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Landau levels in asymmetric graphene trilayers
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The electronic spectrum of three coupled graphene layers (graphene trilayers) is investigated in the presence
of an external magnetic field. We obtain analytical expressions for the Landau level spectrum for both the ABA

and ABC type of stacking, which exhibit very different dependence on the magnetic field. We show that layer
asymmetry and an external gate voltage can strongly influence the properties of the system.
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I. INTRODUCTION

The extraordinary level of interest in the study of single
layer graphene has led to the prediction and observation of sev-
eral unusual phenomena not found in other low-dimensional
systems. These new properties are mainly a consequence
of the chiral and massless character of the quasiparticles in
graphene.1 This new material is not only expected to lead
to several technological applications, but has also helped shed
light on relativistic quantum effects, such as Klein tunneling2,3

and zitterbewegung (see, e.g., Refs. 4 and 5). There is currently
a search for experimental methods for producing high quality
samples of graphene in large quantities. However, the current
experimental techniques can also create carbon structures
with two or more layers. It has already been recognized that
graphene bilayers (i.e., two coupled layers of graphene) can
display interesting new properties that are distinct from those
of single layers6–8 and that can also be eventually harnessed
for the development of devices. One important aspect of these
structures is the fact that, in comparison with the in-plane
interactions, the comparatively weaker interlayer coupling
can yet exert a significant influence on the carrier spectrum.
Thus, whereas the electronic dispersion at the vicinity of
the Dirac point in single layer graphene is linear, in bilayer
graphene it displays an approximately parabolic shape with
the appearance of higher energy bands. Moreover, in striking
contrast with single layers, the electronic spectrum of bilayer
graphene has been shown to develop a gap in the presence
of an external electric field. Thus the interlayer coupling in
stacked layers of graphene gives rise to a rich set of properties
that are not found in monolayers, and can be expected to be of
particular significance in structures with three or more layers.
In particular, it has been shown that, in the nearest-neighbor
coupling approximation, for a stack of N layers of graphene,
there should exist N distinct Landau levels at E = 0 for each
spin and valley.9

In this work we investigate the properties of three coupled
layers of graphene, i.e., trilayer graphene (TLG) in the
presence of an external magnetic field perpendicular to the
plane of the layers. The properties of TLG in the absence of
a magnetic field have been considered in the literature within
a tight-binding model (see, e.g., Refs. 10 and 11), as well as
through first-principles calculations.12 The effect of an external
magnetic field was calculated by means of an approximation
based on the mapping of stacked graphene layers to a one-
dimensional (1D) tight-binding chain by Guinea et al.13 The

effect of disorder on the transport properties of TLG has
also been studied theoretically.14,15 Recent experimental16–18

and theoretical19–21 studies have investigated the Landau-level
spectrum of unbiased TLG and recent magnetoconductance
measurements of TLG have been performed.22–25 These results
showed that one important aspect of TLG is the fact that
the energy bands at the vicinity of the Dirac point are very
sensitive to the particular type of stacking of the layers. The
two more relevant stacking rules are the rhombohedral, or
ABC stacking, and the Bernal, or ABA stacking. In each case,
the relative position of the lowermost layer (C in one case and
A in the other) helps dictate the possible symmetries of the
subsequent wave functions associated with each layer. The
type of stacking is also relevant to the properties of the Landau
levels of the TLG, and it has recently been reported26 that 15%
of exfoliated TLG has rhombohedral (ABC) stacking. For the
case of ABA-stacked TLG, Koshino et al. have shown that
the Landau-level spectrum shows energy levels grouped in
two bands: one of those bands displays a “monolayerlike”
dependence on

√
B, whereas the other band has a linear,

“bilayerlike” magnetic-field dependence. The goal of the
present paper is to present analytical results for the spectrum
of TLG in a magnetic field considering different potentials in
each layer. In contrast with previous numerical work (see, e.g.,
Ref. 20), we perform a direct diagonalization of the six-band
continuum model and obtain analytical expressions for the
Landau-level spectrum as a function of magnetic field and
the potentials at each layer, for both the ABC and ABA

stackings. In particular, we calculate the TLG spectrum in
the presence of electric fields that break the layer symmetry.
It has recently been shown that these different potentials can
lead to the opening of a gap in the TLG spectrum.11,27–29 In
the present paper we focus on the modifications of the Landau
levels as a function of the layer potential.

The paper is organized as follows: in Sec. II we present
the model and solve the resulting system of equations for the
ABA stacking, followed by Sec. III in which we present the
model and obtain solutions for the ABC stacking. Section IV
shows and discusses the calculated Landau-level spectra and
finally, the results are summarized in the Conclusions.

II. AB A STACKING

Let us consider a system consisting of three coupled
graphene layers, in the context of the tight-binding model. We
assume nearest-neighbor hopping between sites within each
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layer, described by the coupling parameter t0. In the continuum
approximation, this parameter determines the magnitude of the
Fermi velocity vF = t0ah̄

−1
√

3/2 ≈ 106 m/s. The nearest-
neighbor interlayer coupling scheme is A1 − B2 − A3, with
coupling parameter t1 (see Fig. 1). Previous work20 has
shown that the addition of second-nearest-neighbor coupling
terms causes a small shift of the Dirac point and breaks the
electron-hole symmetry. Furthermore, these couplings cause
the appearance of trigonal warping. Since we are primarily
focused on the low-energy range, where these effects are less
relevant, we will neglect second-nearest-neighbor interactions
between sites in adjacent layers. On the other hand, the
second-nearest-neighbor coupling terms in the uppermost and
lowermost layers were found20 to cause relative shift of the
monolayerlike and bilayerlike bands in ABA-stacked TLG.
Thus, in order to capture some of the finer details of the
low-energy spectrum, we include a remote coupling term t2
between sites of sublattices A1 and A3 and t3 between B1 and
B3. The Hamiltonian is given as

H =

⎛
⎜⎜⎜⎜⎜⎝

U1 + U0 vF π † t1 0 t2 0
vF π U1 0 0 0 t3
t1 0 U2 + U0 vF π t1 0
0 0 vF π † U2 0 0
t2 0 t1 0 U3 + U0 vF π †

0 t3 0 0 vF π U3

⎞
⎟⎟⎟⎟⎟⎠

,

(1)

where π = px + ipy , with px,y being the components of
the in-plane momentum; U1,2,3 is the potential in each
layer, respectively, U0 is the on-site energy at sublattices
A1, B2, and A3, and we defined the eigenstates as � =
[ψA1, iψB1, ψB2, iψA2, ψA3, iψB3]T . In the pres-
ence of a uniform magnetic field in the z direction, with the
gauge �A = (0,Bx,0) and, for a given sublattice L, ψL(y) =
φLeikyy , one obtains the following system of equations:

A+φB1 + t ′1φB2 + t ′2φA3 = (ε − u1 − u0)φA1, (2a)

A−φA1 + t ′3φB3 = −(ε − u1)φB1, (2b)

A−φA2 + t ′1φA1 + t ′1φA3 = (ε − u2 − u0)φB2, (2c)

A+φB2 = −(ε − u2)φA2, (2d)

A+φB3 + t ′1φB2 + t ′2φA1 = (ε − u3 − u0)φA3, (2e)

A−φA3 + t ′3φB1 = −(ε − u3)φB3, (2f)

FIG. 1. Diagrammatic scheme of couplings in graphene trilayers
for ABC (a) and ABA (b) stackings.

where ε = E/h̄vF , ui = Ui/h̄vF , t ′i = ti/h̄vF , and β =
eB/h̄vF where we defined the operators

A± = d

dx
± (ky − βx), (3)

which obey the commutation relation [A+,A−] = 2β.
For U1 = U2 = U3 = U the system can be easily solved

by making use of its reflection symmetry. Thus we can
define symmetric and antisymmetric combinations of the
spinor components. For the antisymmetric case we obtain
φG ≡ 1√

2
(φA1 − φA3), and φH ≡ 1√

2
(φB1 − φB3). That leads

to the following pair of coupled equations:

A−φG = −(ε − u − t ′3)φH , (4a)

A+φH = (ε − u + t ′2 − u0)φG. (4b)

For the sake of convenience, let us now define the operator

Z ≡ A−A+ = d2

dx2
− (ky − βx)2 − β. (5)

We can now decouple the equations to obtain

(Z + 2β)φG = −[(ε − u′)2 − (δu)2]φG, (6)

which corresponds to the equation that gives the spectrum for a
single graphene layer under an effective electrostatic potential
U ′ = U + (t3 − t2 + U0)/2 as well as a finite gap term given
by δU = (U0 − t2 − t3)/2. Thus the Landau-level spectrum in
this case is given by ε = u′ ±

√
2βn + (δu)2. From Ref. 28 we

have t2 = 0.04 eV, t3 = −0.02 eV, and U0 = 0.05 eV. Hence
the additional effective potential leads to an energy shift of
−5.0 meV, and δU = 15 meV. Thus the effect of the remote
coupling terms t2 and t3, as well as the on-site energy term U0,
is only to introduce a small shift of the dispersion branches
and to generate a small gap in the energy spectrum.

For the symmetric case we have φC ≡ 1√
2
(φA1 + φA3) and

φD ≡ 1√
2
(φB1 + φB3). The equations become

A+φD +
√

2t ′1φB2 = (ε − u − t ′2 − u0)φC, (7a)

A−φC = −(ε − u + t ′3)φD, (7b)
and

A−φA2 +
√

2t ′1φC = (ε − u − u0)φB2, (7c)

A+φB2 = −(ε − u)φA2, (7d)

These equations can be decoupled, resulting in the fourth-order
differential equation

{Z2 + λ1Z − λ2}φC = 0, (8)

where λ1 = (ε − u − u0)(ε − u) + (ε − u + t ′3)(ε − u −
u0 − t ′2) + 2β, and λ2 = −(ε − u − u0)(ε − u)(ε − u + t ′3)
(ε − u − u0 − t ′2) + 2(t ′1)2(ε − u)(ε − u + t ′3). This equation
is similar to the one describing bilayer graphene. A
second-order equation can be obtained by calculating the
roots of the second-order equation as

{Z − z+}{Z − z−}φC = 0, (9)

with

z± = −λ1

2
±

√(λ1

2

)2
+ λ2, (10)
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where we set ky = 0, since this term only introduces a shift of
the wave function. In particular, for u0 = t2,3 = 0 the equations
yield results that are identical to those of a gapless single-
layer and bilayer graphene, i.e., the Landau levels are found
as the solutions of 2β(n + 1) = z±. As in the previous case,
the addition of remote coupling terms introduces a gap in the
spectrum.

A more realistic description of TLG structures should take
into account asymmetries between the different layers, which
can be brought about by the interaction with a substrate or by
gating. Previous numerical studies21 have indicated that a layer
asymmetry can lift the valley degeneracy of the TLG Landau-
level spectrum by breaking the inversion symmetry of the
system. In order to obtain analytical solutions that incorporate
the effect of layer symmetry breaking in the spectrum, let us
now consider the case U1 �= U2 �= U3. In addition, we now
consider t2 = t3 = U0 = 0, since we assume that the shifts
caused by the layer potentials are more significant than the
effect of these terms. A simple substitution allows us to write

[A+A− + (ε − u1)2]φA1 = t ′1(ε − u1)φB2,

[A+A− + (ε − u3)2]φA3 = t ′1(ε − u3)φB2. (11)

In addition, we also have

[A−A+ + (ε − u2)2]φB2 = t ′1(ε − u2)(φA1 + φA3). (12)

As in the previous case, we introduce symmetric and anti-
symmetric combinations of wave functions, and let us also
define 
 = (u1 − u3)/2, s = (u1 + u3)/2, and δj = ε − uj ,
j = 1,2,3, in order to simplify the notation. After some algebra
we obtain the following sixth-order differential equation for
φB2:{[

A−A+ + δ2
1 + 2β

][
A−A+ + δ2

2
][
A−A+ + δ3

2 + 2β
]

− t ′21 δ2(ε − s)
[
A−A+ + δ1

2 + 2β
] − t ′21 δ2(ε − s)

× [
A−A+ + δ3

2 + 2β
] + 4t ′21 
2δ2(ε − s)

}
φB2 = 0.

(13)

It is seen that for U1 = U2 = U3 (i.e., δ1 = δ2 = δ3, 
 = 0),
we recover the previous solutions. One can rewrite Eq. (22) as

[Z3 + α1Z
2 + α2Z + α3]φB2 = 0 (14)

with the Z operator defined above and

α1 ≡ δ2
1 + δ2

2 + δ2
3 + 4β, (15a)

α2 ≡ (
δ2

1 + 2β
)(

δ2
3 + 2β

) + (
δ2

1 + 2β
)
δ2

2 + (
δ2

3 + 2β
)
δ2

2

−t ′21 δ2
(
δ1 + δ3), (15b)

α3 ≡ (
δ2

1 + 2β
)
δ2

2

(
δ2

3 + 2β
) − 2βt ′21 δ2(δ1 + δ3)

−t ′21 δ1δ2δ3(δ1 + δ3). (15c)

This equation can be written as

{Z − Z1}{Z − Z2}{Z − Z3}φB2 = 0, (16)

where Zj , j = 1,2,3 are the three roots of the cubic equation,
Eq. (14). Therefore the spinor component φB2 is a solution of

−d2φB2

dx2
+ (ky − βx)2φB2 = −(Zj + β)φB2. (17)

For zero magnetic field, this equation allows us to obtain plane-
wave solutions for each dispersion branch. The dispersion
relation can be obtained by setting Zj = −k2. It can be
immediately seen that the energy gap at k = 0 can be found
by solving the equation α3 = 0. For finite magnetic fields,
the solutions are expressed in terms of Hermite polynomials.
Therefore for the Landau levels we obtain the relation Zj =
−2β(n + 1). Thus the energies are found by solving the
algebraic equation

−[2β(n + 1)]3 + α1[2β(n + 1)]2 − α2[2β(n + 1)] + α3 =0.

(18)

It is evident that for U1 = U2 = U3, we have 
 = 0 and the last
term of Eq. (13) vanishes. The spectrum should then consist
of a superposition of the spectra of single-layer graphene and
bilayer graphene, as shown in previous work.20

III. ABC STACKING

Let us consider three coupled graphene layers in the ABC

stacking configuration. For the sake of simplicity, let us retain
only the nearest-neighbor coupling terms. In this case, the
Hamiltonian can be written as

H =

⎛
⎜⎜⎜⎜⎜⎝

U1 vF π † t 0 0 0
vF π U1 0 0 0 0

t 0 U2 vF π 0 0
0 0 vF π † U2 0 t

0 0 0 0 U3 vF π †

0 0 0 t vF π U3

⎞
⎟⎟⎟⎟⎟⎠

, (19)

where U1,2,3 is the potential in each layer, respectively, and we
defined the eigenstates as before.

We obtain the following system of equations:

A+φB1 + t ′φB2 = (ε − u1)φA1, (20a)

A−φA1 = −(ε − u1)φB1, (20b)

A−φA2 + t ′φA1 = (ε − u2)φB2, (20c)

A+φB2 − t ′φB3 = −(ε − u2)φA2, (20d)

A+φB3 = (ε − u3)φA3, (20e)

A−φA3 − t ′φA2 = −(ε − u3)φB3, (20f)

where ε = E/h̄vF , ui = Ui/h̄vF , t ′ = t/h̄vF , and β =
eB/h̄vF . In order to decouple these equations, let us first obtain
φB1 and φA3 in terms of φA1 and φB3 from the second and fifth
equations as

φB1 = − 1

(ε − u1)
A−φA1, φA3 = 1

(ε − u3)
A+φB3, (21)

and substitute these expressions in the first and sixth equations,
respectively, to give

A+A−φA1 − t ′(ε − u1)φB2 = −(ε − u1)2φA1, (22a)

A−A+φB3 − t ′(ε − u3)φA2 = −(ε − u3)2φB3. (22b)

Equations (22a) and (22b) allow us to obtain φB2 and φA2

in terms of φA1 and φB3, respectively. Thus by substituting
them in Eqs. (27) and (28), respectively, and after some
tedious algebra, one can obtain a sixth-order differential
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equation as

{[
A−A+ + δ2

1 + 2β
][
A−A+ + δ2

2

][
A−A+ + δ2

3 − 2β
]

− t ′2δ2δ3
[
A−A+ + δ2

1 + 2β
]

− t ′2δ1δ2
[
A−A+ + δ2

3 − 2β
] + t ′4δ1δ3

}
φA1 = 0. (23)

It is interesting to compare Eqs. (13) and (23). The former
remains invariant if one switches the potentials in layers 1 and
3. Equation (23), on the other hand, is found to be invariant
under an interchange of potentials between the topmost and
lowest layers together with a reversal of the magnetic field.
This reflects the different symmetries of each stacking of TLG.

As before, we can obtain the Landau-level spectrum by
rewriting Eq. (23) as

[Z3 + γ1Z
2 + γ2Z + γ3]φA1 = 0, (24)

with Z ≡ A−A+, and

γ1 ≡ δ2
1 + δ2

2 + δ2
3, (25a)

γ2 ≡ (
δ2

1 + 2β
)(

δ2
3 − 2β

) + (
δ2

1 + 2β
)
δ2

2 + (
δ2

3 − 2β
)
δ2

2

− (t ′)2(δ1 + δ3)δ2, (25b)

γ3 ≡ −(t ′)2δ2[δ3
(
δ2

1 + 2β
) + δ1

(
δ2

3 − 2β
)
] + (t ′)4δ1δ3

+ (δ1δ2δ3)2 + 2β
(
δ2

3 − δ2
1)δ2

2 − 4(βδ2)2. (25c)

This equation can be written as

{Z − Z1}{Z − Z2}{Z − Z3}φA1 = 0, (26)

where Zj , j = 1,2,3 are the three roots of the cubic equation,
Eq. (24). Therefore the spinor component φA1 is found as a
solution of

−d2φA1

dx2
+ (ky − βx)2φA1 = −(Zj + β)φA1. (27)

For the particular case of U1 = U2 = U3 = 0 and zero
magnetic field, we obtain plane-wave solutions by setting
Zj = −k2, where k is the in-plane wave vector. Thus Eq. (24)
can be rewritten as

ε6 − (3k2 + 2t ′2)ε4 + (3k4 − 2k2t ′2 + t ′4)ε2 − k6 = 0. (28)

Let us now consider the low-energy limit ε � t ′. That allows
us to neglect the higher-order powers of ε to obtain

ε ≈ k3

t ′2
1√

1 − 2k2/t ′2 + 3k4/t ′4
. (29)

Thus, for small wave vectors, the dispersion relation increases
with the third power of k.

The Landau levels can be obtained using the relation Zj =
−2β(n + 1), which leads to the algebraic equation

−[2β(n + 1)]3 + γ1[2β(n + 1)]2 − γ2[2β(n + 1)] + γ3 = 0.

(30)
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FIG. 2. (Color online) The lowest Landau levels as function of
magnetic field for ABA-stacked graphene trilayers calculated from
Eq. (18), with U1 = U2 = U3 = 0, for n = 0 (black solid lines), n = 1
(red dotted lines), n = 2 (green dashed lines), n = 3 (blue dot-dashed
lines), and n = 4 (yellow dot-dot-dashed lines).

As seen above, for zero potential in each layer, we can find a
simpler algebraic relation for the energy, namely

ε6 − [6β(n + 1) + 2t ′2]ε4

+ [12β2(n + 1)2 − 4β(n + 1)t ′2 + t ′4 − 4β2]ε2

− 8β3(n + 1)3 + 8β3(n + 1) = 0. (31)

For ε � t we can then obtain

ε ≈ ± (2β)3/2

t ′2
√

n(n + 1)(n + 2)F (β,n), (32)

where

F (β,n) =
[

1 − 4
β

t ′2
(n + 1) − 4

β2

t ′4
+ 12

β2

t ′4
(n + 1)2

]−1/2

.

(33)

For small fields (i.e., β � t ′2), F (β,n) ≈ 1. Therefore, in
the limit of low energies and small fields, the Landau levels
should approximately depend on the magnetic field as B3/2, in
agreement with the results of Ref. 13.

IV. NUMERICAL RESULTS

Let us first consider the ABA case. Figure 2 shows the
field dependence of the low-lying Landau levels calculated
from Eq. (18), with U1 = U2 = U3 = 0, for n = 0 (black solid
lines), n = 1 (red dotted lines), n = 2 (green dashed lines), n =
3 (blue dot-dashed lines), and n = 4 (yellow dot-dot-dashed
lines). We find that for every value of n there are two different
types of low-energy branches: (1) those that depend linearly on
the magnetic field (i.e., bilayerlike behavior), and (2) branches
that display a B1/2 dependence (monolayerlike branches).
A third set of bilayerlike branches with linear dependencies
on B are found around E = ±√

2t1, not shown in the figure.
The effect of a potential difference between the layers

on the energy spectrum as a function of magnetic field is
shown in Fig. 3. As in the previous case, the figure shows

205448-4



LANDAU LEVELS IN ASYMMETRIC GRAPHENE TRILAYERS PHYSICAL REVIEW B 84, 205448 (2011)

0 2 4 6 8 10
B (T)

-200

-150

-100

-50

0

50

100

150

200

250

300

E
 (

m
eV

)

n=0
n=1
n=2
n=3
n=4

FIG. 3. (Color online) Energy spectrum as function of magnetic
field for ABA-stacked graphene trilayers, for U1 = 100 meV, U2 =
50 meV, and U3 = 25 meV, n = 0 (black dots), n = 1 (red squares),
n = 2 (green diamonds), n = 3 (blue up triangles), and n = 4 (yellow
down triangles).

branches corresponding to n = 0–4. The potentials in the
different graphene layers are U1 = 100 meV, U2 = 50 meV,
and U3 = 25 meV. As seen from Eq. (18), for B → 0 we
have solutions corresponding to E = Uj , j = 1,2,3, and E =
(U1 + U3)/2. Thus we find that the monolayerlike branches
are shifted creating a gap with magnitude U1 − U3, whereas
for the bilayerlike states a smaller gap opens with magnitude
(U1 + U3)/2 − U2. One consequence of this difference is the
appearance of several level crossings around E = U2 and E =
(U1 + U3)/2 − U2 for small B, together with a nonmonotonic
dependence of the energy on the magnetic field that evolves to
a linear dependence as the magnetic field is increased.

Figure 4 shows the low-energy Landau levels as a function
of the potential in the inner layer, for the ABA case, for n = 1
(red squares), 2 (green up triangles), and 3 (blue squares)
for B = 3 T, U1 = U3 = 50 meV. Notice that (1) the lowest
energy levels depend linearly on U2 for small U2 (� U1 =
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FIG. 4. (Color online) Low-lying Landau levels as function of the
potential in the inner layer for ABA-stacked graphene trilayers, for
n = 1 (red squares), 2 (green diamonds), and 3 (blue up triangles) for
B = 3 T, U1 = U3 = 50 meV.
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FIG. 5. (Color online) Low-lying Landau levels as function of the
potential in the uppermost layer for ABA-stacked graphene trilayers,
for n = 1 (red squares), 2 (green diamonds), and 3 (blue up triangles)
for B = 3 T, U2 = 50 meV, U3 = 25 meV.

U3) and for large U2 (
 U1 = U3) values, and exhibit an
anticrossing behavior for U2 ≈ U1 = U3; 2) the higher energy
states are very weakly affected by the bias. A different behavior
is observed when one varies the potential at the uppermost
layer (U1), as seen in Fig. 5. In contrast with the previous case,
the bias is seen to cause a significant shift also on the higher
energy Landau levels.

The energy spectrum for the ABC case is shown in Fig. 6(a),
as a function of magnetic field and with U1 = U2 = U3 = 0,
for n = 0 − 4. For small B values we see a doubly degenerate
branch with E = 0, and a B3/2 behavior for the remaining
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FIG. 6. (Color online) Landau-level spectrum for the trilayer
graphene for the ABC stacking, as function of magnetic field, with
U1 = U2 = U3 = 0 (a), and U1 = U3 = 50 meV, U2 = 100 meV (b)
for n = 0 (black solid lines), n = 1 (red dotted lines), n = 2 (green
dashed lines), n = 3 (blue dot-dashed lines), and n = 4 (yellow
dot-dot-dashed lines).
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FIG. 7. (Color online) Landau-level spectrum for the trilayer
graphene for the ABC stacking, as function of magnetic field, with
U1 = 100 meV, U2 = 50 meV, and U3 = 25 meV, for n = 0 (black
solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines),
n = 3 (blue dot-dashed lines), and n = 4 (yellow dot-dot-dashed
lines).

branches, which turns into a linear behavior at large E. In
comparison with the previous case, the results in the ABC

case show the presence of pairs of branches at low energies,
whereas in the ABA case one finds two sets of energy levels for
each Landau index. That is caused by the fact that, in the ABC

case, the remaining four branches are found around E = ±t ,
with t ≈ 400 meV.

Figure 6(b) shows results for an ABC TLG with U1 =
U3 = 50 meV, whereas U2 = 100 meV. In this case, the main
effect of the potential difference is the lifting of the degeneracy
of the n = 0 state and a shift of the whole spectrum to lower
energy with increasing magnetic field.

In contrast, Fig. 7 shows the LL spectrum for U1 = 100,
U2 = 50, and U3 = 25 meV. The inset shows an enlargement
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FIG. 8. (Color online) Landau-level spectrum for ABC-stacked
trilayer graphene as function of U1, for B = 3 T and U2 = U3 =
50 meV, with n = 0 (black dots), n = 1 (red squares), n = 2 (green
diamonds), n = 3 (blue up triangles), and n = 4 (yellow down
triangles).
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FIG. 9. (Color online) Landau level spectrum for ABC-stacked
trilayer graphene as function of U2, for B = 3 T and U1 = U3 =
50 meV, with n = 0 (black dots), n = 1 (red squares), n = 2 (green
diamonds), n = 3 (blue up triangles), and n = 4 (yellow down
triangles).

of the region around E = 100 meV. In this case, the bias creates
an energy gap, which can be found by setting β = 0 in Eq. (30),
which leads to solutions with E = U1 and E = U2. Notice
also the existence of level crossings, as well as the peculiar
small magnetic-field behavior where there is a reversal of the
ordering of the Landau levels as compared to the regular high
magnetic-field behavior.

Results for the dependence of the energy spectrum on U1

is shown in Fig. 8, for B = 3 T and U2 = U3 = 50 meV.
As seen, the degeneracy of the n = 0 is lifted for U1 �=
U2,U3. Moreover, when the magnitude of the potential in
the uppermost layer is increased, the Landau levels tend to
become degenerate. A quite distinct picture emerges if one
varies instead the potential in the middle layer (U2), as shown
in Fig. 9, for B = 3 T and U1 = U3 = 50 meV. In contrast with
the previous results, the spectrum shows a linear dependence
on the potential and there are no degeneracies for the different
Landau indices. As in the previous figure, a single Landau
level at E = 50 meV is found to be unaffected by the bias.

V. CONCLUSIONS

In summary, we obtained exact analytical expressions
for the Landau-level spectra of trilayer graphene, within a
model that took into account the layer asymmetry induced by
different electrostatic potentials in each layer. The expressions
were obtained for both the Bernal (ABA) and rhombohedral
(ABC) stackings, which were found to display quite distinct
behaviors. As shown in previous work,20 the Landau-level
spectrum for the ABA case in the absence of electrostatic
bias between the layers shows both a monolayerlike as well as
bilayerlike character, indicated by the different magnetic-field
dependence of the spectrum. The addition of a potential
difference between the layers shifts the spectrum and creates
a tunable gap between the electron and hole states, the size
of this energy gap being different for the monolayer and the
bilayer energy levels. Level crossings between the monolayer
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and bilayer Landau levels are found for certain values of the
magnetic field.

For the ABC case, the Landau levels have a magnetic-
field dependence which, in the absence of bias, has a B3/2

dependence for low energies.13 For stronger magnetic fields the
Landau levels exhibit a linear B dependence. The introduction
of electrostatic bias in the system lifts the degeneracy of the
n = 0 levels and creates a tunable gap. The results show also
the existence of level crossings at small magnetic fields. This
model can be refined by taking into account second-nearest-
neighbor terms, as well as remote coupling between the lowest
and uppermost layers.

In this paper, we considered a model Hamiltonian that
neglects second-nearest-neighbor couplings in each layer, as
well as between adjacent layers. Future work may consider
the effect of these additional terms on the spectrum, in
order to give a more precise account of the electron and
hole behaviors in trilayer graphene. In particular, the trigonal
warping induced by the additional terms has been shown to
lead to important effects, such as the splitting of quantum Hall

plateaus caused by a Lifshitz transition induced by trigonal
warping.23 Moreover, a significant modification of the field
dependence of the low-energy Landau levels may arise as
a consequence of long-range electron-electron interactions.
Such effect has been already shown to be relevant in the case
of bilayer graphene.30 A systematic study of the effects of such
interactions, however, goes beyond the scope of the present
paper.

Note added. As we were preparing this manuscript for
publication, we became aware of a similar calculation of
Landau levels in trilayer graphene, by Yuan et al.31
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