is
not necessary to access the whole spectrum in order to
evaluate time-dependent expectation values; hence this makes
it feasible to investigate a large class of interacting systems.

The Hubbard Hamiltonian, as a standard model for in-
teracting lattice fermions, has been the central subject of
numerous theoretical investigations, part of which focused on
real-time quench dynamics [13–17], real-time studies based
on the relaxation dynamics of specifically prepared excited
states [18], and the effect of an external electric field [6,19–26].
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As an important time-dependent phenomenon, the electric
breakdown of a one-dimensional Mott insulator has been
theoretically investigated [27,28] and the analysis was based
on a Landau-Zener (LZ) [29,30] mechanism, which showed
an exponential decay of the overlap with the initial ground
state as function of time, for short time scales. The exponent
of the decay rate is proportional to the square of the charge
gap of the system [28]; however this is not universal and
this quadratic dependence could deviate in specific cases. The
later observation could be assigned to the fact that either the
two-level approximation or the tendency of the propagated
state to overlap only with the first excited state could be
violated in some cases. We found that, similarly to Ref. [31],
the propagated state could have significant overlap with several
higher excited states.

In order to alleviate these discrepancies of the two-level
approximation we employ the recently proposed fidelity
susceptibility [32,33] as a measure of the change in basis set
when an external field is varied. This quantity is unbiased and
can be calculated numerically exactly. Throughout this work
we use it as a basis for comparing the short-time response
of different insulating systems subjected to a constant electric
field.

Beyond the short-time-scale ground-state decay, a question
that grasped attention recently was focused on the dependence
of the long-time electric field response on the ground-state
properties and/or interaction parameters. A notable phe-
nomenon that definitely depends on longer time scales and
is beyond the ground-state decay mechanism based on the
LZ tunneling is the appearance of Bloch oscillations (BOs).
The existence of these oscillations has already been proven
experimentally in semiconductor superlattices [34–37].

The damping of Bloch oscillations in a closed interacting
fermionic system subjected to a uniform electric field has been
described theoretically within the Falikov-Kimbal model [6]
and the one-dimensional interacting spinless model [38],
where it is shown that an integrable system subjected to a weak
uniform field exhibits current oscillations with frequencies
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larger than the frequency of normal BOs. The damping of
the BOs was further investigated within the one-dimensional
Holstein model [39] and the infinite-dimensional Hubbard
model [22].

By using an extended Hubbard model, one has the oppor-
tunity to design the interaction parameters in order to have a
better understanding about the mechanism of the breakdown
in short time scales and the appearance of BOs in longer
time scales. The main aim of this paper is to investigate the
differences between the nonlinear response of different kinds
of closed systems of interacting fermions both in the insulating
and the metallic regimes. This goal is achieved by employing
a real-time propagation scheme together with the ground-state
and spectral analysis.

Notice here that from the experimental point of view, the
special case of electric breakdown of 1D Mott insulators
has been realized experimentally either with a strong electric
field [40,41] or through photoinduced metal-insulator transi-
tions in pump-probe experiments [42,43]. Further interest was
recently triggered by the realization of fermionic optical lattice
experiments, where the effect of an electric field on systems
with designed interactions could be measured [44–47].

This paper is organized as follows: In Sec. II we present
our model under study together with a brief description of the
theoretical and numerical schemes. In Sec. III A we present
our analysis of the response to constant electric field for a
system of weakly interacting fermions, while in Sec. III B we
perform the same study but for strongly interacting fermions.
Finally, in Sec. IV we give our conclusions.

II. MODEL AND METHOD

Our model under investigation is a one-dimensional closed
system of interacting charged fermions with periodic boundary
conditions. It can be described in the second-quantization
formalism by an extended Hubbard model as follows:

Ĥ = −
∑
iσ

[hi+1,i(t)ĉ
†
i+1σ ĉiσ + H.c.] +

∑
i

V n̂i n̂i+1

+
∑

i

Un̂i↑n̂i↓; (1)

ĉ
†
iσ (ĉiσ ) is the creation (annihilation) operator of a fermion

at site i and spin σ = (↑,↓). The fermion density is defined
as usual as n̂i = n̂i↑ + n̂i↓ with n̂iσ = ĉ

†
iσ ĉiσ . The first term

in Eq. (1) represents the kinetic energy, where the hopping
amplitude is taken to be time-dependent and by using
the Peierls substitution becomes hi+1,i(t) = hi+1,ie

ie
�

φ(t) with
hi,i+1 = [h0 + (−1)iη]. φ = φtot/L is the total magnetic flux
piercing the ring divided by the number of sites and η models
a dimerization term. Hereafter we consider � = e = a = 1,
where a is the lattice constant and e is the charge of particles.
Interactions are either local between fermions with opposite
spins, described by U , or nonlocal between fermions sitting
on neighboring sites, described by V . All of the coupling
constants which are reported in the following are scaled with
h0 = 1.

Throughout this work we consider an electric field, which
is given by the time derivative of the flux, F̃ = −φ̇(t)/a, in
units of h0/ea. In the following, the time coordinate is reported

in units of �/h0, and all of the cases we consider are at half
filling with N↑ = N↓ = L/2, where N↑ and N↓ are the total
number of spin-up and spin-down particles, respectively, and
L is the total number of sites.

Starting from parameters at time, t = 0, we find the ground
state of the resulting Hamiltonian and propagate it while
considering the change of the coupling parameters as a
function of time. To find the solution of the time-dependent
Schrödinger equation

H (φ(t))|ψ(t)〉 = i|ψ̇(t)〉, (2)

where | ˙X(t)〉 = ∂|X(t)〉/∂t , one may write the solution as a
superposition of the instantaneous eigenstates of the time-
dependent Hamiltonian as

|ψ(t)〉 =
∑

n

cn(t)|n(φ(t))〉, (3)

where |n(φ(t))〉 are the instantaneous eigenstates of Ĥ (φ(t)),
with

H (φ(t))|n(φ(t))〉 = En(φ(t))|n(φ(t))〉. (4)

By substituting |ψ(t)〉 as expressed by Eq. (3) into the
Schrödinger equation and by using the change of variables as
c̃n(t) = cn(t)eiθn(t), with

θn(t) =
∫ t

0
En(φ(τ ))dτ − i

∫ t

0
〈n(φ(τ ))|ṅ(φ(τ ))〉dτ, (5)

one obtains the following set of coupled differential equations
for the coefficients c̃n(t):

˙̃cn(t) = −
∑
m�=n

eiθnm(t)c̃m(t)〈n(φ(t))|ṁ(φ(t))〉, (6)

where θnm(t) = θn(t) − θm(t). The change of basis set as
a function of time manifests itself in the 〈n(φ(t))|ṁ(φ(t))〉
term on the right-hand side of Eq. (6). By starting from the
ground state of the Hamiltonian at t = 0 [|ψ0(0)〉], i.e., setting
|c0(0)| = 1 and |cn(0)| = 0 for n �= 0 in Eq. (3), and as long
as the terms 〈ψ0(φ(t))|ṅ(φ(t))〉 � 0 during the evolution, then
one arrives at the adiabatic regime where |ψ(t)〉 only follows
the ground state of the instantaneous Hamiltonian such that
|c0(t)| ∼ 1 and |cn(t)| ∼ 0 for n �= 0. Moreover, during the
adiabatic time evolution, the coefficient c0(t) only acquires a
phase that is a combination of the geometrical (Berry) [48]
and the dynamical phases. Moreover, it is possible to express
terms 〈ψ0(φ(t))|ṅ(φ(t))〉 as

〈ψ0(φ(t))|ṅ(φ(t))〉 = φ̇ × 〈ψ0(φ(t))|Ĵtot(φ(t))|n(φ(t))〉
En(φ(t)) − E0(φ(t))

, (7)

where Ĵtot(φ(t)) = ∂φH (φ(t)). As is obvious from the above
expression the second term on the right-hand side of Eq. (7)
does not have any explicit dependence on φ̇ and it is an
intrinsic property of the system. For the nonadiabatic regime
when 〈ψ0(φ(t))|ṅ(φ(t))〉 is large, Eq. (6) not only ensures the
change in the magnitude of cn(t) but each coefficient further
accumulates a complicated phase consisting of dynamical and
Berry phases produced by the other states.

If we consider the ground state as the starting state for the
time evolution, the quantity that measures the change of basis

205121-2



NONLINEAR RESPONSE TO ELECTRIC FIELD IN . . . PHYSICAL REVIEW B 90, 205121 (2014)

set as function of the external parameter φ is the ground-state
fidelity [49], which is defined as

Ξ (φ) = |〈ψ0(φ)|ψ0(φ + δφ)〉|. (8)

It is possible to see that there is a close relationship between
the ground-state fidelity and the coefficients that appear on the
right-hand side of Eq. (7). The change in the ground-state wave
function under an infinitesimal change of flux can be written
as

|ψ0(φ + δφ)〉 = � [|ψ0(φ)〉

+ δφ
∑
n�=0

〈n(φ)|Ĵtot(φ)|ψ0(φ)〉
E0(φ) − En(φ)

|n(φ)〉
⎤
⎦ ,

(9)

where � is a normalization factor. After normalization and
considering δφ 	 1 one obtains that

|〈ψ0(φ)|ψ0(φ + δφ)〉|2 = 1 − (δφ)2χΞ (φ), (10)

where χΞ (φ) is the ground-state fidelity susceptibility which
is defined as [32,33,50]

χΞ (φ) = 1 − Ξ 2(φ)

(δφ)2 =
∑
n�=0

|〈n(φ)|Ĵtot(φ)|ψ0(φ)〉|2
[E0(φ) − En(φ)]2

.

(11)

The leading term in the fidelity expansion is of the order
of δφ2. When comparing the terms on the right-hand side of
Eq. (11) with terms that appear on the right-hand side of Eq. (6)
[i.e., 〈ψ0(φ(t))|ṅ(φ(t))〉 terms] and by considering Eq. (7), one
may infer that a larger χΞ (φ) leads to an enhanced nonadiabatic
character of the time evolution when the system is driven by
an external electric field.

In the following sections we will use the ground-state
fidelity susceptibility as a basis for the comparison of the
short-time response for different kinds of interactions modeled
by Eq. (1). We do this in particular when the system is subjected
to a constant and uniform electric field.

Although the instantaneous eigenstate representation of the
time-dependent Schrödinger equation is very insightful, the so-
lution of Eq. (6) is either very difficult or outright impossible to
obtain for systems where the Hilbert space is very large since
having the eigenstates at each moment is computationally
very expensive. For the case of interacting fermions with
spin the dimension of the Hilbert space for a small system,
which consists of only 10 sites at half filling, is 63 504
(N↑ = N↓ = 5) and to solve Eq. (6) is very difficult.

An alternative way to deal with the time-dependent
Schrödinger equation is to exploit the form of the unitary time
evolution operator

Û (t) = T e−i
∫ tf

0 Ĥ (φ(τ ))dτ �
N∏
k

e−iĤ (φ(tk+δt/2))δt , (12)

with δt = tf /N , where N is the number of steps, tf is the final
time, tk+1 = tk + δt , and t0 = 0. Therefore, the problem is
reduced to a stepwise change of the Hamiltonian and relaxation
of the system with a time step equal to δt . Over each time
step the Hamiltonian is considered to be time-independent and

the relaxation of the wave function can be easily performed,
by using the Chebyshev propagation method [2,3], which
considers an expansion of the evolution operator in terms of
orthogonal Chebyshev polynomials.

The wave function at tk+1 can now be written as

|ψ(tk+1)〉 = e−ibδt

[
J0(aδt)I +

∞∑
s=1

2(−i)sJs(aδt)Ts

× (H̃ (φ(tk + δt/2)))
] |ψ(tk)〉, (13)

where H̃ = (Ĥ − bI )/a, I is the unit matrix with the same
dimension of Ĥ , b = (Emax + Emin)/2, and a = (Emax −
Emin)/(2 − ε), where Emax and Emin are maximum and
minimum eigenvalues of the Hamiltonian, which could be cal-
culated by means of the Lanczos method [51] at the beginning
of the time evolution. Js is the sth-order Bessel function of
the first kind and Ts(x) is the Chebyshev polynomials which
obey the recursion relation, Ts(x) = 2xTs−1(x) − Ts−2(x). ε

is introduced in order to make sure that the absolute value
of the extreme eigenvalues of H̃ is less than 1. This is
crucial for the Chebyshev method because the arguments of
Chebyshev polynomials accept only values in the interval
[−1,1]; moreover, notice here that choosing an appropriate ε

prevents the calculation of Emax and Emin at each step of prop-
agation. We truncate the series in Eq. (13) such that the pro-
pagated wave function becomes normalized up to machine
accuracy in order to reduce error accumulation during the
stepwise propagations. Moreover this also ensures that the
propagation operator is unitary up to machine accuracy.

Having the wave function at each time step, then the
coefficients from Eq. (3), cn(t) = 〈n(φ(t))|ψ(t)〉, could be
calculated for analysis purposes only whenever it is necessarily
or possible to do so. In order to have some insight about the
nature of the wave function, |ψ(t)〉, we further calculate the
structure factors that are defined as

CX(q) = 2

L2

L∑
i=1

L/2∑
j=1

eiqri,i+j X̄i,i+j , (14)

where X̄s,k = 〈X̂sX̂k〉 − 〈X̂s〉〈X̂k〉, s and k are the site indexes
(summation over L/2 for j is introduced because X̄s,k is
symmetric around X̄s,s+L/2 due to the periodic boundary
condition we considered), and rs,k is the distance between site s

and site k. We report spin density wave (SDW) order parameter
OSDW = CŜ(π ) with Ŝs = 1/2(n̂s↑ − n̂s↓) and charge density
wave (CDW) as OCDW = Cn̂(π ), where n̂s = n̂s↑ + n̂s↓ is the
local density operator. We also report the value of the current
as a function of time, which is defined as the expectation value
of the current operator, Ĵ = i

L

∑
sσ [hs+1,s(t)ĉ

†
s+1σ ĉsσ − H.c.].

III. RESULTS

In the following we set h0 = 1 and all the coupling constants
are scaled with h0. Moreover we define the uniform electric
field, F̃ , as φ(t) = −F̃ t . For the sake of simplicity we define
F = F̃ /2π . We consider the time steps to be δt = 0.005. We
have tested all the results against a finer time grid in order
to ensure that there is no quantitative difference over the
parameter range considered here; moreover in the following,
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the dimerization parameter is set to η = 0 except when
otherwise stated.

Notice here that in the calculations that are reported here
total particle number and the number of particles with specific
spin are fixed explicitly. However, the Hamiltonian that is
presented in Eq. (1) is translationally invariant, which means
that the translation operator T̂ (a), where a is the lattice
constant, commutes with the Hamiltonian. By exploiting this
property the Hilbert space of the full Hamiltonian could be
reduced to L different blocks. The symmetrization of the
basis set can be easily performed by applying the projector
P̂k = 1/L

∑L−1
j=0 e2πıjk/LT̂ j (a), on the unsymmetrized basis

sets |α〉. The basis sets with different k = 0 . . . L − 1 values
do not mix and when they are used for the calculation of matrix
elements of the Hamiltonian, we find that 〈α,k′|Ĥ |α,k〉 = 0
for k �= k′ and |α,k〉 = P̂k|α〉. For a detailed description of
the symmetrization of the basis sets we refer the reader to
Ref. [52].

Clearly, the perturbation which is induced by the presence
of φ as an external parameter does not break this translational
symmetry; therefore this property could lead to the presence
of crossings in the energy dispersion of different energy levels
as function of φ due to the presence of extra symmetries. In
other words, the ground state of the full Hamiltonian could
belong to different symmetry blocks when the parameter φ

is changed. However, because the change of φ does not mix
states that belong to different blocks, one should only focus on
the ground state χΞ (φ) within a specific block, here the block
containing the initial ground-state wave function at φ = 0.

We start by showing in Fig. 1 the ground-state fidelity
susceptibility, χΞ (φ) (for the block k = 0), at φ = 0.1π for
a system consisting of 10 sites at half filling for different
values of U and as a function of V . As is clear from the inset
of Fig. 1, χΞ (φ) acquires the largest value at φanti = 0.1π ,
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FIG. 1. (Color online) Ground-state fidelity susceptibility for a
ring with L = 10 and N↑ = N↓ = 5 at φanti = 0.1π as a function of
interactions. The inset shows the ground-state fidelity susceptibility
as a function of φ/2π for different sets of parameters. The points
represent specifically chosen pairs of parameters U,V in order to
model a weakly interacting metal (circle), a SDW insulator (triangle),
a CDW insulator (upside down triangle), and a strongly interacting
metal (diamond).

which is an anticrossing point between the ground state and
an excited state. Here we calculate χΞ (φ) numerically exactly
with the use of the Lanczos [51] method and the differential
form of χΞ (φ), i.e., χΞ (φ) = [1 − Ξ 2(φ)]/δφ2, introduced in
Eq. (11), and we use δφ = 10−3 for the calculations presented
in Fig. 1.

Notice that the susceptibility is largest, almost diverging,
at specific values of V for each U , whenever the relation
U � 2V is satisfied. This relation represents the boundary
which separates the SDW and CDW phases [53], and was
obtained within the DMRG approach for 1D chains of larger
sizes. However, it is obvious that χΞ (φanti) can provide a good
estimate on the location of the SDW-CDW phase boundary,
although it does not provide any information about the details
of the wave function (whether it describes SDW or CDW).

In order to compare the nonlinear response of different
kinds of interacting systems we analyze different sets of
interaction and hopping parameters. In particular we study
three different cases: first we consider a system with U = 1.5
and V = 0.82, marked with a circle in Fig. 1, which shows
an almost diverging χΞ (φanti) and has a vanishingly small
charge gap, �charge(φanti) � 6 × 10−3, and therefore could be
considered as a weakly interacting metal. Second, we use
a dimerization parameter η = 0.4, which opens up a gap
[�charge(φanti) = 1.74] and the system behaves as a correlated
band insulator (BI). Finally, we choose a stronger interacting
system with U = 4.0 and three different values of V = 0.94,
2.56, and 2.16. Two values, V = 0.94 [a SDW insulator,
marked with a triangle in Fig. 1, �charge(φanti) = 1.44] and
V = 2.56 [a CDW insulator, marked with an upside down
triangle in Fig. 1, �charge(φanti) = 1.36] are chosen such that
χΞ (φanti) is the same. We also consider V = 2.16 on the phase
boundary between SDW and CDW with an almost diverging
χΞ (φanti) (marked with a diamond in Fig. 1). The latter case
also has a vanishingly small charge gap but it should be
considered as a strongly interacting metal.

A. Weakly interacting system

In Fig. 2 we show the current as function of time for a
system with U = 1.5 and V = 0.82 for different electric field
strengths. For illustrative purposes we start the analysis of
the graph from the largest field, F = 0.4, where it shows a
regular damped BO in the time domain of interest. As we
stated previously, χΞ (φanti) is largest at the anticrossings; thus
the probability transfer from the ground state to excited states
(also in analogy with LZ theory) is enhanced. Therefore at
each anticrossing there is a high probability of transfer from a
right-going wave [− 1

L
∂En(φ)/∂φ > 0] to another right-going

wave. When the field is strong enough this transfer is very
efficient such that the wave function, |ψ(t)〉, has a significant
overlap with mainly one of the eigenstates of the instantaneous
Hamiltonian. Finally when the maximum energy is reached,
the wave function will start having significant overlap with left-
going states and the current will change sign. This reflection
for the high-field case happens exactly at t = (2F )−1.

To better understand the above description of the large-
field response, we plot in Fig. 3 (a) the eigenstates of the
instantaneous Hamiltonian as a function of time for a smaller
system, with L = 6 at half filling, for F = 0.4 and the same
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FIG. 2. (Color online) Current as a function of time for a ring
with U = 1.5, V = 0.82, L = 10, N↑ = N↓ = 5, and for different
electric field strengths. Inset: The frequency of the BO for different
electric fields and the same parameters of the main graph with
ωb = F .
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FIG. 3. (Color online) (a) Eigenvalues of the instantaneous
Hamiltonian as function of time for a system with L = 6 at half
filling, U = 1.5, V = 0.82, F = 0.4. The colors and the size of the
points are given by the overlap of the time-dependent wave function
with the instantaneous eigenstates, |〈n(φ(t))|ψ(t)〉|. (b) The same as
(a) but with a dimerization parameter η = 0.4 and F = 4.0.

interaction parameters. Both the size of the points and their
color code represent the magnitude of the overlap of the time-
dependent wave-function with the instantaneous eigenstates of
Ĥ (φ(t)). Note that the spectrum is periodic with 2π/L; thus
the first anticrossing happens at tF = 0.5/L = 0.0833. This
smaller ring shows similar behavior to the one presented in
Fig. 2 when subjected to a strong field.

The formation of a coherent path for the probability transfer
throughout the spectrum and the reflection at the topmost state
when t = (2F )−1 can be clearly seen. However, a dissipative
loss of the probability to both left-going and right-going waves
is possible and the current becomes damped as a function of
time. For higher fields the probability transfer is more efficient,
which means that the damping of BO is suppressed.

Weak fields. Looking back to Fig. 2, the weakest field
response, for F = 0.025, is composed of two nonlinear effects.
First, the state with high probability is reflected at smaller tF ,
well before it arrives at the other edge of the spectrum. This
could be inferred from the fact that the current tends to change
sign at smaller tF than in the high-field case. Second, when the
field is weak the probability transfer to excited states is smaller,
which means that at each higher energy anticrossing there is a
finite probability of remaining in the state with lower energy,
which will contribute with a negative sign to the current of
|ψ(t)〉. Therefore after an initial increase in current, the wave
function will overlap with equally right-going and left-going
instantaneous states and one ends up with a quasistationary
regime in which the current is very small and fluctuates around
zero.

We further elucidate this behavior by expressing the current
as a function of the instantaneous eigenstates of Ĥ (φ(t)):

〈Ĵ (t)〉 =
∑

n

an(t)2〈n(φ(t))|Ĵ (φ(t))|n(φ(t))〉 +
∑
n�=m

an(t)

× am(t)ei(γn(t)−γm(t))〈m(φ(t))|Ĵ (φ(t))|n(φ(t))〉,
(15)

where an(t) = |〈n(φ(t))|ψ(t)〉| describes the magnitude of the
overlap of the time-dependent wave function with the instan-
taneous eigenstates and γn(t) = arg[〈n(φ(t))|ψ(t)〉] describes
the phases acquired by the wave function. We plot in Fig. 4(a),
for F = 0.025 and L = 8, an(t)2 as a function of the current
for each eigenstate at time tF = 2.505.
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FIG. 4. (Color online) (a) |〈n(φ(t))|ψ(t)〉|2 for Lsites = 8 and
N↑ = N↓ = 4,U = 1.5,V = 0.82, and F = 0.025 at tF = 2.505 as
a function of the current of each state; |n(φ(t))〉 are the eigenstates of
the instantaneous Hamiltonian. (b) γn = arg[〈n(φ(t))|ψ(t)〉] for the
same parameters.
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Observe that the probability amplitudes as a function of
current are approximately symmetrically distributed between
left-going and right-going states; this in turn implies that the
first term of Eq. (15), i.e., the diagonal expectation value of
the current, becomes approximately equal to 0. Moreover, the
phases, γn, which are presented in Fig. 4(b), are distributed
uniformly between 0 and 2π therefore leading to the dephasing
of nondiagonal terms in Eq. (15), and finally the total current
is approximately equal to zero.

One should notice that for the case with L = 8 the current
is not completely equal to zero for the long-time response,
but it acquires a small but finite value that fluctuates around
zero, indicating the fact that the number of eigenstates that
contribute is small due to finite-size effects. These fluctuations
are suppressed for larger systems as we show in the following
sections.

Intermediate fields. We next analyze the response to inter-
mediate fields between the full dissipative case for F = 0.025
and the full oscillating one for F = 0.4. When the electric field
strength is increased the reflection of the high-probability state
gradually approaches the largest eigenstate of the spectrum.
This could be clearly recognized in Fig. 2 where the time
tF for which the current changes its sign approaches 0.5. At
the same time the BO period, which is generally less than
F−1, gradually approaches F−1. This is shown in the inset
of Fig. 2 where we plot the frequency of BO as function of
field strength. A similar behavior was also reported in metallic
spinless systems subjected to a uniform electric field [38]. Our
investigation should also be relevant for that case.

Here, we mention that similar to the electric breakdown
case, where a mapping to a quantum random walk [54] on
a semi-infinite chain was proposed, here the problem of BO
damping also could be mapped to a quantum random walk
but on a chain with two edge states. However, as we will
present in the following, the actual long-time response to
an electric field depends strongly on the probability transfer
between subsequent states throughout the whole spectrum.
It is therefore necessary to design a random walk for which
the probability transfer is also randomized but taken from
specific distributions, which could be chosen based on the
level statistics of the Hamiltonian [55].

Dimerization. In Fig. 5, we show the current as a function
of time for a system with the same interactions as in the
metallic case but with a dimerization parameter η = 0.4. We
call this state a correlated band insulator (BI). The general
arguments presented for the metallic case hold here; however
there are also differences, which we explain in the following.
As expected, dimerization induces the opening of a charge
gap [�charge(φanti) = 1.74] and the electric field breakdown is
postponed to larger fields. Additionally, a dissipative regime
appears only at F = 0.2. At this field strength the breakdown
has already happened and the instantaneous ground state has
a very small contribution to |ψ(t)〉. For larger fields, i.e.,
F = 0.4, first the current starts to show irregular oscillations,
then at F = 0.6 the current becomes oscillatory but with a
frequency of the BO larger than F .

Finally, at even larger fields, F = 4.0, the current is
oscillatory with ω = F . This is achieved for much larger
fields than the ones presented for the weakly interacting
metal, as shown in the inset of Fig. 5. The first notable
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FIG. 5. (Color online) Current as function of time for a dimerized
ring with Lsites = 10 and N↑ = N↓ = 5,U = 1.5,V = 0.82,η = 0.4
(see the definition of the hopping parameter following Eq. (1)) and
for different electric field strengths. The inset shows the frequency
of the Bloch oscillations for different electric fields and the same
parameters of the main graph with ωb = F .

difference between the metal and the correlated BI is that
here BOs with larger frequencies survive for larger tF . This
is different from the metallic case where BOs with larger
frequencies are strongly damped. Furthermore, one may expect
that the dimerization may only postpone the breakdown and the
transition to the oscillatory behavior should not be affected as
long as the dimerization only affects the low-energy part of the
spectrum by opening up a ground-state charge gap. However,
the presence of long-lasting BOs with a period less than F−1

implies the presence of states with small χΞ in the middle of
the spectrum and which reflects back a high-probability state.

Roughly speaking, these states could be at the edge of a
cluster of eigenstates, and are separated by a large gap from
the next subsequent state and therefore play the role of an
edge state. However, we emphasize that not only the gap but
also the actual value of χΞ of each eigenstate is an important
factor that affects the nonadiabatic behavior of the system. In
order to visualize again the overlap of the time-dependent
wave function with the whole spectrum, we turn back to
Fig. 3(b), where the overlap of |ψ(t)〉 with the instantaneous
eigenstates of Ĥ (φ(t)) is plotted as function of time for a
smaller dimerized system with L = 6, η = 0.4, and F = 4.0.
Again the smaller ring behaves the same as a larger system
with L = 10 when subjected to strong fields. As is clear from
the plot the recurrences of the ground state and the state with
largest energy occur periodically at times t = F−1.

A noticeable feature of the propagation in dimerized
systems is the fact that the overlap of |ψ(t)〉 with the
instantaneous eigenstates is very nonlocal in the energy
domain, meaning that the path of high-probability transition is
broadened in comparison to the metallic system. Noticeably,
the wave function starts to have finite overlap around the first
anticrossing not only to the first excited state but also with
the second excited state. Therefore, a two-level approximation
(LZ-like) is not appropriate for breakdown of the ground state.
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The dimerization leads to a stronger insulator not only in
the sense that it postpones the electric field breakdown, but it
also largely affects the overlap of |ψ(t)〉 with states located
in the middle of the spectrum. In short, while the breakdown
and the appearance of the dissipative behavior depends mostly
on the low-energy part of the spectrum, the transition from the
dissipative to the oscillatory behavior largely depends on the
clustering of eigenstates in the middle of the spectrum.

B. Strongly interacting system

For the cases with strong interactions, as stated before,
we choose U = 4.0 and three different nearest-neighbor
interactions, V = 0.94 (SDW insulator), V = 2.56 (CDW
insulator), and V = 2.16 (metallic case). For the insulating
cases we choose the interaction parameters such that both
cases acquire the same ground state χΞ (φanti) as seen in Fig. 2.

We plot in Fig. 6(a) the current as a function of time for
a very small electric field, i.e., F = 0.002, for a ring of size
L = 10. Both insulating systems appear to be in the adiabatic
regime, where the current shows an oscillatory behavior with
a period equal to 1/FL. However, the metallic case shows
oscillations with a doubled period, 2/FL. The main reason
for this comes from the fact that for the metallic case the
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FIG. 6. (Color online) (a) Current as function of time for very
small field F = 0.002 for different interactions. (b) The energy
dispersion of the first three excited states of the instantaneous
Hamiltonian together with the overlap of these states with |ψ(t)〉 as
function of time for U = 4.0, V = 2.16. The inset of panel (b) shows
a zoom-in of the anticrossing region. Colors represent the overlap of
the time-dependent wave function with the instantaneous eigenstates.
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FIG. 7. (Color online) Current as a function of time for different
interactions and different field strengths. The inset shows the square
of the overlap of |ψ(t)〉 with the instantaneous ground state of Ĥ (φ(t))
for different interactions and F = 0.2.

probability is transferred completely to the first excited state
due to very large χΞ (φanti); i.e., it cannot be considered in the
adiabatic regime even at these small fields. This is illustrated in
Fig. 6(b), where the energies of the first three states of Ĥ (φ(t))
are shown as function of time (and implicitly as a function
of flux), together with the overlap of |ψ(t)〉 with these three
states.

As is obvious, because of the very large χΞ (φanti), there
is a very large overlap with the first excited state after the
first anticrossing; however the field is very small such that it
cannot overcome the gap between the first excited and second
excited state. |ψ(t)〉 only has an extremely small overlap with
the second excited state, which leads to the fact that the
probability is reflected back to the ground state and one ends
up with current oscillations with a period twice the adiabatic
expectation. The breakdown field is now achieved when the
gap between the first and second excited states is overcome.

We next describe the response of strongly interacting
systems to larger fields. In Fig. 7 we present the current as
a function of time for different field strengths and for the three
interaction choices introduced previously. For F = 0.1 all
the cases show a dissipative behavior; however the insulating
ones show small peaks in the current before it arrives at the
quasistationary zero-current state. The period of these peaks
is approximately equal to 1/FL, which therefore implies that
the overlap of |ψ(t)〉 with the instantaneous ground state does
not vanish quickly and manifests itself as small peaks in the
current. This is not the case for V = 2.16 where the overlap
with the ground state is lost immediately at the anticrossing
(see the inset of Fig. 7 for F = 0.2) and the current behaves
smoothly from the beginning of the evolution. For stronger
fields, F = 0.2, the change of the current is large, such that
the current fluctuations due to the finite overlap with the ground
state disappear.

In the inset of Fig. 7 we show the square of the overlap of
|ψ(t)〉 with the ground state of the instantaneous Hamiltonian.
It is clear that for the two insulating cases for which we
set χΞ (φanti) to be equal to each other [χΞ (φanti) of SDW
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FIG. 8. (Color online) Current as a function of time for different
interactions and different field strengths and different sizes of the
system.

and CDW insulating systems], the decay of the ground state
is identical. Notice, we observe some deviations between
the ground-state decay of these two cases for smaller field
strengths. Furthermore, in the dissipative cases for F = 0.1
and F = 0.2 both insulating cases behave in the same way
even for larger times even though the interaction strengths are
very different and one describes a SDW insulator while the
other one is a CDW insulator with different excitation.

When the field is increased to F = 0.8, the SDW insulator
with V = 0.94 starts to show oscillations with large amplitude.
On the other hand the metallic and CDW cases are still near the
dissipative regime with a small long-time current, but irregular.
For even larger fields, F � 1.6 (not shown here), all three cases
show oscillations with large amplitude but which are irregular.
It is only when the strength of the electric field is very large,
F = 10.0, that all the cases show regular BO as shown in
Fig. 7.

Finite-size effect. To see the effect of the size of the system
on the transition from a dissipative to an oscillatory pattern, we
plot in Fig. 8 the current as a function of time for different sizes
for V = 0.94 (SDW insulator) and V = 2.56 (CDW insulator).
We observe that for all cases the fluctuations of the current
in the dissipative regime (F = 0.2) are suppressed for larger
sizes. This is due to the fact that |ψ(t)〉 acquires overlap with
a much larger number of states when the size is increased.
This implies that a more efficient dephasing of the current is
achieved [see the discussion following Eq. (15)]. However,
in the strong-field regime, once the transition to oscillatory
behavior occurs, the size effect is negligible, showing that the
sizes of the gaps in the middle of the spectrum do not depend
strongly on the size, at least not for the strong interactions
considered here.

Order parameters. In Fig. 9, we show the SDW and CDW
order parameters as functions of time for the two insulating
cases. As is clear from Fig. 9(b) for the SDW ordered system
(V = 0.94), OSDW only drops gradually as function of time;
however at the same time OCDW is enhanced at the beginning
of the evolution [see Fig. 9(a)]. This further implies the
presence of a CDW state near the bottom of the spectrum [23].
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FIG. 9. (Color online) (a) CDW order parameter as a function of
time for a system with L = 12 at half filling derived with F = 0.2.
(b) SDW order parameter as function of time and the same parameters
as in plot (a).

Finally, at longer times both order parameters dissipate during
the evolution arriving at a quasistationary state with almost
vanishing value for larger times. The CDW ordered system
shows a similar behavior but with reversed OCDW and OSDW

contributions [see Figs. 9(a) and 9(b)]. Therefore, the transient
regime shows that since the two order parameters are in
competition, the mechanism of destroying the dominant order
is the proliferation of the competing one.

IV. CONCLUSIONS

In conclusion we investigated the nonlinear response of a
closed interacting fermionic system as modeled by an extended
Hubbard model. A weakly interacting metallic system at the
boundary of SDW-CDW shows a dissipative behavior for low
fields. The main reason for this is the fact that |ψ(t)〉 acquires
overlap with a large number of left-going and right-going states
at large times. This in turn implies that the quasistationary state
acquires zero current. Bloch oscillations start smoothly with a
frequency larger than F . The main reason for this is the fact
that the reflection happens at the lower part of the spectrum,
thus effectively decreasing the bandwidth. Upon increasing
the field strength the probability transfer at each anticrossing
is more efficient. This leads to a more regular recurrence of the
ground state and the topmost excited state with period F−1,
which can be seen from the oscillations in the current.

Upon dimerization of the metallic system, the formation
of the dissipative regime is postponed to larger fields due to
the formation of a charge gap. However, the main difference
between the dimer case and the metallic system resides in the
fact that, first, it shows irregular current oscillations before
they turn into regular BOs and second, the BOs with larger
frequencies survive for larger tF . In analogy with the metallic
case subjected to strong field, this implies the existence of
states at the middle of the spectrum with low χΞ (φ) (or
roughly speaking the formation of large midgaps in the relevant
excitations) that play the role of a band-edge state and reflect
back the overlap probability at the middle part of the spectrum
even for large electric fields. Finally, the dimerized system also
shows regular BOs with frequency equal to F for large enough
electric fields. The value for which the dimerized system shows
regular BOs is much larger than those found for the metallic
system even though the interactions are identical.

For stronger interacting systems when the interactions are
chosen such that the ground-state χΞ (φanti) is the same for both
cases, then the ground-state decay for both CDW insulator
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and SDW insulator behaves exactly the same for short times.
This similarity of the ground-state decay manifests itself even
for larger times and for both low- and high-field dissipative
regimes. However significant differences arise for large-time
response between the two cases for large electric fields. While
SDW shows oscillatory behavior with large magnitude, the
CDW insulator and the strong interacting metallic system
only exhibit irregularities with small oscillations. Different
from the weakly interacting metallic system and the dimer
case, in the strongly interacting regime these irregularities are
extended to intermediate fields and only for very large fields,
F = 10.0, regular BO with a period of F−1 is observed. This

effect appears to be little affected by size, since the SDW
and CDW insulators, for L = 10 and L = 12, show the same
qualitative and even quantitative behavior. This implies that
the reorganization of the spectrum is affected much more by
the interaction than by the finite-size-induced discreteness.
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