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Generic ordering of structural transitions in quasi-one-dimensional Wigner crystals
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We investigate the dependence of the structural phase transitions in an infinite quasi-one-dimensional system
of repulsively interacting particles on the profile of the confining channel. Three different functional expressions
for the confinement potential related to real experimental systems are used that can be tuned continuously from
a parabolic to a hard-wall potential in order to find a thorough understanding of the ordering of the chainlike
structure transitions. We resolve the long-standing issue why the most theories predicted a 1-2-4-3-4 sequence
of chain configurations with increasing density, while some experiments found the 1-2-3-4 sequence.
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I. INTRODUCTION

A crystalline structure consists of a periodic arrangement
of molecules, atoms, or different particles. The first prediction
about self-arrangement of particles, nowadays known as
Wigner crystals (WCs) [1], states that in the absence of kinetic
energy, a system of interacting particles arranges itself into
a body-centered cubic (bcc) lattice in three-dimensional (3D)
space [2,3], a triangular lattice in two dimensions (2D) [4–6],
while in one dimension (1D), the energetically most favorable
organization is given by an evenly spaced lattice [6–8].

For a quasi-one-dimensional (Q1D) system, Piacente
et al. [9,10] studied the ground state (GS) configuration of
a system of particles confined in a parabolic channel, and
found a nonsequential ordering of transitions (non-SOT)
between 1-2-4-3-4-5-6-chainlike structures with increasing
particle density. They revealed that this ordering of transitions
between chains is robust, being not affected by the range of
the interaction between the particles [11–13]. That succession
of phases differs from a sequential ordering of transitions
(SOT), which is characterized by a consecutive succession
of phases with 1-2-3-4-5-6 chains, as one would intuitively
expect to be the case. The structural transition from a two- to
a four-chain configuration occurs, in the case of a non-SOT,
through a zigzag transition of each of the two chains and a
simultaneous small shift along the chain, which makes it a
discontinuous transition [10].

The only second-order transition in this sequence is the
zigzag transition between the one- and the two-chain configu-
ration, which has been extensively studied in classical [12–16]
and quantum [6,17–21] systems. A detailed analysis of the
structural transitions for larger number of chains has to a lesser
extent also been addressed [9,10,22,23]. Experimental findings
in a colloidal Q1D system showed evidence of transitions
from eight- up to five-chain configurations [22]. Numerical
calculations in the same work, suggested that this sequence
continues reducing the number of chains, one by one, until the
three-chain configuration. No information was provided about
the transition between two- and three-chain structures.

However, a direct transition from the two- to the three-
chain configuration, 2-3, has been shown to take place in a
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number of systems. For example, for Yukawa particles the
direct 2-3 transition was observed in dusty plasma clusters
[24] with increasing linear density. In addition, a SOT has been
predicted theoretically for an Abrikosov-vortex arrangement
in a superconducting slab for low temperatures [25–29], for
Pearl vortices [30], and also for binary mixtures of repulsive
particles [31], in particular, when the ratio between charges of
both species was around 1/5.

These examples suggest that, in spite of the demonstrated
robustness of the non-SOT with respect to the range of the
interaction between the particles, the nonsequential ordering
is perhaps sensitive to the system parameters and conditions.
First, the real confinement can be different from parabolic. For
example, in the case of colloids [22] the boundaries could be
closer to hard walls. In the case of superconducting vortices,
the potential barrier preventing vortices from entering or
escaping the slab is described by the known Bean-Livingston
barrier [32,33], which for a wide slab is very different from
a parabola. In addition, fluctuations of any nature can be
responsible for the disappearance of the non-SOT. This was
probably the case in the experiment [34] that analyzed the
melting of the WC chainlike structures and their transport in a
Q1D channel of electrons on a liquid He surface. In particular,
the non-SOT has been observed in that experiment for very
low temperatures, while even at T = 1 K the non-SOT regime
was washed out, and the usual SOT was observed instead.
This behavior is in agreement with the early predictions by
Piacente et al. [10] showing that thermal fluctuations can easily
destroy the non-SOT. This finding is also in agreement with
recent computer simulations [35] on the dynamics of WCs in
Q1D channels with constrictions. It was shown that even in
the absence of thermal fluctuations, the non-SOT observed in
long constrictions was destroyed in short constrictions, due
to fluctuations of the number of particles flowing through the
constriction.

Although fluctuations are generally a universal “tool” to de-
stroy any ordering, and as shown in the examples above also the
non-SOT, the role of other factors such as the functional form
of the confinement potential remains unexplored. In particular,
an important open question is: How universal is the non-SOT?
Is it typical for systems with parabolic confinement, or is it
of a more generic nature? The positive answer to the latter
would open broader possibilities for experimental observation
of the non-SOT, provided the fluctuations are very weak. This
motivated us to investigate the universality of the non-SOT.
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In the present work we study the influence of the con-
finement potential on the GS of a Q1D system of interacting
particles, elucidating the general model of the order of the
transitions between chainlike structures. Different confine-
ment potentials are used in order to study the behavior of
the GS transitions, when the profile of the channel is varied
continuously from a paraboliclike to a hard-wall potential.

II. MODEL SYSTEM

We consider an infinite system of identical interacting
particles with mass m and charge q, which are trapped in a Q1D
channel through an external confinement potential, restricting
the movement of the particles in the y direction. The total
energy of the system is given by the following expression:

H =
∞∑
i=1

∞∑
j>i

Vint(|rij |) +
∞∑
i=1

Vconf(yi), (1)

where rij = ri − rj is the relative position of the ith with
respect to the j th particle in the system, while Vint(r) and
Vconf(y) represent the pairwise interparticle interaction and
the confinement potential of the channel, respectively.

The interparticle interaction, in dimensionless units, is
taken as follows:

Vint(r) = e−κr

r
, (2)

where the parameter κ allows us to tune the range of the
interaction between particles in the system. In order to
understand the effect of confinement on the ordering of the
phase transitions, we considered the following three different
functional forms for the confinement potential:

VA(α,y) = υ2y2−α
0 |y|α , (3)

VB(β,y) = υ2y2
0

cosh(βy) − 1

cosh(βy0) − 1
, (4)

VC(γ,y) = σ 2y2
0

[
e−γ 2(y−y0)2 + e−γ 2(y+y0)2]

, (5)

where y0 determines the effective width of the confinement
channel, while the parameters α, β, and γ allow one to control
the sharpness of its profile and the dimensionless frequencies
υ and σ control the strength of the confining potential.

In order to put these potentials in the context of possible
experimental, the energy is expressed in units of E0 =
(mω2

0/2)1/3(q2/ε)2/3 and all distances are expressed in units
of r0 = (2q2/mω2

0ε)1/3, where ω0 measures the strength of
the confinement potential and ε is the dielectric constant of
the medium the particles are moving in. Those definitions
allow one to generalize the pairwise interaction as Vint(r) =
q2 exp(−κr)/εr . The dimensionless linear density η is defined
as the number of particles per unit of length along the
unconfined direction.

Previously, it has been shown that, in a parabolic channel,
the sequence of transitions in the GS configuration of the
system when increasing the density is not affected by the
range of the interaction between particles, when the pairwise
potential is modeled by a screened Coulomb potential [10].
This pairwise potential has been found as a good candidate
to model the interparticle interaction in different experimental
systems in condensed matter physics as colloidal systems [36],

charged particles in a dusty plasma [37], system of microscopic
charged particles [38–41], and even in systems of vortices
in superconductors [42]. In the last two cases the pairwise
interaction considered is the modified Bessel function K(x),
which behaves very similarly to the potential we propose in
the present study.

In the present work the range of the interaction is fixed
by choosing κ = 1, excluding the long-range Coulomb in-
teraction (κ = 0) from our study. In order to analyze the
influence of the profile of the channel on the sequence of
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FIG. 1. (Color online) Profile of the confinement potentials con-
sidered in this work, for different values of the shape parameters: (a)
power-law, (b) exponential-like, (c) Gaussian (see details in the text).
The solid red curve shows the parabolic potential for reference, and
the hard-wall potential is indicated by the white region in the middle
of the figure.
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the phase transitions, we fix the confinement strength for the
parabolic potential [i.e., α = 2 in Eq. (3)] to υ = 1. Next
we note that VB(β = 0,y) = VA(α = 2,y) is a parabola. For
VC(γ,y) we determine the parameters σ and y0 such that for
some γ value we obtain a confinement potential that is very
close to a parabola [see Fig. 1(c)]. The fitting results in the
choice of parameters σ = 0.862 and y0 = 6.275, which are
fixed for all numerical calculations performed in the present
work. The different confinement potentials are plotted in Fig. 1
for different values of the shape parameters.

Figure 1 shows the flexibility of the confinement potentials
defined by Eqs. (3)–(5). Thus, by gradually changing the shape
parameters α, β, and γ , we follow a continuous evolution
from a soft paraboliclike [note that in Fig. 1(c), due to the
shape of the confinement potential given by Eq. (5), the closest
approximation to the parabolic confinement is found for γ =
0.34; this profile is being plotted with a blue dashed line] to
the hard-wall potential. As a reference, the parabolic profile
is shown by the red curve in each plot. It is worth noting
that the three functional forms for the confinement potential
are essentially different and approach the hard-wall limit in
a different manner. The potential profiles were chosen such
that they model confinement potentials in various physical
systems ranging from charged particles and colloids in narrow
channels to vortices in superconducting stripes. For example,
the potential profile in Fig. 1(c) for γ = 1 models the Bean-
Livingston barrier for vortex exit from a superconductor.

III. TRANSITIONS BETWEEN CHAINLIKE STRUCTURES

The GS of the system of interacting particles in a Q1D
channel consists of chainlike structures [12–15], and the
transitions between them are of first order [10,22,23], with
the exception of the zigzag transition between one and two
chains which is of second order [12,13]. Some typical chainlike
configurations are shown in Fig. 2, where the order parameters
are indicated in red.
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FIG. 2. (Color online) Schematic view of the chainlike config-
urations together with the relevant order parameters used in the
calculations, where η represents the linear particle density in the
unconfined direction.

In order to study the structural transitions in an infinite
system of particles interacting through the potential Vint(r) and
confined in a Q1D channel defined by Vconf (y), we calculate the
total energy of the system for some typical n-chain structures,
as follows:

H1ch = Vconf (0) +
∞∑

m=1

Vint

(
m

η

)
, (6)

H2ch = Vconf

(
c21

η

)
+

∞∑
m=1

Vint

(
2m

η

)
+

∞∑
m=1

Vint

[
2

η

√
c2

21 +
(

m − 1

2

)2]
, (7)

H3ch = 1

3
Vconf (0) + 2

3
Vconf

(
3c31

η

)
+ 1

3
Vint

(
6c31

η

)
+

∞∑
m=1

Vint

(
3m

η

)
+ 2

3

∞∑
m=1

Vint

(
3

η

√
4c2

31 + m2

)

+ 4

3

∞∑
m=1

Vint

[
3

η

√
c2

31 +
(

m − 1

2

)2]
, (8)

H4ch = 1

2
Vconf

(
4c41

η

)
+ 1

2
Vconf

(
4c42

η

)
+ 1

2
Vint

(
4 (c41 + c42)

η

)
+

∞∑
m=1

Vint

(
4m

η

)

+
∞∑

m=1

Vint

(
4

η

√
(c41 + c42)2 + m2

)
+ 1

2

∞∑
m=1

Vint

[
4

η

√
4c2

41 +
(

m − 1

2

)2]

+ 1

2

∞∑
m=1

Vint

[
4

η

√
4c2

42 +
(

m − 1

2

)2]
+

∞∑
m=1

Vint

[
4

η

√
(c42 − c41)2 +

(
m − 1

2

)2]
, (9)
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FIG. 3. (Color online) Phase diagram of the ground state for a
system with confinement VA(α,y), as a function of α and the linear
density η. All phase transitions are of first order except the zigzag
transition which is only possible for α = 2. The insets show the y

position of the particles as a function of η for different values of α as
indicated in each figure.

where all the distances are expressed in units of the distance
between adjacent particles in each chain, as indicated in Fig. 2.

We find the GS of the system by minimizing the energy
(numerically) with respect to the order parameter(s) for each
chainlike structure.

A. Power-law confinement

In the case of power-law confinement [Eq. (3)], the phase
diagram of the GS is shown in Fig. 3 as a function of the shape
parameter α and the linear density η. As was analytically
demonstrated in Refs. [12,13], the stability of the one-chain
configuration as the GS is only guaranteed for the case of
α = 2, while for larger values of α the one-chain configuration
is no longer found as the GS. This result is represented in
Fig. 3 by the thick red line (for α = 2) showing the small
region (0 < η < 0.9) where the one-chain structure is found
as the GS. The y position of the particles forming the GS, for
α = 2, is presented as a function of η in the left-hand side
inset of Fig. 3, where the non-SOT is clearly present (i.e., the
transitions 2-4-3).

For α > 2 and small η, the two-chain configuration is the
GS of the system even at low densities, where the interchain
distance (i.e., the order parameter c21) slowly decreases but
never becomes exactly zero [13] except for η → 0. This
behavior is illustrated in the right-hand side inset in Fig. 3
for α = 4, where one can also see that a direct transition
between the two- and the three-chain configuration is not found
(i.e., non-SOT). Indeed, a small region where the four-chain
arrangement is the GS remains between the two- and the
three-chain structures, even for large values of the shape
parameter α. Thus the GS transition between two-, four-, and
three-chain configurations is still present for α = 20 (i.e., close
to the hard-wall limit), as shown in the upper inset in Fig. 3.

With further increasing the density, the three-chain GS
configuration is found as the ordered sequence of the GS

configurations with the number of chains increasing one by
one (the transitions between the states are of first order), i.e.,
three-, four-, five-, six-chain, etc.

Therefore, a system of particles confined by a power-law
potential [Eq. (3)], shows a robust nonsequential transition
between two-, four-, and three-chain configurations as the
ground states, for a broad range of densities η and the shape of
the confinement profile varying from parabolic to hard wall.

B. Exponential type of confinement

The parabolic potential is the simplest and often used form
to model quasi-one-dimensional systems of, e.g., charged
particles [9,10], colloids [22], and dusty plasma [24,43].
Another useful form of the confinement potential is the one
with exponentially decaying barriers, as described by Eq. (4)
that uses a hyperbolic cosine, where β acts as a parameter
which controls the shape of the channel. The advantage of this
form of confinement potential is that, by tuning the control
parameter β, it rapidly evolves into a flat central part in the
potential profile providing a fast continuous transition to a
hard-wall-like profile [see Fig. 1(b)].

The phase diagram for the GS of a system of particles
confined by the potential VB(β,y) is shown in Fig. 4 as a
function of the parameters β and η.

The limiting case of a parabolic potential is recovered by
setting β = 0. The y coordinate of the particles as a function
of η is shown in the right-hand side inset of Fig. 4 for
β = 0.01. With increasing β, the transitions between chainlike
configurations occur at lower values of the density, and the
transition between one- and two-chain configurations (zigzag
transition) is of second order (indicated by the dashed curve in
Fig. 4). Opposite to the above case of a parabolic confinement,
the zigzag transition is always stable, even for large values
of β.
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as a function of η for different values of β as indicated in each
figure.
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Therefore, the evolution of the GS of the system is guided
by a non-SOT irrespective of the value of β, thus allowing the
emergence of the four-chain state between the two- and three-
chain configurations. Although the width of this intermediate
four-chain region slowly decreases with increasing β, it does
not disappear when the channel profile approaches the hard-
wall potential, as shown for β = 3 at the upper inset in Fig. 4.
It is worth noting that, although this profile evolution (i.e.,
from a parabolic to a hard wall) is qualitatively similar to that
for the power-law confinement [compare Figs. 1(a) and 1(b)],
the power-law confinement does not show the state with one
chain (except for α = 2 and narrow range of η), and the four-
chain state (between three and two chains) rapidly shrinks with
increasing α. The latter can be the reason that the non-SOT can
hardly be detected in channels with power-law confinement in
the limit of hard walls, and instead a usual SOT is observed
(e.g., in dusty plasma [24]).

C. Gaussian confinement

An even softer transition between parabolic and hard-wall
potential is presented in this section. Here we present a
model where the confinement is presented by two Gaussians,
symmetrically positioned with respect to the center of the
channel. The shape of the confinement is controlled by the
parameter γ , as shown in Eq. (5). For a specific value of
γ ≈ 1 it represents an approximation to the Bean-Livingston
barrier [32,33] for vortices interacting with the boundary of a
superconductor.

The phase diagram of a system of particles confined by
VC(γ,y) is presented in Fig. 5 as a function of γ and η. The best
fit to a parabolic potential is provided by choosing γ = 0.34.
Then the evolution of the GS is guided by a non-SOT when
density increases, as shown in the lower inset of Fig. 5 where
the y coordinate of the particles is plotted as a function of η.
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as indicated in each figure.

As one can expect, in this case the GS undergoes a similar
series of transitions as in the case of parabolic confinement.

However, as one can see from Fig. 5, the narrow region of
the intermediate four-chain structure gradually shrinks with
increasing γ and around γ = 0.61 this region disappears thus
allowing a straightforward first-order transition from a two-
to a three-chain configuration. Therefore, we observe a SOT
in the system, as shown in the upper right-hand side inset of
Fig. 5 where the transversal position of the particles is plotted
as a function of the linear density.

On the other hand, this SOT is only observed as the
GS for a certain range of the parameter γ , namely, from
γ = 0.61 to γ = 1.05. For larger γ values, the intermediate
four-chain configuration is restored thus preventing the direct
transition between two- and three-chain configurations. An
important result is that this range includes the shape that
fits the Bean-Livingston barrier for superconducting vortices.
While we are not aware of any other explanations why the
non-SOT has never been observed in superconducting slabs,
our numerical result clearly indicates that non-SOT does not
exist in a system of vortices confined by Bean-Livingston
barriers in a superconducting stripe.

IV. CONCLUSIONS

In this work, we studied the GS transitions of a system
of particles interacting through a screened Yukawa potential
and confined in a Q1D channel, where the structures found
correspond to Wigner crystal configurations.

The effect of the confinement on the GS transitions, for in-
creasing system density, is analyzed for different confinement
profiles: the power-law (∼|y|α), exponential, and Gaussian
potentials modulating the transversal profile of the channel
through a shape parameter. Analytical expression for the
energy of different n-chain configurations are calculated, and
the GS is found by minimization of the energy with respect to
the order parameter(s) of each analyzed structure.

As reference limiting cases, we defined a parabolic (“soft”
confinement) and a hard-wall confinement, and the proposed
potential profiles are able to transit continuously between these
two limits. While asymptotically resembling each other, the
different profiles evolve in a different manner for intermediate
values of the shape parameters. This resulted in different sets
of GS configurations which were analyzed in detail and sum-
marized in phase diagrams “shape parameter versus density,”
for each considered confinement potential. Our choice of the
model confinements was guided by those found in different
physical systems, i.e., particles in a quasi-one-dimensional
channel, when increasing the channel width. In particular,
these correspond to charged particles in a parabolic trap
which are realized, e.g., in experiments with dusty plasmas,
colloids confined in narrow channels, or even vortices in
superconducting stripes.

As follows from our analysis, due to the above similarity
of the profiles for the limiting cases, all the systems display a
similar behavior in the two limiting cases. Thus, the ground
states of the systems with paraboliclike confinement profiles
always evolve following a non-SOT. Similarly, all three
systems allow a non-SOT in the hard-wall limit, although in
the case of power-law confinement, as mentioned above, the
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one-chain configuration is missing. Simultaneously, we found
that the non-SOT is present in all the systems for intermediate
values of the shape parameter thus indicating that the non-SOT
is extremely robust for a broad range of possible profiles and
shape parameters.

At the same time, for the Gaussian confinement potential,
a striking SOT for the GS was found to appear within a
window of the shape parameter (i.e., 0.61 < γ < 1.05). It
is worth noting that this window includes the shape that
describes the Bean-Livingston barrier for superconducting
vortices. This result shows that the non-SOT does not exist in
a system of vortices confined by Bean-Livingston barriers in
a superconducting stripe and thus explains why the non-SOT,
which was shown to be robust for different confinements, was
never found for superconducting vortices.

Note that in many physical systems under real conditions,
fluctuations may destroy the intermediate four-chain config-
uration which is probably the reason why the SOT (but not
the non-SOT) has been observed in several experiments with
colloids, dusty plasmas, and electrons in narrow channels. One

indication that these thermal fluctuations are responsible for
destroying the non-SOT for the Wigner crystal, was found
numerically where it was shown that the non-SOT is present
only for very low temperatures. In addition, it was recently
found that a fluctuating number of particles in narrow short
channels destroys the non-SOT while it is present in long
narrow channels.

Thus our findings open the possibilities for using the
confinement potential to manipulate the GS transition in the
Q1D Wigner crystals and also can stimulate further studies in
the field, both in theory and experiment.
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[22] M. Köppl, P. Henseler, A. Erbe, P. Nielaba, and P. Leiderer,
Phys. Rev. Lett. 97, 208302 (2006).

[23] A. D. Klironomos and J. S. Meyer, Phys. Rev. B 84, 024117
(2011).

[24] T. E. Sheridan and K. D. Wells, Phys. Rev. E 81, 016404
(2010).

[25] J. Guimpel, L. Civale, F. de la Cruz, J. M. Murduck, and I. K.
Schuller, Phys. Rev. B 38, 2342 (1988).

[26] S. H. Brongersma, E. Verweij, N. J. Koeman, D. G. de
Groot, R. Griessen, and B. I. Ivlev, Phys. Rev. Lett. 71, 2319
(1993).

[27] G. Carneiro, Phys. Rev. B 57, 6077 (1998).
[28] E. Sardella, M. M. Doria, and P. R. S. Netto, Phys. Rev. B 60,

13158 (1999).
[29] J. Barba-Ortega, A. Becerra, and J. A. Aguiar, Physica C 470,

225 (2010).
[30] E. Bronson, M. P. Gelfand, and S. B. Field, Phys. Rev. B 73,

144501 (2006).
[31] W. P. Ferreira, J. C. N. Carvalho, P. W. S. Oliveira, G. A. Farias,

and F. M. Peeters, Phys. Rev. B 77, 014112 (2008).
[32] M. Tinkham, Introduction to Superconductivity, 2nd ed.

(McGraw-Hill, New York, 1966).
[33] C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964).
[34] H. Ikegami, H. Akimoto, D. G. Rees, and K. Kono, Phys. Rev.

Lett. 109, 236802 (2012).
[35] A. A. Vasylenko and V. R. Misko, Biophys. Rev. Lett. (2014),

doi:10.1142/S1793048014400037.
[36] C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E 85,

051401 (2012).
[37] B. Liu, K. Avinash, and J. Goree, Phys. Rev. Lett. 91, 255003

(2003).

094111-6

http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1103/PhysRevA.44.4506
http://dx.doi.org/10.1103/PhysRevA.44.4506
http://dx.doi.org/10.1103/PhysRevA.44.4506
http://dx.doi.org/10.1103/PhysRevA.44.4506
http://dx.doi.org/10.1016/S1386-9477(00)00163-6
http://dx.doi.org/10.1016/S1386-9477(00)00163-6
http://dx.doi.org/10.1016/S1386-9477(00)00163-6
http://dx.doi.org/10.1016/S1386-9477(00)00163-6
http://dx.doi.org/10.1103/PhysRevB.51.7700
http://dx.doi.org/10.1103/PhysRevB.51.7700
http://dx.doi.org/10.1103/PhysRevB.51.7700
http://dx.doi.org/10.1103/PhysRevB.51.7700
http://dx.doi.org/10.1103/PhysRevLett.79.3990
http://dx.doi.org/10.1103/PhysRevLett.79.3990
http://dx.doi.org/10.1103/PhysRevLett.79.3990
http://dx.doi.org/10.1103/PhysRevLett.79.3990
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1103/PhysRevLett.71.1864
http://dx.doi.org/10.1103/PhysRevLett.71.1864
http://dx.doi.org/10.1103/PhysRevLett.71.1864
http://dx.doi.org/10.1103/PhysRevLett.71.1864
http://dx.doi.org/10.1038/nature08918
http://dx.doi.org/10.1038/nature08918
http://dx.doi.org/10.1038/nature08918
http://dx.doi.org/10.1038/nature08918
http://dx.doi.org/10.1016/S0038-1098(03)00647-1
http://dx.doi.org/10.1016/S0038-1098(03)00647-1
http://dx.doi.org/10.1016/S0038-1098(03)00647-1
http://dx.doi.org/10.1016/S0038-1098(03)00647-1
http://dx.doi.org/10.1103/PhysRevB.69.045324
http://dx.doi.org/10.1103/PhysRevB.69.045324
http://dx.doi.org/10.1103/PhysRevB.69.045324
http://dx.doi.org/10.1103/PhysRevB.69.045324
http://dx.doi.org/10.1103/PhysRevB.72.205208
http://dx.doi.org/10.1103/PhysRevB.72.205208
http://dx.doi.org/10.1103/PhysRevB.72.205208
http://dx.doi.org/10.1103/PhysRevB.72.205208
http://dx.doi.org/10.1103/PhysRevB.81.024108
http://dx.doi.org/10.1103/PhysRevB.81.024108
http://dx.doi.org/10.1103/PhysRevB.81.024108
http://dx.doi.org/10.1103/PhysRevB.81.024108
http://dx.doi.org/10.1103/PhysRevB.84.134106
http://dx.doi.org/10.1103/PhysRevB.84.134106
http://dx.doi.org/10.1103/PhysRevB.84.134106
http://dx.doi.org/10.1103/PhysRevB.84.134106
http://dx.doi.org/10.1103/PhysRevB.77.064111
http://dx.doi.org/10.1103/PhysRevB.77.064111
http://dx.doi.org/10.1103/PhysRevB.77.064111
http://dx.doi.org/10.1103/PhysRevB.77.064111
http://dx.doi.org/10.1088/1367-2630/12/11/115003
http://dx.doi.org/10.1088/1367-2630/12/11/115003
http://dx.doi.org/10.1088/1367-2630/12/11/115003
http://dx.doi.org/10.1088/1367-2630/12/11/115003
http://dx.doi.org/10.1103/PhysRevB.82.201104
http://dx.doi.org/10.1103/PhysRevB.82.201104
http://dx.doi.org/10.1103/PhysRevB.82.201104
http://dx.doi.org/10.1103/PhysRevB.82.201104
http://dx.doi.org/10.1103/PhysRevLett.98.126404
http://dx.doi.org/10.1103/PhysRevLett.98.126404
http://dx.doi.org/10.1103/PhysRevLett.98.126404
http://dx.doi.org/10.1103/PhysRevLett.98.126404
http://dx.doi.org/10.1103/PhysRevB.83.125323
http://dx.doi.org/10.1103/PhysRevB.83.125323
http://dx.doi.org/10.1103/PhysRevB.83.125323
http://dx.doi.org/10.1103/PhysRevB.83.125323
http://dx.doi.org/10.1103/PhysRevA.83.032308
http://dx.doi.org/10.1103/PhysRevA.83.032308
http://dx.doi.org/10.1103/PhysRevA.83.032308
http://dx.doi.org/10.1103/PhysRevA.83.032308
http://dx.doi.org/10.1103/PhysRevLett.109.010501
http://dx.doi.org/10.1103/PhysRevLett.109.010501
http://dx.doi.org/10.1103/PhysRevLett.109.010501
http://dx.doi.org/10.1103/PhysRevLett.109.010501
http://dx.doi.org/10.1103/PhysRevA.87.013829
http://dx.doi.org/10.1103/PhysRevA.87.013829
http://dx.doi.org/10.1103/PhysRevA.87.013829
http://dx.doi.org/10.1103/PhysRevA.87.013829
http://dx.doi.org/10.1103/PhysRevLett.97.208302
http://dx.doi.org/10.1103/PhysRevLett.97.208302
http://dx.doi.org/10.1103/PhysRevLett.97.208302
http://dx.doi.org/10.1103/PhysRevLett.97.208302
http://dx.doi.org/10.1103/PhysRevB.84.024117
http://dx.doi.org/10.1103/PhysRevB.84.024117
http://dx.doi.org/10.1103/PhysRevB.84.024117
http://dx.doi.org/10.1103/PhysRevB.84.024117
http://dx.doi.org/10.1103/PhysRevE.81.016404
http://dx.doi.org/10.1103/PhysRevE.81.016404
http://dx.doi.org/10.1103/PhysRevE.81.016404
http://dx.doi.org/10.1103/PhysRevE.81.016404
http://dx.doi.org/10.1103/PhysRevB.38.2342
http://dx.doi.org/10.1103/PhysRevB.38.2342
http://dx.doi.org/10.1103/PhysRevB.38.2342
http://dx.doi.org/10.1103/PhysRevB.38.2342
http://dx.doi.org/10.1103/PhysRevLett.71.2319
http://dx.doi.org/10.1103/PhysRevLett.71.2319
http://dx.doi.org/10.1103/PhysRevLett.71.2319
http://dx.doi.org/10.1103/PhysRevLett.71.2319
http://dx.doi.org/10.1103/PhysRevB.57.6077
http://dx.doi.org/10.1103/PhysRevB.57.6077
http://dx.doi.org/10.1103/PhysRevB.57.6077
http://dx.doi.org/10.1103/PhysRevB.57.6077
http://dx.doi.org/10.1103/PhysRevB.60.13158
http://dx.doi.org/10.1103/PhysRevB.60.13158
http://dx.doi.org/10.1103/PhysRevB.60.13158
http://dx.doi.org/10.1103/PhysRevB.60.13158
http://dx.doi.org/10.1016/j.physc.2009.12.051
http://dx.doi.org/10.1016/j.physc.2009.12.051
http://dx.doi.org/10.1016/j.physc.2009.12.051
http://dx.doi.org/10.1016/j.physc.2009.12.051
http://dx.doi.org/10.1103/PhysRevB.73.144501
http://dx.doi.org/10.1103/PhysRevB.73.144501
http://dx.doi.org/10.1103/PhysRevB.73.144501
http://dx.doi.org/10.1103/PhysRevB.73.144501
http://dx.doi.org/10.1103/PhysRevB.77.014112
http://dx.doi.org/10.1103/PhysRevB.77.014112
http://dx.doi.org/10.1103/PhysRevB.77.014112
http://dx.doi.org/10.1103/PhysRevB.77.014112
http://dx.doi.org/10.1103/PhysRevLett.12.14
http://dx.doi.org/10.1103/PhysRevLett.12.14
http://dx.doi.org/10.1103/PhysRevLett.12.14
http://dx.doi.org/10.1103/PhysRevLett.12.14
http://dx.doi.org/10.1103/PhysRevLett.109.236802
http://dx.doi.org/10.1103/PhysRevLett.109.236802
http://dx.doi.org/10.1103/PhysRevLett.109.236802
http://dx.doi.org/10.1103/PhysRevLett.109.236802
http://dx.doi.org/10.1142/S1793048014400037
http://dx.doi.org/10.1103/PhysRevE.85.051401
http://dx.doi.org/10.1103/PhysRevE.85.051401
http://dx.doi.org/10.1103/PhysRevE.85.051401
http://dx.doi.org/10.1103/PhysRevE.85.051401
http://dx.doi.org/10.1103/PhysRevLett.91.255003
http://dx.doi.org/10.1103/PhysRevLett.91.255003
http://dx.doi.org/10.1103/PhysRevLett.91.255003
http://dx.doi.org/10.1103/PhysRevLett.91.255003


GENERIC ORDERING OF STRUCTURAL TRANSITIONS IN . . . PHYSICAL REVIEW B 90, 094111 (2014)

[38] G. Coupier, M. Saint Jean, and C. Guthmann, Phys. Rev. E 73,
031112 (2006).

[39] P. Galatola, G. Coupier, M. Saint Jean, J. B. Fournier, and
C. Guthmann, Eur. Phys. J. B 50, 549 (2006).

[40] J. B. Delfau, C. Coste, C. Even, and M. Saint Jean, Phys. Rev.
E 82, 031201 (2010).

[41] C. Coste, J. B. Delfau, C. Even, and M. Saint Jean, Phys. Rev.
E 81, 051201 (2010).

[42] C.-H. Sow, K. Harada, A. Tonomura, G. Crabtree, and D. G.
Grier, Phys. Rev. Lett. 80, 2693 (1998).

[43] D. V. Tkachenko, T. E. Sheridan, and V. R. Misko, Phys. Plasmas
18, 103709 (2011).

094111-7

http://dx.doi.org/10.1103/PhysRevE.73.031112
http://dx.doi.org/10.1103/PhysRevE.73.031112
http://dx.doi.org/10.1103/PhysRevE.73.031112
http://dx.doi.org/10.1103/PhysRevE.73.031112
http://dx.doi.org/10.1140/epjb/e2006-00183-0
http://dx.doi.org/10.1140/epjb/e2006-00183-0
http://dx.doi.org/10.1140/epjb/e2006-00183-0
http://dx.doi.org/10.1140/epjb/e2006-00183-0
http://dx.doi.org/10.1103/PhysRevE.82.031201
http://dx.doi.org/10.1103/PhysRevE.82.031201
http://dx.doi.org/10.1103/PhysRevE.82.031201
http://dx.doi.org/10.1103/PhysRevE.82.031201
http://dx.doi.org/10.1103/PhysRevE.81.051201
http://dx.doi.org/10.1103/PhysRevE.81.051201
http://dx.doi.org/10.1103/PhysRevE.81.051201
http://dx.doi.org/10.1103/PhysRevE.81.051201
http://dx.doi.org/10.1103/PhysRevLett.80.2693
http://dx.doi.org/10.1103/PhysRevLett.80.2693
http://dx.doi.org/10.1103/PhysRevLett.80.2693
http://dx.doi.org/10.1103/PhysRevLett.80.2693
http://dx.doi.org/10.1063/1.3651194
http://dx.doi.org/10.1063/1.3651194
http://dx.doi.org/10.1063/1.3651194
http://dx.doi.org/10.1063/1.3651194



