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Soft vortex matter in a type-I/type-II superconducting bilayer
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Magnetic flux patterns are known to strongly differ in the intermediate state of type-I and type-II
superconductors. Using a type-I/type-II bilayer we demonstrate hybridization of these flux phases into a plethora
of unique new ones. Owing to a complicated multibody interaction between individual fluxoids, many different
intriguing patterns are possible under applied magnetic field, such as few-vortex clusters, vortex chains, mazes,
or labyrinthal structures resembling the phenomena readily encountered in soft-matter physics. However, in our
system the patterns are tunable by sample parameters, magnetic field, current, and temperature, which reveals
transitions from short-range clustering to long-range ordered phases such as parallel chains, gels, glasses, and
crystalline vortex lattices, or phases where lamellar type-I flux domains in one layer serve as a bedding potential
for type-II vortices in the other, configurations clearly beyond the soft-matter analogy.
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I. INTRODUCTION

Soft-matter physics deals with systems as different as
colloids, polymers, gels, glasses, liquid crystals, and others,
where one common feature is their self-organization into very
rich mesoscopic phases.1 To model this behavior, one often
uses a pairwise interparticle interaction possessing several
length scales and/or mixture of attraction and repulsion.2–9

Such interaction potential, as a function of the particle density,
indeed leads to the formation of clusters, particle chains,
labyrinthal gel-like structures, and (almost) regular lattices.
This in turn questions the known analogy between charged
colloids and vortices in superconductors, since the latter
typically repel and form a triangular (Abrikosov) lattice. On
the other hand, type-I superconductors are known to exhibit
lamellar and labyrinthal flux patterns, which lose distinction
of individual vortices but resemble the soft-matter structures
in their macroscopic shape.10

With this in mind, we here investigate magnetic flux patterns
in a coupled bilayer of two superconducting films—one
type I and one type II—under perpendicular magnetic field (see
Fig. 1), in an attempt to reveal unique vortex phases. In addition
to the crystalline vortex lattice, one now envisages vortex
flocculation, gelation, and glassy phases, some similar to
vortex matter encountered in high-temperature,11 multiband,12

and other unconventional superconducting13 and superfluid
systems.14 The film geometry is chosen for an easy realization
in experiment, but also in order to have asymptotic long-range
1/r repulsion between vortices,15 similar to the electrostatic
Coulomb interaction in charged colloids. We will show that the
complexity of the obtained patterns stems from the changes in
the short- and midrange interaction between vortices, whose
relative strength depends on the parameters of the layers,
especially their coherence length ξ and penetration depth λ,
but also their thicknesses, electronic coupling between them,
and chosen temperature with respect to their individual critical
temperatures.

The paper is organized as follows. In Sec. II, we present
the theoretical formalism. Section III summons and classi-
fies the observed magnetic flux patterns, which are further
characterized using radial distribution functions in Sec. IV.
Further we discuss the influence of temperature in Sec. V,

where we also show the behavior of the heat capacity and its
changes affiliated with different flux phases. Our results are
summarized in Sec. VI.

II. THEORETICAL FORMALISM

Most of earlier works on vortex structures and their
dynamics employed molecular dynamics with pairwise vortex
interactions. This is truly valid only for vortices in extreme
type-II superconductors, where vortex cores are pointlike
small. However, overlapping vortex cores do not interact
pairwise, and the interaction potentials are highly nontrivial.16

This turns out to be even more complex for our bilayer system,
where vortices are extended objects with different size of
the core in two layers. We therefore opt for full numerical
simulation within the Ginzburg-Landau (GL) theory, supple-
mented by the Lawrence-Doniach (LD) coupling between
the layers.17–21 The appropriate free energy functional then
consists of the individual contributions from each layer, the
LD coupling term, and the energy of the magnetic field in and
around the sample:
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Here Cooper-pair condensates in the two layers are indexed
by j = 1,2 and described by the order parameters �j (r),
assumed to be uniform over the layer thickness dj . H
is the applied magnetic field and h = curl A is the field
including the magnetic response of the layers. The coefficients
αj (T ) = −αj0(1 − T/Tcj ) are temperature dependent (where
Tcj are the critical temperatures of the individual layers)
and connected with the nominal coherence lengths of the
layers ξj (T ) = h̄/|2mjαj (T )|1/2 = ξj0/

√
1 − T/Tcj , where

mj denotes Cooper-pair masses in the layers. The LD coupling
coefficient is η = h̄2/(2m⊥s2), where m⊥ is the effective
Cooper pair mass for tunneling between the layers and s is
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FIG. 1. (Color online) The oblique view of the considered bilayer
sample. The two superconducting layers are separated by an ultrathin
oxide/insulating layer. The magnetic field is applied in the direction
perpendicular to the layers (along the z axis).

the vertical distance between the layers (see Fig. 1). The phase
factor p = exp(−i 2e

h̄c

∫ s

0 Azdz) ensures the gauge invariance.
In what follows, we work in the London gauge ∇ · A = 0;

therefore the Maxwell equation is just

−	A = 4π

c
j. (2)

Further we make approximation Az = 0, so that the phase
factor p in the LD coupling term is unity (a similar model
was also employed in Ref. 22). Since Az = 0, Eq. (2) implies
also jz = 0. On the other hand, in the full model the current
between the layers is

jz = ieh̄

m⊥s
[ψ∗

1 pψ2 − p∗ψ∗
2 ψ1]

= 2eh̄

m⊥s
|ψ1||ψ2| sin(ϕ1 − ϕ2), (3)

where we used p = 1 and ψj = |ψj |eiϕj . The current between
the layers jz can be neglected if it is much smaller than the
currents within the superconducting layers

jj = − ieh̄

mj
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j ) − 4e2

mjc
|�j |2A, (4)

which leads to the condition
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ξj (T )

s
sin(φ1 − φ2) � 1, (5)

if we assume that the amplitudes of the wave functions in
two layers are not too different from each other. Assuming
Az = 0 is thus well justified for m⊥ � mj or very distant
layers s � ξj (T ), i.e., in the case of very weakly coupled
layers, but also in the opposite case m⊥ ≈ mj where the phases
of the two order parameters are almost the same, so that the
term sin(φ1 − φ2) vanishes. Therefore, for the parameters of
the sample chosen in the present work jz is always much
smaller than the current within the superconducting layers and
one can safely neglect it.

The variational minimization of the functional (1) (with
p = 1) with respect to �∗

j leads to the GLLD equations
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where α̃j = αj + ηs/dj . We solve this system of equations
numerically, self-consistently with the equations for the super-
current density per unit volume in each layer given by Eq. (4).
Note that the supercurrents only flow inside the respective
layers and therefore are spatially separated. Substituting
Eq. (4) into Eq. (2) with j = j1 + j2 provides the total 3D
vector potential A, which we calculated in the middle of each
layer and used iteratively in respective Eqs. (6a) and (6b) to
compute �1 and �2 (for details of the procedure, see Ref. 23).

We performed the numerical simulations on a rectangular
region, with aspect ratio 2:

√
3 and periodic boundary condi-

tions. We chose the parameter values close to a clean Nb film
as the type-II layer (with GL parameter κ1 = 1.03, Tc1 = 9.2
K) and Sn as the type-I layer (κ2 = 0.15, Tc2 = 3.7 K). The
lowest considered temperature was 1 K, which was necessary
to be deep in the superconducting state of the type-I layer.
Zero-temperature coherence length of the type-II layer (ξ10)
was then taken as unit of distance in all calculations, while
ξ20 was swept between 2 and 10 ξ10. Since this variation
had only minor qualitative influence on the observed vortex
structures, we fixed the parameter ζ = (ξ10/ξ20)2 to 0.2, for
computational convenience. Order parameters were scaled to
�j0 = √−αj (0)/βj , and magnetic field to H0 = �0/(2πξ 2

10),
where �0 is the flux quantum.

III. PHASE DIAGRAM AS A FUNCTION OF APPLIED
MAGNETIC FIELD AND COUPLING BETWEEN

THE LAYERS

In Fig. 2, we show the key result of our paper, the vortex
phase diagram of the described bilayer at T = 1 K as a
function of the applied magnetic field and the effective mass

FIG. 2. (Color online) The equilibrium phase diagram of a Nb/Sn
bilayer calculated at T = 1 K, for both layers 5ξ10 thick and spacer
layer of 0.05ξ10 in between, as a function of the applied field
(expressed through the number of flux quanta N in the simulation
region 55 × 47.6 ξ 2

10) and effective mass m⊥ of the Cooper pairs
in the spacer layer. When other parameters are fixed, the electronic
coupling between the superconducting layers is inversely proportional
to m⊥.

094515-2



SOFT VORTEX MATTER IN A TYPE-I/TYPE-II . . . PHYSICAL REVIEW B 88, 094515 (2013)

(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

FIG. 3. (Color online) Very strongly coupled layers. Vortex
structure is shown via normalized magnetic field profile in the type-II
layer (identical vortex structure is found in the type-I layer), for states
found in Fig. 2 for m⊥ = 5m1. In panels (a)–(f) there are 16, 32, 48,
64, 80, and 96 vortices in the simulation region, respectively.

in the spacer layer, which controls the strength of the coupling
between the superconducting layers. The field is expressed
through the number of vortices in the simulation region. We
revealed a series of nonuniform vortex phases, with phase
transitions between them indicated by dashed curves in the
diagram. In what follows, we discuss these transitions by
showing exemplary vortex configurations.

Figure 3 shows obtained vortex configurations for very
strongly coupled layers (m⊥ = 5m1). At low fields we observe
a quasihomogeneous distribution of vortices, indicative of
long-range repulsion between them, reminiscent of Wigner
glass in soft-matter physics (see, e.g., Ref. 8). However,
with increasing field, after reaching some threshold vortex
density, vortex dimers, short individual chains, and then
long-ordered parallel chains are formed, in complete analogy
to what was seen in Ref. 2 for particle systems with purely
repulsive interactions but two governing length scales [i.e.,
a potential with very strong repulsion at short range (“hard
core”), flattening at midrange (“soft core”), and then abruptly
weaker repulsion at long range]. The half-distance between
the parallel vortex chains in Fig. 3(c) then gives an estimate
of the “soft core.” As the vortex density is further increased,
the chains interconnect into a glassy disordered structure,
and finally form the crystalline (Abrikosov) lattice. The
intervortex distance at the latter glass-solid transition then
provides an estimate of the “hard core” of the repulsive vortex
interaction. Notably, similar states as here have also been
recently found in Ref. 5 for a phenomenologically introduced
potential with a repulsive core surrounded by an attractive
well and finally a long-range repulsion.

In Fig. 4, we reduced the coupling between the layers with a
factor 2 as compared to Fig. 3 (i.e., we increased m⊥ to 10m1).
The found vortex configurations are very different, starting at
low fields from small clusters of 2–4 vortices, combined with
short chains. With further increase of the magnetic field the
chains establish long-range order, then curve, recombine, and
finally interconnect into a low-density network filling the entire
simulation region. Such a network, that spans the volume of the
medium while at low particle density, is typical for gels. This
gel-like structure is retained in Fig. 4 until the newly added
vortices fill all the voids in the gel and form a disordered

(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

FIG. 4. (Color online) Strongly coupled layers. Same as Fig. 3,
but for twice weaker coupling between the layers, i.e., m⊥ = 10m1.
In panels (a)–(e) there are 16, 32, 48, 64, 80, and 96 vortices in the
simulation region, respectively.

(glassy) lattice, similarly to the case of Fig. 3, followed by
crystallization at high vortex density.

In Fig. 5, the states are shown for m⊥ = 15m1, which is
still a relatively strong coupling. For low fields tiny clusters are
formed, which then give way to prolonged chains, gel states,
and finally a (quasi)crystalline lattice for 128 vortices in the
simulation box (not shown). One can see that m⊥ = 15m1

lies on the crossover of stability regions of spatial structures
with lateral extent one and two vortices, i.e., at the transition
from chains to curvilinear domains in Fig. 2. In Fig. 6, the
electronic coupling between superconducting layers is further
decreased (m⊥ = 20m1), and the qualitative trend of Fig. 5 is
maintained. With increasing field, a transition from a solution
of clusters to short-range mazes and then long-range gel
is found, followed by crystallization of the vortex lattice.
However, the superconducting type-I behavior of the type-I
layer becomes more apparent, as vortices become less distinct
from each other, and occupy increasingly wider domains. This
is more clearly demonstrated in Fig. 7, where we gradually

(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

FIG. 5. (Color online) Evolution of the states with applied
magnetic flux, at coupling m⊥/m1 = 15 (cf. Fig. 2). The spatial
profile of the magnetic field is shown for (a)–(f) 16, 32, 48, 56, 80,
and 96 vortices, respectively. In this sequence of images, we sample
the found phases in the busiest region of the phase diagram shown in
Fig. 2. Transitions between clusters and chains, to mazes and gel are
shown.
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(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

FIG. 6. (Color online) Intermediately strongly coupled layers.
Same as Figs. 3–5 but for further weakened coupling between layers,
i.e., for m⊥ = 20m1. In panels (a)–(f) there are 16, 64, 72, 80, 96, and
112 vortices in the simulation region, respectively.

increased the coupling between the layers for a fixed number
of vortices in the simulation. Notice that the lateral extent
of the vortex stripes varies from just one vortex for strong
coupling, to four vortices for weak coupling. This behavior is
reminiscent of the colloidal structures studied in Ref. 3, where
particles interacted via Coulomb-like repulsion combined with
a midrange attraction, and where the widening of the stripe
phases was directly linked to the increasing strength and range
of the attractive part of the interaction. It is interesting to note
that a very similar state to Fig. 7(f) was found in Ref. 24 in the
presence of a dominant three-body interaction. This suggests
that although most of our above results can be understood using
pairwise interactions, multibody interactions may nevertheless
play a significant role.

For even smaller values of interlayer coupling one can
no longer rely on a two-body vortex-vortex interaction, since
the type-I layer exhibits laminar domains, and the notion of
individual vortices is completely lost. In Fig. 8 we depict the
changes in vortex patterns in a broad range of m⊥ values,
where formation of type-I domains is visible for m⊥ > 20m1.
Those domains act as potential wells for vortices in the

(a) (b) (c)

(d)(e)(f)

FIG. 7. (Color online) The evolution of the vortex structure with
decreasing m⊥, i.e., with increasing strength of the electronic coupling
between the layers, for 48 vortices in the simulation region. In panels
(a)–(f), the normalized Cooper-pair density in the type-II layer is
shown for m⊥/m1 = 160, 120, 60, 30, 20, and 10, respectively.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 8. (Color online) Evolution of the vortex states with de-
creasing coupling, at fixed magnetic flux (96 vortices; cf. Fig. 2). The
spatial profile of the magnetic field is shown. From top to bottom
m⊥/m1 = (a) 5, (b) 10, (c) 15, (d) 20, (e) 40, (f) 200, and (g) 300.
Left panel shows the type-II layer and the right one the type-I layer. In
this sequence of images, we show the found phases going left to right
in the phase diagram shown in Fig. 2. Transitions between Abrikosov
lattice, gels, and type-I domains decorated by type-II vortices are
found.

094515-4



SOFT VORTEX MATTER IN A TYPE-I/TYPE-II . . . PHYSICAL REVIEW B 88, 094515 (2013)

(a)(a) (b)(b) (c)(c)

FIG. 9. (Color online) Weakly coupled layers. Flux patterns are
shown in the type-II layer (top row) and the type-I layer (bottom row),
for states found in Fig. 2 for m⊥ = 1000m1. In panels (a)–(c) there
are 32, 48, and 64 flux quanta in the simulation region, respectively.

type-II layer, as exemplified in Fig. 9, which shows states for
m⊥ = 1000m1. Because of this, the structural phase transitions
become different from the m⊥ < 20m1 cases. This is clearly
seen in the change of curvature of the sol-gel and the gel-glass
transition lines in Fig. 2. With decreasing coupling, due
to the easier formation of type-I domains, vortices in the
type-II layer connect into mazes at lower densities. On the
other hand, they also crystallize at lower densities than for
strong coupling, which is due to the practically destroyed
superconductivity in the type-I layer at such a large magnetic
field. The formation of domains in the type-I layer as a trapping
potential for vortices is interesting because of their sensitivity
to applied in-plane magnetic field,25 or current.26 Therefore
one can easily manipulate externally the domain structure
in the type-I layer (e.g., straighten/relax the domains), and
thereby dynamically change and restore the vortex patterns in
the type-II layer, similarly to the controllability achieved in
the superconductor-ferromagnet bilayers.27

IV. RADIAL DISTRIBUTION FUNCTIONS
OF OBSERVED CONFIGURATIONS

In this section we present the radial distribution functions
g(r) of different vortex phases observed in the superconducting
type-I/type-II bilayer, which can in some cases serve to
distinguish particular vortex configurations in, e.g., SANS
measurements.

The radial distribution function g(r) characterizes the
particle distribution. It gives clear signatures of the crystalline
order and it can be also experimentally determined, e.g., by
neutron scattering. It is defined as

g(r) = 1

N

ρ(r)

ρ
, (7)

where ρ(r) is the density of particles at some distance r

from the origin, while ρ = N/A, with N the total number
of particles and A the total area, is the average density.
The density ρ(r) is in practice computed from the histogram
of all distances between the pairs of particles, where the
number of particles Ni in each bin [ri − dr/2; ri + dr/2]
is divided by the area corresponding to that bin Ai =
π

[
(ri + dr/2)2 − (ri − dr/2)2

]
. Note that each pair counts

for two particles. Taking this into account, we calculated g(r)

(a)

(d)

(b) (c)

(f)(e)

FIG. 10. The radial distribution function g(r) for m⊥ = 5m1.
Panels (a)–(f) correspond to states with 16, 32, 48, 64, 80, and 96
vortices in the simulation region, respectively.

using the formula

g(r) = 2Ni

Nρπ [(ri + dr/2)2 − (ri − dr/2)2]
. (8)

(a)

(d)

(b) (c)

(f)(e)

FIG. 11. The radial distribution function g(r) for m⊥ = 20m1.
Panels (a)–(f) correspond to states with 16, 64, 72, 80, 96, and 112
vortices in the simulation region, respectively.
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(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

FIG. 12. (Color online) The evolution of the gel-like phase of
Fig. 4(d) with increasing temperature. The vortex structure in the
type-II layer is shown for (a) T = 1 K (original state) and for the
field-heated states at (b) T = 1.1 K, (c) 1.25 K, (d) 1.45 K, (e) 1.85
K, and (f) 2.2 K.

In Figs. 10 and 11 we show the radial distribution function
for the states displayed in Figs. 3 and 6, respectively. In each
case we use the total number of bins equal to half of the total
number of vortices. The distance between any two vortices
is determined as the distance to the nearest periodic image.
In order not to account the interaction of vortex with its own
periodic image, we only show g(r) for r up to 23 ξ10, i.e.,
approximately half of the shorter side of our simulation region.

The g(r) functions for smaller densities, i.e., for 16 and
32 vortices in the simulation region, are too coarse to be
useful; however in the radial distribution functions for our
simulations for larger applied magnetic fields we can see
important signatures of the order. For example in Fig. 11
in panels (e) and (f) for 96 respectively 112 vortices, one
can see that the second peak splits into two, which is a
well-known effect due to the formation of the regular triangular
(Abrikosov) lattice (in the first case with holes of the Meissner
state still present). One can also see in Fig. 10 that the chain
phase for m⊥/m1 = 5 and intermediate densities (48 and 64
vortices) can be distinguished by having the second peak
of g(r) higher than the first one. Similar signature was also
observed in Ref. 2, but there it was found for the structure
factor S(k), i.e., in the k space. This signature disappears when
a gel state is formed.

V. PHASE TRANSITIONS BETWEEN DIFFERENT
STRUCTURES WITH TEMPERATURE

Another degree of controllability of the flux patterns in our
system is provided by temperature, due to the different critical
temperatures Tcj of the layers. For the considered parameters,
elevated temperature will swiftly deplete superconductivity in
the type-I layer, and will also interconnect the flux patterns in
that layer due to the increasing coherence length. Both these
features will influence the observed vortex configurations in
the type-II layer. Hence, one is able to control and monitor
the phase transitions of soft vortex matter in our bilayer
system simply by changing temperature. We illustrate this
in Fig. 12, where we start from a rather disordered gel-like
state from Fig. 4(d) and gradually increase temperature. After

(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

FIG. 13. (Color online) Evolution of the state shown in Fig. 7(f),
with increasing temperature. The spatial profile of the magnetic field
is shown. In this sequence of images, we show the transition from
the chain phase to the gel phase by gradual increase of temperature.
(a)–(f) T = 1 K, 1.5 K, 1.75 K, 1.85 K, 1.9 K, and 2 K.

a transition to a honeycomb (or fishing net) structure at
T = 1.25 K, a transition to a glassy phase was found at
1.8 K, followed by crystallization into the Abrikosov lattice
at 2.1 K (where the magnetic influence of the type-I layer
became negligible). It is therefore interesting to note that
contrary to most natural structures, including soft matter, the
vortex configurations in our system become more ordered
with increasing temperatures. Similarly, in Fig. 13 one can
see how increasing the temperature transforms the chain state
of Fig. 7(f) to the gel phase.

To gain insight into the nature of the phase transitions
between different spatial arrangements of vortices, we show
one particular example calculated for 16 vortices, thickness of
the coupling layer s = 2ξ10 and effective mass for tunneling
of the Cooper pairs between the layers m⊥ = 40m1. We found
that for these parameters the stable phase at low temperature
is small vortex clusters. These for intermediate temperatures
coalesce into a single stripe which at higher temperature
spreads over the entire simulation region and interconnects
with adjacent stripes into the Abrikosov lattice. However,
we found that there is considerable hysteretic behavior, since
Fig. 14 shows the transition from several clusters to a stripe
between 3.1 K and 3.15 K with increasing temperature, while
on cooling (Fig. 15) the stripe is stable down to a much lower
temperature of 0.85 K. In order to characterize this phase
transition, we calculate the free energy and heat capacity. The
free energy is given by Eq. (1) which in dimensionless form
reads

F
F0

= d1

∫ [
−χ1|�1|2 + 1

2
|�1|4 + |(−i∇ − A) �1|2

]
dS

+C1d2

∫ [
−χ2|�2|2+ 1

2
|�2|4+ 1

ζ
|(−i∇−A)�2|2

]
dS

+C2

∫
|�1 − C3�2|2dS + κ2

1

∫
(A − A0) · jdV, (9)

where F0 = ξ 3
10α

2
10/β1 = �2

0/(32π3κ2
1 ξ10) is our unit of en-

ergy (F0 ≈ 1.07 × 10−18 J for Niobium with ξ10 = 38 nm),
χj = 1 − T/Tcj , A0 is the vector potential of the applied
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(b)

(d)

(a)

(c)

FIG. 14. (Color online) The transition from the cluster phase
through stripe phase to the Abrikosov lattice on heating, shown
as Cooper-pair density plots in the type-II layer at (a) T = 3.1 K
(clusters), (b) T = 3.15 K, (c) T = 3.25 K (stripe), and (d) T = 3.3 K
(Abrikosov lattice).

field, j the supercurrent, and C1 = ζ 2 κ2
1

κ2
2
, C2 = m1

sm⊥
, and

C3 = κ1
κ2

√
ζ m2

m1
.

In Fig. 16(a) we show the specific heat capacity vs tem-
perature, computed as cv = − T

V
∂2F
∂T 2 . We convert the specific

heat capacity from the units of F0/(V K) (free energy per
volume per kelvin) to its equivalent SI value which is in
our case 6.2 × 10−7 J K−1 cm−3 (using volume of the simu-
lation region V = 31416 ξ 3

10 ≈ 1.72 × 10−12 cm3). The most

(a)

(c)

(b)

(d)

FIG. 15. (Color online) The transition from the Abrikosov lattice
through stripe phase to the cluster phase on cooling, shown as Cooper-
pair density plots in the type-II layer at (a) T = 3.15 K (Abrikosov
lattice), (b) T = 3.1 K, (c) T = 0.85 K (stripe), and (d) T = 0.84 K
(clusters).

(a)

(b)

FIG. 16. (Color online) (a) The hysteretic behavior between the
cluster phase, the stripe phase, and the Abrikosov lattice, shown
via calculated heat capacity cv on heating and cooling. The top
(bottom) banner labels the states found on heating (cooling). The
main difference is that on heating the stripes are only found in a
narrow temperature region close to T = 3.15 K, while on cooling
they are stable down to 0.85 K. (b) The difference in the free energy
F between the states found on cooling (Fc) and on heating (Fh).

pronounced feature in the specific heat capacity curve is a jump
	cv of approximately 109 nJ K−1 cm−3, where on heating the
transition from small clusters to a single stripe is immediately
followed by the rapid transition of the type-I layer through
its own Tc to only proximity-induced superconductivity. After
that transition the vortices occupy the entire sample evenly,
forming an Abrikosov lattice. Therefore we can associate the
onset of the attraction between vortices directly with the onset
of superconductivity in the type-I layer. This implies that for
considered parameters the type-I layer must be below its own
critical temperature in order to observe any unusual clustering
of vortices.

On cooling the heat capacity shows a similar jump, but
associated only with the transition from Abrikosov lattice
to the stripe phase. The subsequent transition at 0.85 K
corresponds to the rearrangement of the vortices from the
stripe into clusters, it is of first order, and associated with latent
heat L ≈ 150 μJ cm−3. The described features in the heat
capacity are ideal for observing the phase transitions of soft
vortex matter by calorimetry, similarly to what is proposed for
detection of flux phases inside the 3D samples and distinction
of giant vortex to multivortex transitions in Ref. 31. The exper-
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imental realization of the required high-precision calorimetry
is feasible, and has already been reported in Ref. 32.

In Fig. 16(b) we then show the difference in the free energies
Fc − Fh between the states found on cooling and heating,
respectively. The sign of this quantity determines which of the
possible states is energetically favorable and details the energy
cost of the metastable states. For example, one can directly
see from Fig. 16(b) that the transition between the stripe and
clusters in the equilibrium should occur at T ≈ 2.8 K.

VI. CONCLUSIONS

We presented novel and rich vortex phases and phase
transitions in a type-I/type-II superconducting bilayer, re-
sembling known phenomena in soft-matter physics. The
solution-gel-glass-crystal transitions of vortex matter can
be induced in our system by an external magnetic field,
current, or temperature, but can be also engineered by a
proper choice of the constituent materials, thinning the type-I
layer to effective type-II behavior, or changing the spacer
material to influence the coupling strength. The proposed
superconducting system is in many ways peculiar and different

from any soft-matter system, but similarities arise from the
competing interactions with different length scales, present
in both systems. Our superconducting system is controllable,
relatively easy to fabricate, and allows for convenient vortex
imaging or detection of transitions between phases using
neutron scattering or calorimetric measurements. Moreover,
this system opens a further research direction, leaning upon
the early discovery of Giaver that it is possible to make a
dc transformer by using applied current in one superconductor
to drag vortices through another and induce voltage there.28

The inability to ad hoc predict what would happen to soft
vortex matter phases in that case, as well as the links to related
studies of Coulomb drag in semiconductor heterostructures29

and bilayer graphene,30 makes our system a very interesting
test bed for a plethora of new phenomena.
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