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The current voltage (IV) characteristics of short [with length L � ξ (T )] and long [L � ξ (T )] microbridges
are theoretically investigated near the critical temperature of the superconductor. Calculations are made in the
nonlocal (local) limit when the inelastic relaxation length due to electron-phonon interactions Lin = (Dτin)1/2 is
larger (smaller) than the temperature-dependent coherence length ξ (T ) (D is the diffusion coefficient, τin is the
inelastic relaxation time of the quasiparticle distribution function). We find that, in both limits, the origin of the
hysteresis in the IV characteristics is mainly connected with the large time scale over which the magnitude of
the order parameter varies in comparison with the time-scale variation of the superconducting phase difference
across the microbridge in the resistive state. In the nonlocal limit, the time-averaged heating and cooling of
quasiparticles are found in different areas of the microbridge, which are driven, respectively, by oscillations of
the order parameter and the electric field. We show that, by introducing an additional term in the time-dependent
Ginzburg-Landau equation, it is possible to take into account the cooling effect in the local limit too.
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I. INTRODUCTION

The hysteresis of the current voltage characteristics of
narrow [with width W � ξ (T )] superconducting microbridges
is a well-known phenomena (see, for example, Refs. 1 and 2).
There are many works where the hysteresis is explained by
either an increasing of the effective temperature of quasipar-
ticles due to Joule heating (see, for example, Refs. 3–6) or
due to a finite relaxation time of the magnitude of the order
parameter.7–13 From a general point of view, both mecha-
nisms are connected with the deviation of the quasiparticle
distribution function from equilibrium in the resistive state.
The usage of the concept of effective temperature assumes
that the electron-electron inelastic relaxation time τe-e is much
shorter than the electron-phonon inelastic relaxation time τe-ph

(below we use the notation τin = τe-ph), and in such a case, one
may use the quasiequilibrium approach for the nonequilibrium
quasiparticle distribution function and introduce a coordinate
and time-dependent effective temperature for quasiparticles
(see, for example, the recent review14). In this case, from the
kinetic equations for the quasiparticle distribution function
f (ε), one may derive the heat-conductance equation and the
Poisson equation for the electrostatic potential.14 By using
this system of equations, it is relatively easy to find the
nonequilibrium response of the system (for example, see
Refs. 3–6). Because Joule dissipation is proportional to I 2,
it is obvious that, at relatively small currents, the heating of
quasiparticles becomes weak and the superconductor returns
to the superconducting state (this current is usually called the
retrapping current Ir ) and the IV characteristics are hysteretic.

However, in many cases, one has the opposite situation at
T ∼ Tc, i.e., τe-ph = τin � τe-e or they are of the same order
of magnitude (in aluminium and zinc, for example). Then,
one is not allowed to introduce an effective temperature and
one must solve the kinetic equations for f (ε). In the qua-
siclassical approach, they are the Boltzmann-type equations
[see Refs. 14–18 or Eqs. (1) and (2) below] coupled with

the equation for the order parameter [see Eq. (3) below].
The situation is simplified in the so-called local limit when
the inelastic relaxation length Lin = (Dτin)1/2 is smaller
than the coherence length ξ (T ), and the dynamics of |�|
and the response of the superconductor can be obtained from
the generalized time-dependent Ginzburg-Landau equation,
which contains τin explicitly [see Refs. 17 and 18 or Eq. (6)
below].

By using the time-dependent Ginzburg-Landau equations,
it was shown that a finite relaxation time of the magnitude
of the order parameter can be the reason for the hysteresis of
the IV characteristics in superconducting microbridges.1,7,10–13

Qualitatively, in this case, the mechanism of hysteresis can be
described in the following way. The finite voltage drop over the
microbridge is connected with the appearance of one or several
(for relatively long microbridges) phase-slip centers.1,19,20

In the resistive state, after the phase-slip event (when the
magnitude of the order parameter |�| → 0 in one point),
the phase difference δφ across the phase-slip core decreases
instantly by 2π after which it starts to grow in accordance with
the Josephson relation ∂δφ/∂t ∼ V . The larger the applied
current, the faster it changes in time τδφ ∼ 1/V � 1/In ∼ 1/I .
But, the time variation of the magnitude of the order parameter
τ|�| is governed by a different mechanism. It is known that τ|�|
depends on the inelastic relaxation time τin of the quasiparticle
distribution function and, for example, in the spatially uniform
case, one has τ|�| � τin/(1 − T/Tc)1/2 near Tc.15,20 For many
superconductors at relatively low temperature below Tc, one
may have τ|�| � τδφ . As a result, after the phase-slip event, |�|
increases much slower in time than δφ and, when δφ becomes
sufficiently large (in order to make the superconducting
state unstable again), the order parameter is still small [it
is smaller than one could expect from the dependence of
|�|(δφ) in the stationary superconducting state]. For this
reason, oscillations of |�| may occur at I < Ic due to the
fact that the order parameter is dynamically suppressed in the
resistive (nonstationary) state, and the dynamical phase-slip
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process stops at I = Ir when the period of oscillation T|�|
becomes larger than τ|�|.13

Unfortunately, even the generalized time-dependent
Ginzburg-Landau equations have, in principle, a very restricted
range of applicability [i.e., the temperature interval �T <

0.01Tc near the critical temperature (see, for example, Table 1
in Ref. 18)]. In the nonlocal limit [when Lin � ξ (T )] at
T ∼ Tc, the IV characteristics were theoretically studied for
short [L � ξ (T )] superconducting microbridges in Refs. 21
and 22. Those authors found a footlike structure in the IV
characteristics and cooling of the quasiparticles at relatively
large voltages. In our recent work,23 we argued that, in Refs. 21
and 22 too, rough assumptions were used and that the IV
characteristics are hyperboliclike and hysteretic at relatively
large τin. We should note that the hysteretic behavior of IV
characteristics was also found theoretically for very short
L < ξ (T = 0) superconducting bridges in Refs. 24 and 25.

The aim of this paper is to study the origin of the hysteresis
in the IV characteristics beyond the applicability region of
the generalized time-dependent Ginzburg-Landau equations
and to compare the results in the local and nonlocal limits.
We show that, in the nonlocal limit, the hysteresis of the
IV characteristics of both short and long superconducting
microbridges is mainly connected with the long relaxation
time of |�|, which coincides with the results found in the
local limit. We found new effects that appear in the nonlocal
limit: time-averaged heating and cooling of quasiparticles
in different areas of the sample, which affect the hysteresis
quantitatively. By adding a new term in the time-dependent
Ginzburg-Landau equations, we show that cooling effects can
also be incorporated in the local model. We also find that, in
short superconducting microbridges, both within the local and
nonlocal limits, the voltage at fixed current is a nonmonotonous
function of τin, which generalizes the result of Refs. 7, 10,
and 26 where a decrease of V (τin) was found for small τin

within the local limit.
The paper is organized as follows. In Sec. II, we present the

theoretical model. In Sec. III, we discuss the current voltage
characteristics of short and long microbridges in a temperature
interval where the simple time-dependent Ginzburg-Landau
equations are valid (local limit). In Sec. IV, we discuss the
lower temperature regime where a solution of the kinetic
equations for f (ε) and the modified time-dependent Ginzburg-
Landau (TDGL) equations are needed (nonlocal limit), and
we present our results both for short (Sec. IV A) and long
(Sec. IV B) superconducting microbridges. In Sec. V, we
discuss the applicability range of our results and propose a
modification of the TDGL equation. In Sec. VI, we present
our conclusions.

II. MODEL

To simulate the phase-slip process in a superconductor,
we use the kinetic equations derived in Refs. 15–18 for dirty
superconductors near Tc:

N1
∂δfL

∂t
= D∇[(

N2
1 − R2

2

)∇δfL

] + D∇(jεfT )

− N1

τin

δfL − R2
∂f 0

L

∂ε

∂|�|
∂t

, (1a)

∂

∂t
N1

(
fT + eϕ

∂f 0
L

∂ε

)
= D∇[(

N2
1 +N2

2

)∇fT

]+D∇(jεδfL)

− N1

τin

(
fT + eϕ

∂f 0
L

∂ε

)
− N2|�|

×
(

2fT + h̄
∂f 0

L

∂ε

∂φ

∂t

)
. (1b)

Here, Q = (∂φ/∂x − 2eA/h̄c) is a quantity that is propor-
tional to the superfluid velocity (vs = DQ), ϕ is the elec-
trostatic potential, fL(ε) = f 0

L(ε) + δfL(ε) is the longitudinal
and fT (ε) is the transverse part of the quasiparticle distri-
bution function 2f (ε) = 1 − fL(ε) − fT (ε) [in equilibrium,
fL = f 0

L(ε) = tanh(ε/2kBT ), f 0
T (ε) = 0]. N1, N2, R2 are the

spectral functions, which should be found from the Usadel
equation for the normal α(ε) = cos � = N1(ε) + iR1(ε) and
anomalous β1 = βeiφ , β2 = βe−iφ [β(ε) = sin � = N2(ε) +
iR2(ε)] Green’s functions

h̄D
d2�

dx2
+

[(
2iε − h̄

τin

)
− h̄DQ2 cos �

]
sin �

+ 2|�| cos � = 0. (2)

Equations (1a) and (1b) are coupled due to the finite spectral
supercurrent27 jε = Re(β1∇β2 − β2∇β1)/2 = 2N2R2Q.

Equations (1) and (2) should be completed by the equation
for the complex order parameter � = |�|eiφ :

πh̄

8kBTc

∂�

∂t
− (�1 + i�2)�

= ξ 2
GL

∂2�

∂x2
+

(
1 − T

Tc

− |�|2
�2

GL

)
�, (3)

where ξ 2
GL = πh̄D/8kBTc and �2

GL = 8π2(kBTc)2/7ζ (3) are
the zero-temperature Ginzburg-Landau coherence length and
the order parameter correspondingly. Nonequilibrium cor-
rections to the quasiparticle distribution function enters
Eq. (3) via the potentials �1 = ∫ ∞

0 R2δfLdε/|�| and �2 =∫ ∞
0 N2fT dε/|�|.

The current and electrostatic potential in the wire can be
found using the equations

j = σn

e

( |�|2Q
4kBTc

+
∫ ∞

0

[(
N2

1 + N2
2

)∇fT + jεδfL

]
dε

)
, (4)

eϕ = −
∫ ∞

0
N1fT dε

/ ∫ ∞

0
N1

∂f 0
L

∂ε
dε, (5)

where σn is the conductivity of the normal state and it is
assumed that the charge density ρ � 0 in metals and that the
condition divj = 0 is satisfied due to Eqs. (1b), (3), and (5).

In the so-called local limit [when Lin � ξ (T ) and τin �
τGL], one may obtain from Eqs. (1)–(4) (see Refs. 17 and 18)
the much simpler time-dependent Ginzburg-Landau equation
for the dynamics of the order parameter:

πh̄

8kBTc

1√
1 + (�|�|)2

(
∂

∂t
− i2eϕ

h̄
+ �2

2

∂|�|2
∂t

)
�

= ξ 2
GL

∂2�

∂x2
+

(
1 − T

Tc

− |�|2
�2

GL

)
� (6)
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FIG. 1. Schematic illustration of the model system.

(� = 2τin/h̄), and the current density

j = σn

( |�|2Q
4ekBTc

− ∂ϕ

∂x

)
, (7)

but which has a much narrower validity region (1 −
πh̄/8kBTcτin � T/Tc < 1) than Eqs. (1)–(5) (which roughly
coincides with the validity region of the stationary Ginzburg-
Landau equations: 0.9 � T/Tc < 1).

In our theoretical model, we assume that the quasi-one-
dimensional microbridge of finite length L is connected to
large superconducting leads (see Fig. 1), where the order
parameter reaches the equilibrium value �lead � 1.74�0(1 −
T/Ts)1/2 (�0 = 1.76kBTc is the zero-temperature order pa-
rameter value in the weak-coupling limit) and the current
density is much smaller than in the microbridge. It is useful to
introduce the dimensionless inelastic relaxation time τ̃in =
τin/t0, which is the main control parameter in the model
described by Eqs. (1)–(3) [here, t0 = h̄/�0 and, further, we
also use ξ0 = √

h̄D/�0, Q0 = h̄c/2eξ0, j0 = �0σn/(ξ0e), and
ϕ0 = �0/e as the units of the corresponding quantities). In our
calculations, we used τ̃in = 1−1000, which are typical values
for many low-temperature superconductors (for example, in
Nb τ̃in � 100, in Sn τ̃in � 200, and in Al τ̃in � 1000).18

To simulate the current driven regime in the nonlocal limit
as described by Eqs. (1)–(5), we apply the special system
present in Fig. 1. Usually, the boundary conditions for fL

and fT contain the voltage as a parameter27,28 and it is rather
difficult to satisfy the condition j = const. Therefore, we apply
a voltage to the system, which consists of a large normal part
(reservoirs + part of the leads) and a superconducting part
(microbridge + rest of the leads), which is joint in series and
this system effectively models the regime of applied current.
Details of the numerical procedure and the model can be found
in Ref. 23.

In the local limit, the problem of the current-carrying state
is much simpler because the full current is j = js + jn, and
this relation can be directly integrated using Eq. (7) to find
the distribution of the electrostatic potential ϕ with boundary
conditions ϕ|−L/2 = 0, ϕ|L/2 = V , where V = ∫ L/2

−L/2(js −
j )dx/σn. One then also can solve Eq. (6) in the interval
−L/2 < x < L/2 with boundary conditions �|−L/2 = �lead,
�|L/2 = �leade

iV t [where �lead = �GL(1 − T/Tc)1/2] to find
�(x,t), js(x,t), ϕ(x,t) and the time-averaged voltage response.

FIG. 2. (Color online) Current voltage characteristics of short
(a) and relatively long (b) superconducting microbridges calculated
in the regime of decreasing current using time-dependent Ginzburg-
Landau equations. For comparison, we also plot the IV characteristics
of the overdamped Josephson junction within the RCSJ model (solid
curve).

III. SHORT AND LONG MICROBRIDGES IN LOCAL
LIMIT (TDGL FORMALISM)

First, we consider the dynamical properties of short
and long superconducting microbridges in the temperature
interval where the time-dependent Ginzburg-Landau equations
[Eqs. (6) and (7)] are valid.

In Fig. 2, we present typical current voltage characteristics
of microbridges of different lengths calculated at T = 0.99Tc

in the regime of decreasing current for different values of
τ̃in. All of them have a hyperbolic shape and some of
them are hysteretic (in the sense that the transition to the
superconducting state occurs at the retrapping current Ir < Ic).
For short microbridges, the voltage at fixed current I � Ic is a
nonmonotonous function of τ̃in: it has a minimum at some τ̃ ∗

in,
which is inversely proportional to L2 [see inset in Fig. 2(a)].
For relatively long microbridges [with L � ξ (T )], the voltage
at fixed current monotonically increases with increase of τ̃in

and the IV characteristics are hysteretic already for relatively
small values of τ̃in.

A. Short microbridge

Let us first discuss our results for short microbridges.
We explain the nonmonotonous dependence V (τin) and the
hysteresis of the IV characteristics by the competition between
the variation in time of |�| and δφ. We may estimate these
times using Eqs. (6) and (7). Because the electric field is
almost uniform over the short microbridge, we may find from
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the Josephson relation ∂δφ/∂t = 2eV/h̄ the growth time of
δφ just after the phase-slip event: τδφ ∼ πh̄/4eV ∼ h̄/RNI ∼
h̄Ic/IkB(Tc − T ) (where we use the expression for the critical
current of a short microbridge Ic = π�2

lead/4ekBTcRN and
assume that δφ increases by π/2). In some respect, this time
is proportional to the period of oscillations of |�| (T|�|) or the
Josephson period. It is also related to the relaxation time of
the current τj = h̄/2eIcRN (see, for example, Ref. 1) in the
superconductor: τδφ ∼ τj Ic/I .

To estimate τ|�|, we find from Eq. (6) [by neglecting linear
and nonlinear terms in the right-hand side of Eq. (6)]

∂|�|2
∂t

∼ ξ 2
GL�leadkBTc

L2τin

, (8)

and τ|�| ∼ (L/ξGL)2τin(1 − T/Tc)1/2 [it is the time needed
that |�| increases from zero to �lead according to Eq. (8)]. The
above estimates for τδφ and τ|�| are very rough, but they allow
us to understand qualitatively our numerical results in a simple
way by introducing the ratio

τ|�|
τδφ

� τ̃in(1 − T/Tc)1/2 I

Ic

(
L

ξ (T )

)2

, L < ξ (T ). (9)

When τin is sufficiently small for given length of the
microbridge and given temperature to make τ|�|/τδφ � 1,
the current-phase relation Is[(δφ)] is close to the sinusoidal
one [see Fig. 3(b)], and the dependence |�|(δφ) in the resistive
state is almost the same as in the superconducting state [see

FIG. 3. (Color online) Dependence of the order parameter (a) and
the superconducting current (b) in the center of the short microbridge
[L = 7ξ0 ∼ 0.6ξ (T ) at T = 0.99Tc] on the phase difference across
the sample at I = 1.3Ic and different inelastic relaxation times τ̃in

found from the numerical solution of Eqs. (6) and (7). The horizontal
dashed-dotted line in (a) shows the minimal value of |�| = �lead/

√
2

in the stationary state when δφ = π/2 (Ref. 29).

FIG. 4. (Color online) Current voltage characteristics (in the
regime of decreasing current) of a short microbridge with length
L = 7ξ0 at T = 0.99Tc calculated for different values of the inelastic
relaxation time in the absence (a) and the presence (b) of coupling
terms in Eqs. (1a) and (1b).

Fig. 3(a)]. In this case, the magnitude of the order parameter
follows the changes in δφ without almost any delay.

When we increase τin (keeping the other parameters
constant), τ|�| increases, but as long as τ|�|/τδφ � 1, it leads
to a decrease of the voltage at fixed current I � Ic because
the variation time of |�| increases (it scales with τin) and,
thus, more time is needed to change the order parameter from
its minimal to its maximal value; consequently, the period
T|�| increases. In some respect, it resembles the response of
the superconductor on the current pulse:30–32 the larger τin,
the larger the decay time of |�|. The increased τ|�| leads to
a smaller maximal value |�|max during the variation of δφ

and larger deviations of both dependencies |�|(δφ) and Is(δφ)
from the one in the static case [see Figs. 3(a) and 3(b)].

With a further increase of τin, the amplitude of oscillations
of |�| further decreases [compare curves in Fig. 3(a)] and there
is a moment when the period of oscillations starts to decrease
(and voltage V ∼ 1/T|�| increases) despite the increase of τ|�|.
It occurs roughly when τ|�|/τδφ � 1 [see inset in Fig. 2(a)].
Approximately at the same values of τin, the IV characteristics
become hysteretic. At such a τin, we can have a resistive state
for I < Ic because |�| increases very slowly after the phase-
slip event (in comparison with δφ), and when δφ approaches
π/2 (critical value for the superconducting microbridge in
the static case), the magnitude of the order parameter is still
strongly suppressed [see Fig. 3(a)]. Therefore, oscillations of
|�| may still be present at the current I � Is ∼ |�|2maxπ/2L,
which can be smaller than Ic ∼ �2

leadπ/4L. We may estimate
the retrapping current Ir , at which the dynamical phase-slip
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process stops, from the condition τ|�|/τδϕ(Ir ) � 1, which leads
to

Ir � Ic

τ̃in(1 − T/Tc)1/2

(
ξ (T )

L

)2

, L < ξ (T ). (10)

At this current, the period of oscillations is about ∼τ|�| and,
therefore, there is a minimal voltage V ∗ ∼ 1/τ|�| below which
the resistive state is absent in the current-driven regime.

We have to stress that the above estimates are very rough
and show only the trends as to how Ir and V ∗ change with the
variation of length of the microbridge, the inelastic relaxation
time, and temperature. The exact dependencies should be
obtained from a numerical solution of Eqs. (6) and (7) (in
the temperature interval where they are valid).

We may compare the dynamical properties of the short
microbridge as obtained within the framework of the TDGL
model [Eqs. (6) and (7)] with those of a Josephson junction
within the framework of the resistively and capacitively
shunted junction (RCSJ) model.20 The qualitative important
difference with the RCSJ model is that, for a superconducting
microbridge with a large ratio τ|�|/τδφ , the current-phase
relation is not sinusoidal in the resistive state [see Fig. 3(b)].
Let us use the analogy of the Josephson junction with an
effective particle, which moves in the external potential
Ueff(δφ) such as −∂Ueff/∂δφ = Is(δφ).20 In the case of the
superconducting microbridge, the moving particle affects the
potential in which it moves, and, the larger the ratio τ|�|/τδφ ,
the stronger the effective potential Ueff is modified. This is
the main reason for the existence of the order parameter
oscillations at I < Ic because the effective potential Ueff in
the resistive state is different from the one in the static state.

We should note that the TDGL equations were already used
to study the dynamical properties of short superconducting
microbridges (see, for example, the review in Ref. 12). One
usually introduced a numerical coefficient u∗ in front of the
time derivative ∂�/∂t [plus one should set τin = 0 in Eq. (6)],
which leads to

u∗ πh̄

8kBTc

(
∂

∂t
− i2eϕ

h̄

)
� = ξ 2

GL
∂2�

∂x2

+
(

1 − T

Tc

− |�|2
�2

GL

)
�,

(11)

and one studies then the dynamics of the order parameter
for different values of u∗. This parameter describes su-
perconductors with different τin, i.e., with the replacement
u∗ → 2τin|�|/h̄ � 1, one obtains Eq. (6) for dynamics of
|�| from Eq. (11). It is easy to see that, in the framework of
Eq. (11), we have for short microbridges τ|�| ∼ u∗(L/ξGL)2,
and τδφ is the same as in Eq. (6). In Ref. 7, one introduced
the parameter ν = u∗[L/ξ (T )]2I/Ic ∼ τ|�|/τδφ [see Eq.(22)
in Ref. 7 or Eq. (168) in Ref. 1], which describes the
influence of finite τ|�| on the IV characteristics and on the
deviation from the stationary current-phase relation Is =
Icsin(δφ). In this model, the IV characteristics are always
hyperboliclike and could be hysteretic if the length of the
microbridge satisfies the condition u∗[L/ξ (T )]2 � 1 [this
result was found for a microbridge with length L = ξ (T ); see

Refs. 11 and 12], which roughly corresponds to our criterium
τ|�|/τδϕ ∼ u∗[L/ξ (T )]2 � 1 taken at I = Ic.

Equation (11) with arbitrary u∗ can only be used qual-
itatively instead of Eq. (6) for short microbridges L <

ξ (T ) where the electric field is almost constant across the
microbridge. The parameter u∗ defines not only τ|�|, but it
also determines the penetration length of the electric field
in the superconductor LE ∼ 1/

√
u∗ (or LE ∼ 1/

√
τin with

the replacement u∗ → 2τin|�|/h̄), which is rather different
from LE ∼ √

τin found from Eqs. (6) and (7). For the case
of long microbridges L � ξ (T ), it leads to drastic changes
if one compares Eqs. (6) and (11): the current interval over
which dynamical phase-slip processes occur decreases with
increasing u∗, while it increases with increasing τin.13,33

In a form close to Eq. (6), the time-dependent Ginzburg-
Landau equation was used for analytical calculations of the
IV characteristics of short superconducting microbridges in
Ref. 26. But, the author used the wrong assumption that
relaxation of the nonequilibrium occurs due to diffusion alone
[see Eq. (14) in Ref. 26] and it was found to be a weak [see
Eq. (12) and Fig. 5 in Ref. 34] decrease of the resistance (at
I � Ic) for relatively small τin. The decrease of the resistance
with increasing u∗ in the framework of Eq. (11) was found for
short S-S ′-S (Ref. 7) and S-N -S (Ref. 10) superconducting
microbridges, but those authors did not study the case of
large u∗ and did not observe an increase of the resistance
for relatively large u∗.

In Refs. 24 and 25, the limiting case of short microbridge
L < ξ0 was studied in the framework of microscopic theory
near Tc. The authors found a decrease of the resistance of
the superconducting microbridge when τineVc/h̄ � 1 [where
Vc = IcRN and h̄/eVc � τδφ(I = Ic)], but, in contrast to our
results and the result of Refs. 7 and 26, the resistance in Refs. 24
and 25 did not depend on the length of the microbridge. Aside
from this, the hysteresis of IV characterisitcs in Refs. 24 and 25
appeared when τineVc/h̄ ∼ τin/τδφ � 1, while according to
our calculations, in the local limit the hysteresis appears when
τ|�|/τδφ � (L/ξ0)2(1 − T/Tc)τin/τδφ � 1. It is not clear how,
starting from our results [which were found for microbridges
with ξ0 < L < ξ (T )], one would continuously transit to the
results found in Refs. 24 and 25 (which were found for
microbridges with L < ξ0) by decreasing the length of the
microbridge.

B. Long microbridge

Now, we discuss the results for a long microbridge. The
same idea about the competition between the two relaxation
times τ|�| and τδφ will be used in order to explain the
monotonous increase of the voltage with increase of τin (at
fixed current) and the hysteresis of the IV characteristics
for the parameters of Fig. 2(b). In comparison with short
microbridges, we should replace L by ξ (T ) in Eq. (8) and
we obtain the following estimate for τ|�| ∼ τin/(1 − T/Tc)1/2,
which coincides with the well-known expression for the char-
acteristic variation of |�| with time at T ∼ Tc in the spatially
uniform case20,22 τ|�| � 3.7τinkBTc/�lead. To estimate τδϕ ,
we should use the depairing current Ic = √

4/27π�2
leadL/

4ekBTcRN2ξ (T ) and take into account that the electric field
exists over a length LE/ξ0 ∼ τ̃

1/2
in /(1 − T/Tc)1/419 near the
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phase-slip center, which could be much larger than ξ (T )/ξ0 ∼
1/(1 − T/Tc)1/2. Therefore, we may distinguish two cases:
ξ (T ) < LE(T ) � L and ξ (T ) < L � LE(T ).

In the first case, the voltage drop occurs over the length
2LE [τδφ ∼ L/(2LERNI )] and, in the second case, the voltage
drop occurs across the whole microbridge [τδφ ∼ 1/(RNI )].
Therefore, we obtain

τ|�|
τδϕ

� τ̃in(1 − T/Tc)1/2 I

Ic

LE(T )

ξ (T )
, LE(T ) � L (12a)

τ|�|
τδϕ

� τ̃in(1 − T/Tc)1/2 I

Ic

L

ξ (T )
, LE(T ) � L. (12b)

In both cases, the inequality τ|�|/τδϕ � 1 is already satisfied at
T = 0.99Tc for almost all values of τ̃in presented in Fig. 2(b). It
explains the monotonous dependence of the voltage for fixed
current and the enhanced hysteresis in comparison with the
short microbridge [see Fig. 2(a)]. As in the case of short
microbridges, we may estimate the retrapping current from
the condition τ|�|/τδϕ(Ir ) � 1 (see also Refs. 13 and 35)

Ir � Ic

τ̃in(1 − T/Tc)1/2

ξ (T )

LE(T )
, LE(T ) � L (13a)

Ir � Ic

τ̃in(1 − T/Tc)1/2

ξ (T )

L
, LE(T ) � L. (13b)

In both cases, the ratio Ir/Ic is much smaller as compared to
short microbridges for the same temperature and the same
inelastic relaxation time, which is mainly connected with
a larger value for τ|�| in long microbridges (compare τ|�|
for short and long microbridges). Furthermore, as in the
case of short microbridges, there exists a minimal voltage
V ∗ = V (Ir ) ∼ 1/τ|�| > 0 (when hysteresis exists) and the
maximal period of oscillations of |�| is proportional to τ|�|
and does not depend on the length of the long microbridge.

To conclude this section, we should note that, for rela-
tively long microbridges such that ξ (T ) < L < LE(T ), the
temperature dependence of Ir ∼ (1 − T/Tc)1/2 [see Eq. (13b)]
is the same as for the retrapping current in the model with
Joule dissipation.4 But the validity region of this expression is
restricted to temperatures near Tc where Eqs. (6) and (7) are
valid.

IV. SHORT AND LONG SUPERCONDUCTING
MICROBRIDGES IN THE NONLOCAL LIMIT

A. Short microbridge

In this section, we go beyond the validity region of the
time-dependent Ginzburg-Landau equations. In our numerical
calculations, in contrast with the preceding section, we use an
even number of grid points in order to put the position where
the order parameter goes to zero between two grid points.
Further, when we refer to any value in the phase-slip center,
we mean the value in the grid point next to the phase-slip
center [at the distance δx = ξ0/2 � ξ (T )].

In our preceding paper,23 we found that, in the nonlocal
limit, the oscillations of the order parameter in the supercon-
ducting microbridge may heat the quasiparticles on average in
time. The coupling terms in Eqs. (1a) and (1b) are responsible
for some kind of cooling of quasiparticles and strongly affect
the IV characteristics. Here, we present a direct comparison

between the results found from the nonlocal and the local
limits.

In Fig. 4, we present the current voltage characteristics of a
microbridge with length L = 7ξ0 at T = 0.99Tc for different
values of the inelastic relaxation time τin found from the
numerical solution of Eqs. (1)–(5). To show the influence
of the coupling terms D∇(jεδfL) and D∇(jεfT ) on the IV
characteristics, we calculated them in the absence [Fig. 4(a)]
and the presence of those terms [Fig. 4(b)].

The IV characteristics without coupling terms look quali-
tatively similar to those in the local limit [compare Figs. 2(a)
and 4(a)]. The voltage at fixed current first decreases and
then increases with increasing τin and for relatively large τin

hysteresis appears. Adding the coupling terms changes the
behavior at large voltages23 and leads to qualitative differences
with the local limit: the voltage decreases with increasing τin

[see also the IV curves in Fig. 3(b) of Ref. 23].
Let us first discuss the main differences between the local

and nonlocal limits at low voltages where the effect of the
coupling terms is relatively weak and their presence does
not lead to qualitative differences in the IV characteristics
[compare Figs. 4(a) and 4(b) at I � 1.3Ic]. In Fig. 5, we
present the dependence of |�|, Is , and �1 on the phase

FIG. 5. (Color online) Dependence of the magnitude of the order
parameter, the superconducting current, and the potential �1 in the
center of the short microbridge [L = 7ξ0 ∼ 0.6ξ (T ) at T = 0.99Tc]
on the phase difference across the sample at I = 1.3Ic and different
inelastic relaxation times τ̃in found in the nonlocal limit [with
presence of coupling terms in Eqs. (1a) and (1b)]. The black dashed
line in (a) shows the minimal value of |�| in the stationary state when
δφ = π/2.
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FIG. 6. (Color online) Distribution of the time-averaged potential
�1 and the order parameter |�| in the short microbridge calculated
with and without coupling terms in Eqs. (1a) and (1b). The shaded
area represents a sketch of the microbridge with leads.

difference across the microbridge found from a numerical
solution of Eqs. (1)–(5) with coupling terms at I = 1.3Ic.
We see that the amplitude in the variations of |�| is larger in
the nonlocal limit than in the local one and the dependence
Is(δφ) is close to a sinusoidal one (compare Figs. 3 and 5).
The second difference is in the sign of the potential �1. In the
local limit, the sign of �1 is determined by the sign of the time
derivative of |�|, i.e., �1 ∼ ∂|�|/∂t .17,18 In the nonlocal limit,
the sign of �1 may not coincide with the sign of ∂|�|/∂t when
|�| varies faster in time than f (ε). It leads to a faster initial
increase of the order parameter after the phase-slip event than
in the local limit36 and to positive �1 during a relatively large
time interval after the phase-slip event even when ∂|�|/∂t � 0
[see Fig. 5(c)].

Positive (negative) �1 means, in some respect, heating
(cooling) of quasiparticles because, from the structure of
Eq. (3) and the definition of �1, it follows that the effect
of the nonequilibrium fL(ε) may be interpreted integrally
in terms of the effective temperature of the quasiparticles:
Teff = T + Tc�1. Within the local limit, the time-averaged
�1 = 0, while in the nonlocal case, �1 can be positive
[when one neglects coupling terms in Eqs. (1a) and (1b)]
and negative (when one takes these terms into account)
(see Fig. 6).

Despite the above differences, hysteresis appears in both
local and nonlocal limits at large τ̃in and we argue that
the main reason for this is the large growth time of |�| in
comparison with the growth time of δφ. Indeed, nonlocal
effects speed up the initial stage of the increase of |�| after
the phase-slip event, but when |�| becomes large enough, it
varies in time as in the case of the local limit:36 the larger τ̃in,
the slower changes |�| [see also Fig. 5(a), which shows the
time dependence of |�| because the phase difference changes
in time]. Due to nonlocal effects, �1 stays positive and large
even when |�| reaches its maximal value [in contrast with
the local limit ; see Fig. 5(c)], which means a local in time
heating of quasiparticles. As a result, even when there is a
time-averaged cooling of quasiparticles (see Fig. 6), hysteresis
still persists [see Fig. 4(b)]. In the absence of coupling terms
in Eqs. (1a) and (1b), the potential �1 is positive during
almost the whole period of oscillations and hysteresis is larger

FIG. 7. (Color online) Current voltage characteristics of a short
superconducting microbridge with length L = 7ξ0 and τ̃in = 250
calculated at different temperatures without (a) and with (b) coupling
terms in Eqs. (1a) and (1b).

than the one found when taking into account the coupling
terms.

In Figs. 7(a) and 7(b), we show the IV characteristics of a
short microbridge at different temperatures calculated for one
value of τin. At low temperature, the hysteresis becomes more
pronounced; the same effect exists in the local limit too and
it is connected with an increase of the difference between τ|�|
and τδφ . The presence of coupling terms in Eqs. (1a) and (1b)
makes the hysteresis weaker because they provide cooling of
quasiparticles and only the large τ|�| is still responsible for
hysteresis.

B. Long microbridge

In Figs. 8 and 9, we present IV characteristics of a long
microbridge L = 21ξ0 calculated at T = 0.99Tc (Fig. 8) and
T = 0.96Tc (Fig. 9) for different values of τin in the absence
and the presence of coupling terms in Eqs. (1a) and (1b).
First of all, we should note that the effect of coupling terms
is similar to the one for short microbridges and becomes
pronounced already at T = 0.99Tc. Their presence leads to
an effective cooling of the quasiparticles and to a decrease
of the voltage with increasing τin for fixed value of the
current I � Ic.

Second, the hysteresis considerably increases in compari-
son with the one found for a short microbridge when taken
at the same temperature and with the same τ̃in (compare
Figs. 4 and 8 and Fig. 3 from Ref. 23 with Fig. 9). The
same effect appears already within the framework of the
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FIG. 8. (Color online) Current voltage characteristics of a long
superconducting microbridge with length L = 21ξ0 calculated for
different τin at T = 0.99Tc without (a) and with (b) the coupling
terms in Eqs. (1a) and (1b).

time-dependent Ginzburg-Landau equations (6) and (7) [see
Figs. 2(a) and 2(b)]. In the local limit, the increase of the
hysteresis (decreasing the retrapping current Ir ) is connected
with an increase of the time relaxation of |�|, which is
inversely proportional to L2 for short microbridges and ξ (T )2

for long microbridges. In the nonlocal case, the same reason is
mainly responsible for the increase of the hysteresis because
the presence or the absence of coupling terms (and therefore
time-averaged cooling and heating of quasiparticles) does
not affect the retrapping current Ir considerably [compare
Figs. 8(a), 8(b) and 9(a), 9(b)]. Note that, in contrast to the
short microbridge, �1 is positive in the phase-slip core both
in the absence and the presence of the coupling terms (see
Fig. 10). The reason is that the phase-slip core is larger in
the case of a long microbridge than in the short one (compare
Figs. 6 and 10), and sources of cooling [term D∇(jεfT ) in
Eq. (1a)] and heating (oscillations of |�|) are separated in
space.

The coupling term provides an enhancement of the order
parameter on the length scale ∼Lin > ξ (T ) (where an electric
field is present) near the phase-slip center (see Fig. 10). But,
this result should be considered carefully because the deviation
from equilibrium δfL may become comparable with f 0

L at
ε � �lead [see Fig. 11(b) ] and the relaxation-time approach
for the electron-phonon collision integral in Eqs. (1a) and (1b)
becomes invalid. We found that the condition δfL/f 0

L � 1 is
fulfilled in case of no coupling terms at all considered currents
I and τ̃in [for illustration, see Fig. 11(a)] and in the case with
coupling terms for large τin only near the retrapping current
I ∼ Ir [see Fig. 11(b)].

FIG. 9. (Color online) Current voltage characteristics of a long
superconducting microbridge with length L = 21ξ0 calculated for
different τin at T = 0.96Tc without (a) and with (b) the coupling
terms in Eqs. (1a) and (1b).

V. DISCUSSION

In the derivation of Eqs. (1)–(5), it was assumed that
the inelastic relaxation time due to the electron-electron
interaction is much larger than the inelastic relaxation time due
to electron-phonon interaction. But, in many low-temperature
superconductors (for example, in aluminum and zinc) already
at T ∼ Tc, these relaxation times are of the same order and
one can expect a strong influence of the electron-electron
interaction on the energy profile of δfL. From a physical point
of view, the electron-electron interaction thermalizes f (ε) on
the time scale τe-e. Therefore, we may expect that the large
peak near ε � �lead will be smeared out not only by taking
into account the correct expression for the electron-phonon
collision integral (when δfL ∼ f 0

L), but also by electron-
electron interaction. The cooling effect will be weakened and
the shape of the IV curves will be between the curves presented
in Figs. 8(a) and 8(b) and 9(a) and 9(b).

Also, one more simplification was made in connection with
the phonon subsystem: it was supposed that the phonons are in
equilibrium. This assumption should be fulfilled for variable
thickness bridges, when the narrow and thin microbridge is
connected with wide and thick banks and one may assume
that nonequilibrium phonons escape fast to the leads (contrary
to the electrons with energy ε < �lead for which an energy
barrier exists). In the case of the Dayem microbridge (in which
the thickness of the microbridge is the same as the thickness of
the leads), the nonequilibrium phonons can not effectively run
away from the microbridge and one should take into account
their heating by Joule dissipation.
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FIG. 10. (Color online) Distribution of the time-averaged po-
tential �1 and the order parameter |�| in the long microbridge
(L = 21ξ0, T = 0.96Tc, τ in = 250, I = 1.2Ic) calculated with and
without coupling terms in Eqs. (1a) and (1b). The shaded area is a
sketch of the microbridge with leads.

In this connection, we also would like to discuss another
effect of the geometry of the microbridge [which is espe-
cially important for short microbridges L � ξ (T )] on the
nonequilibrium electrons. In variable thickness microbridges,
the regions next to the microbridge are almost not influenced
by a large supercurrent and one may assume that �lead =
�GL(1 − T/Tc)1/2. In the Dayem microbridge, the order
parameter will be suppressed in the area with size about the
width of the microbridge by the large superconducting current
I � Ic.1 It will affect the nonequilibrium distribution function
δfL in the microbridge because, in this case, the relaxation due

FIG. 11. (Color online) Energy dependence of the time-averaged
δfL in the center of a long microbridge (in the phase-slip center) at
different currents in the absence (a) and the presence (b) of coupling
terms in Eqs. (1a) and (1b).

FIG. 12. (Color online) Current voltage characteristics of a long
superconducting microbridge calculated in the regime of decreasing
current on the basis of a numerical solution of the time-dependent
Ginzburg-Landau equations with additional cooling term.

to diffusion will be larger for quasiparticles with ε � �lead.
Therefore, the effect of the coupling terms should be weakened
(they give the main contribution for ε ∼ �lead) and the cooling
effect will be smaller in the Dayem microbridge in comparison
with the variable thickness microbridge.

An important effect may also come from the finite width
of the microbridge. In our calculations, we assumed that
the width of the microbridge is much smaller than its
length, which provides uniform current distribution over the
width of the microbridge. In the case when W � L, current
distribution becomes nonuniform (see Ref. 37) and it may
considerably influence the dynamics of the order parameter in
the microbridge (see discussion in Ref. 23).

We should note that cooling of quasiparticles can be taken
into account in the local limit. The contribution to the cooling
comes from the term D∇(jεfT ) � 2DN2R2(Q · E)∂f 0

L/∂ε

(Ref. 23) in the kinetic equation [Eq. (1a)]. In the local limit, it
leads to the appearance of an additional term in the generalized
time-dependent Ginzburg-Landau equation

πh̄

8kBTc

1√
1 + (�|�|)2

(
∂

∂t
− i2eϕ

h̄
+ �2

2

∂|�|2
∂t

)
�

= ξ 2
GL

∂2�

∂x2
+

(
1 − T

Tc

− |�|2
�2

GL

+ ξ 2
GLe�(Q · E)

)
�,

(14)

where we used the same local approximation limit for N1, N2,
and R2 as in Refs. 17 and 18. In Fig. 12, we present the IV
characteristics for the parameters of Fig. 2(b) calculated using
Eq. (14) and one can see qualitative agreement between these
results and results presented in Fig. 8(b) [compare also with
Fig. 2(b)].

VI. CONCLUSION

The reason for the hysteresis of the IV characteristics of
short and long variable thickness microbridges near the critical
temperature are similar for both the local [Lin � ξ (T )] and
the nonlocal [Lin � ξ (T )] limits. The hysteresis is connected
with the large relaxation time of |�| in the phase-slip core in
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comparison with the time scale for the variation of δφ across
the short microbridge or across the phase-slip core (in case of
long microbridge).

In short and long microbridges, τ|�| increases with increas-
ing inelastic relaxation time τin (in the local limit τ|�| ∼ τin).
Note that τ|�| depends on the length of the short microbridge
(in the local limit τ|�| ∼ 1/L2) and on temperature. In
contrast, the time variation of δφ depends mainly on the
temperature because it is inversely proportional to the voltage
across the microbridge [and V ∼ RNIc(T )] and τδφ decreases
with decreasing temperature. At some temperature below the
critical one, |�| may vary much slower in time than δφ and
it provides the condition for the existence of the dynamical
phase-slip process at Ir < I < Ic resulting in hysteresis of the
IV characteristics.

In the nonlocal limit, the difference between τ|�| and
τδφ leads to a time-averaged heating of the quasiparticles
in the phase-slip core and, hence, to an additional source
of hysteresis. Due to the coupling of the longitudinal and
transverse parts of the quasiparticle distribution function,
there is an effective cooling of the quasiparticles in the area
outside of the phase-slip core where an electric field exists and
oscillations of |�| have small amplitude. In short microbridges,
this cooling partially compensates the heating of quasiparticles
in the phase-slip core and the hysteresis is smaller than
predicted by the local model. In long microbridges, the cooled
regions are far from the phase-slip core and cooling itself
is weaker at low voltages and it slightly affects the retrapping

current Ir . At high voltages, the cooling for both short and long
microbridges becomes stronger and it results in a decrease
of the voltage at fixed current with increasing τ̃in. The last
effect is also found in the local limit both for long and short
microbridges if one takes into account the additional cooling
term [see Eq. (14)] in the time-dependent Ginzburg-Landau
equation. Note that the voltage decrease partially exists in
short microbridges at low τin even without the cooling term
in the TDGL equation (in this case, the voltage decrease is
connected with the increase of τ|�| ∼ τ̃in, but not with the
time-averaged cooling).

The good candidates for observation of the predicted effects
are low-temperature superconductors NbGe/MoGe, TiN, and
Sn for which τe-ph is shorter than τe-e in the wide temperature
interval below Tc. The length of the microbridges should be
less inelastic relaxation length (to have single phase-slip center
in the microbridge), and in these materials, Lin is about 80 nm
for NbGe/MOGe,38,39 250 nm for TiN,40 and 400–500 nm for
Sn.41,42
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