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The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron
states in a quantum ring in the presence of Rashba spin-orbit interaction �RSOI� and Dresselhaus SOI �DSOI�
is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI
and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot
coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state
mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The
two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific

crystallographic direction, i.e., �110� or �11̄0�, which can be switched by reversing the direction of the per-
pendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic
field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected
through the measurement of its optical properties.
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I. INTRODUCTION

All-electrical control of spin states is an important issue in
spintronics and quantum information processing.1–4 The
electrically tunable spin-orbit interaction5–8 �SOI� provides
us an efficient way to control spin which has become one of
the most influential concepts in semiconductor
spintronics.9–11 An electron moving in an electric field feels
an effective magnetic field B� ef f �E� � p� , where E� is an exter-
nal electric field and p� is the electron momentum. This ef-
fective magnetic field interacts with the electron spin and
lifts the electron spin degeneracy. The asymmetry can arise
from structural inversion asymmetry of the confining poten-
tial for electrons, called the Rashba spin-orbit interaction
�RSOI� �Refs. 12 and 13� and from bulk inversion asymme-
try, i.e., the Dresselhaus SOI �DSOI�.14 The strength of the
RSOI can be tuned by an external gate voltage or by asym-
metric doping.5,6,15–17 In thin quantum wells, the strength of
the DSOI is comparable to that of the RSOI since the
strength of the DSOI depends heavily on the thickness of the
quantum well ��1 /Lz

2, where Lz is the thickness of the quan-
tum well�.10 The SOIs behave like an in-plane magnetic field
and the direction of the total effective in-plane magnetic field
varies with the in-plane momentum, which is the dominant
spin relaxation mechanism in a semiconductor two-
dimensional electron gas.18–21

Quantum rings, artificial atoms, or molecules with unique
topological geometry, have attracted a lot of attention due to
the appearance of several interesting phenomena, e.g., the
Aharonov-Bohm �AB�-type and the Aharonov-Casher �AC�-
type effects and magnetic field driven transitions of the mul-
tielectron ground state.7,22–24 These interesting physics arises
from the interplay between the Coulomb interaction, the
unique topological geometry, and the quantum confinement.
Recently, advanced growth techniques have made it possible
to fabricate high-quality semiconductor rings,25 which have
attracted considerable attention due to intriguing quantum

interference phenomenon arising from their unique topologi-
cal geometry.26 The AB and the AC effects are typical ex-
amples of quantum interference, which have been demon-
strated experimentally and theoretically on semiconductor
rings. The interplay between the RSOI and DSOI results in a
periodic potential in an isolated quantum ring that breaks the
rotational symmetry, produces gaps in the energy spectrum
and suppresses the persistent currents.27 This interesting fea-
ture leads to anisotropic spin transport and could be detected
using the transport property in an opened two-terminal quan-
tum ring.28,29

Current experimental state-of-the-art techniques make it
possible to control the exact number of electrons in micro-
structures, for instance, by using finite-bias Coulomb-
blockade and gate-voltage scans.30,31 In this paper, we inves-
tigate theoretically the two electron state in quantum rings
under a perpendicular magnetic field in the presence of both
RSOI and DSOI including the Coulomb interaction between
the two electrons. We find that the single quantum ring be-
haves like a laterally coupled quantum dot, and the coupling
strength induced by the interplay between the RSOI and
DSOI can be tuned by changing the strengths of the SOIs,
i.e., by an external gate. The interplay can lead to singlet-
triplet state mixing and anticrossing behavior between the
singlet and triplet states with changing magnetic field. Inter-
estingly, we find here that the two electron ground state dis-
plays a spatial anisotropic distribution in the quantum ring, a
bar-bell-like ground state along the specific crystallographic

direction, i.e., �110� or �11̄0�, which can be switched rapidly
by reversing the direction of the perpendicular electric field.
This anisotropic distribution results in anisotropic optical
properties that provide us with a possible way to detect it
experimentally. The ground state also exhibits a singlet-
triplet transition at a critical magnetic field which can be
tuned by changing the strength of the RSOI and DSOI.

The paper is organized as follows. In Sec. II the theoret-
ical model is presented. The numerical results and discus-
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sions are given in Sec. III. Finally, we give a brief conclusion
in Sec. IV.

II. THEORETICAL MODEL

We consider a quantum ring structure schematically
shown in Fig. 1. In the presence of both RSOI and DSOI, the
Hamiltonian for two electrons in a finite-width quantum ring
under a perpendicular magnetic field including the Coulomb
interaction is

H = �
i=1

2 � �i
2

2m�
+ Vconf�ri� +

1

2
g��BB�z�

+ �
i=1

2
�

�
��x�i,y − �y�i,x� + �

i=1

2
�

�
��x�i,x − �y�i,y�

+
e2

4	
0
�r1 − r2�
, �1�

where the first summation is the single-electron Hamiltonian
in a ring under a perpendicular magnetic field. The
vector potential A is taken in the symmetric gauge:
A=B /2�−y ,x ,0�, where the magnetic field B is applied per-
pendicularly to the plane of the quantum ring. m� is the elec-
tron effective mass in units of the free-electron mass m0. The
Zeeman splitting is determined by the Bohr magneton
�B=e� /2m0 and the effective g-factor g�. �i�i=x ,y ,z� are
the Pauli matrices. The second and third sum describes the
RSOI and DSOI in the ring, respectively. The transverse con-
fining potential is taken such that the electron motion is
strictly one dimensional �1D�, i.e., the electrons cannot move
radially,

Vconf�r� = 	0, r = R

� , otherwise.

 �2�

The difference among different confining potentials, e.g.,
the hard-wall and parabolic confining potentials, may lead to
different quantitative features in the energy spectrum, but the
important physics we are interested in is not affected by the

precise form of the confining potential. The last term in Eq.
�1� describes the Coulomb interaction between the two elec-
trons in the ring. �e� is the charge of the electron, 
0 and 
 are
the dielectric constant of vacuum and the semiconductor, re-
spectively.

For a 1D ring in the presence of RSOI or DSOI we are not
allowed to simply disregard all the terms proportional to de-
rivatives with respect to r in Eq. �1�. This would lead to a
non-Hermitian Hamiltonian.32 In this paper we take

He = �− i
�

��
+





0
+

�̄

2
�r −

�̄

2
���− ���2

−
�̄2 + �̄2

4

+
�̄�̄

2
sin 2� +

1

2
ḡb�z �3�

as our single-electron Hamiltonian, where �r
=cos ��x+sin ��y, ��=cos ��y −sin ��x, 
=B	a2 is the
magnetic flux threading the ring, 
0=h /e is the flux unit,

�̄��̄�=���� /E0R specifies the dimensionless RSOI �DSOI�
strength, and ḡ=g�m� /2m0 is the dimensionless g factor.27

The total Hamiltonian can be written as

H = �
�

E�a�
+a� +

1

2
� �

������

����U������a�
+a�

+a��a��, �4�

where E� is the energy of the �th single-electron level,
which can be obtained numerically by solving the single-
electron Schrödinger equation for a ring in the presence of
the SOIs �shown in Eq. �3��. The parameter �=e2 /4	
0
 and
U=1 /r. We adopt the configuration-interaction �CI� method
to calculate the eigenvalues and eigenstates of the above
Hamiltonian. The total wave function can be expanded
���=�iCi�I�, where the state vector �I�= �¯01i0¯01j0¯�
=ai

+aj
+�0� with i� j. Here �0� represents the vacuum state and

ai
+�ai� is the electron creation �annihilation� operator of the

states. i and j denoting the ith and jth single-electron energy
levels, respectively. The matrix element of the total Hamil-
tonian can be calculated,

�I�H�J� = �Ei + Ej��ip� jq + ���ij�U�qp� − �ij�U�pq�� . �5�

Solving this secular equation we get the eigenenergy and
the eigenstate of the two electron system. The spin projection
�Sz�= ���Sz��� and total spin �S2�= ���S2��� can be calculated
numerically from the obtained eigenstate ���.

The optical-absorption rate is obtained within the electric
dipole approximation,

Wab =
2	

�
�

f

��f �Hep�i��2��Ef − Ei�

=
2	

�
�
f ,i

 eA0

m� �2

��f ���� · �p1� + p2� ��i��2 � ��Ef − Ei − ��� ,

�6�

where Ei and Ef represent the energies of the initial and final

states. Hep= �e /m���A� · p1� +A� · p2� �, where A0, �, and �� are the
amplitude, frequency, and polarization vector of the incident
linear-polarized light, and p�1,2 are the canonical momenta of

FIG. 1. Schematic of a one-dimensional quantum ring. A mag-
netic field is applied perpendicularly to the ring plane. The angles
�1 and �2 denote the polar angles of the two electrons, respectively.
r is the distance between the two electrons.

LIU et al. PHYSICAL REVIEW B 82, 045312 �2010�

045312-2



the electrons. In the calculation we use a Lorentz broadening
function � /	 / ����−E12�2+�2� for the energy delta function
��E12−��� and � is the broadening parameter describing the
homogeneous broadening of the energy levels in the ring
�see the Appendix�.

The accuracy of the calculated two electron energy spec-
trum depends on the number of possible many-particle con-
figurations that are used, which is determined by the number
of electrons �Ne=2 in this paper�, and the number of single-
particle states NS. In the calculation we include 12 single-
particle electron states to ensure that the lower two electron
states are accurate, e.g., the lowest four energy levels are
accurate to 2.0�10−4 meV. For simplicity, all physical
quantities are taken dimensionless, e.g., the length unit is the
radius of the ring R, the energy unit E0=�2 /2m�R2, and the
magnetic field b=e�B /2m�E0. The relevant parameters for
GaAs are:33 the electron effective mass m�=0.067m0, the ef-
fective g-factor g�=−0.44, and the dielectric constant

=12.5. For example, for R=30 nm we find
E0=0.633 meV and b=1.365, when B=1 T.

III. NUMERICAL RESULTS AND DISCUSSIONS

In Fig. 2, we plot the energy spectra of the two electron
system for different situations in the absence of the SOIs.
From Fig. 2 one can find that the ground state is the singlet
state �S�= ��↑↓�− �↓↑�� /�2 �the total spin S=0� in zero mag-
netic field, formed by the two electrons occupying the lowest
orbital with antiparallel spin. The first excited state is the
spin triplet state �T� �total spin S=1�, where the Pauli prin-
ciple requires one electron to occupy a higher orbital state.
The Zeeman effect leads to the splitting of the triplet state
�T0,�� �compare Figs. 2�a� and 2�b��, which increases with
increasing magnetic field since the z components of the total
spin of the triplet states are different: Sz=+1 for �T+�= �↑↑�,
Sz=0 for �T0�= ��↑↓�+ �↓↑�� /�2, and Sz=−1 for �T−�= �↓↓�. A
singlet-triplet ground-state transition takes place with in-

creasing magnetic field. The Zeeman splitting results in dif-
ferent transition points of the ground state between the sin-
glet state S �S=0� and the triplet states T0,�. The Coulomb
interaction changes the energies of the singlet and triplet
states �see Figs. 2�c� and 2�d��. This feature leads to a sig-
nificant lowering of the critical magnetic field Bc determin-
ing the ground-state transition. The ground-state transition is
a quantum phase transition driven by the magnetic field that
reduces the energy difference between the singlet and triplet
states, enhances the Coulomb repulsion interaction for the
spin singlet state because the two electrons in the singlet
state occupy the same orbital state while the two electrons in
the triplet states occupy two different orbital states.

In Fig. 3, we plot the singlet-triplet splitting EST as a
function of magnetic field for various situations. The split-
ting EST are determined by two factors: the Coulomb ex-
change interaction and the Zeeman effect. The Zeeman effect
leads to three different crossing points for different triplet
states Sz=0, �1 while the Coulomb exchange interaction re-
sults in the splitting of the triplet states Sz=0 and Sz= �1.
The interplay between Coulomb interaction and Zeeman ef-
fect leads to a complicated behavior for the splitting EST �see
Fig. 3�d��.

Figure 4 shows �S2� as a function of magnetic field B. The
sudden jumps of �S2� between 0 and 2 correspond to the
singlet-triplet ground-state transition. One can find that the
Coulomb interaction lowers the critical magnetic field Bc and
broadens the range of the triplet ground states �see Figs. 4�a�
and 4�c��. This feature can be seen clearly from Fig. 4. This
is because the spin degeneracy of the triplet states can be
lifted by the Zeeman effect and the Coulomb exchange in-
teraction.

Next, we turn to the effect of the SOIs. Notice that the
energy spectrum is exactly the same but shows opposite spin
orientation with separate RSOI or DSOI for the same

strengths �̄= �̄ since the Hamiltonian of the RSOI is math-
ematically equivalent to that of the DSOI through a unitary
transformation.27 This feature results from the SU�2� symme-
try of the Hamiltonian.

The Coulomb interaction can couple the singlet and triplet
states, which leads to an anticrossing and opens a gap in the

FIG. 2. �Color online� The energy spectrum for 1D GaAs rings
without SOIs. �a� Without Coulomb interaction and Zeeman effect,
�b� without Coulomb interaction but with Zeeman effect, �c� with
Coulomb interaction but without Zeeman effect, and �d� with both
Coulomb interaction and Zeeman effect.

FIG. 3. �Color online� The same as Fig. 2 but for the energy
difference between the singlet and triplet states �EST=ET0,�

−ES as
a function of magnetic field.
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energy spectrum. In the vicinity of the anticrossing points
there is a strong mixing between the singlet-triplet states �see
Figs. 5�c�, 5�d�, 6�c�, and 6�d��.

The interplay between the RSOI and DSOI breaks the
rotational symmetry and results in an azimuthal periodic po-
tential, consequently it leads to an azimuthal anisotropic
electron distribution. The electron distribution of the ground
state shows a bar-bell-like shape along the specific crystallo-
graphic directions �= �	 /4. The Coulomb repulsion makes
the two electrons tend to avoid each other and localize at the
two opposite sides but at any crystallographic direction. The
broken rotational symmetry makes two electron localize
along the crystallographic directions �= �	 /4, thus behav-
ing like a laterally coupled quantum dot. This feature can be
seen clearly from the two electron distribution of the ground
state �see Figs. 7�a� and 7�c��. Interestingly, one can switch
the minima of the azimuthal periodic potential from �110� to

�11̄0� rapidly by reversing the direction of the perpendicular
electric field, i.e., �̄ to −�̄. The orientation of the bar-bell-
like ground state distribution can be switched from �110� to

�11̄0� �see Figs. 7�b� and 7�d��.
Figures 8�a� and 8�b� shows the phase diagrams of the

two electron system as function of the magnetic field and the
strength of the SOIs. One can see that the singlet-triplet
ground-state transition depends sensitively on the relative
strengths of the RSOI and DSOI which can be seen clearly

from Fig. 8�a� ��̄= �̄� �Ref. 34� and Fig. 8�b� ��̄=2�̄�. This

FIG. 4. S2 for the ground state as a function of magnetic field b
without SOIs. �a� Without Coulomb interaction and Zeeman effect,
�b� without Coulomb interaction but with Zeeman effect, �c� with
Coulomb interaction but without Zeeman effect, and �d� with both
Coulomb interaction and Zeeman effect.

FIG. 5. �Color online� Energy spectrum of a 1D ring. �a� With-
out Coulomb interaction and SOIs, �b� with Coulomb interaction
but without SOIs, �c� without Coulomb interaction but with SOIs,

and �d� with both Coulomb interaction and SOIs. �̄=2.0, �̄=1.0.

FIG. 6. �Color online� The energy differences between the
single and triplet states �EST=ET0,�

−ES as a function of magnetic
field. �a� Without Coulomb interaction and SOIs, �b� with Coulomb
interaction but without SOIs, �c� without Coulomb interaction but
with SOIs, and �d� with both Coulomb interaction and SOIs.

�̄=2.0, �̄=1.0.

FIG. 7. �Color online� ��a� and �c�� Contour plot and ��b� and
�d�� three-dimensional plot of the spatial distribution of the ground
state of the two electron ring as a function of the azimuthal angles
of electron 1 and 2 when including the Coulomb interaction. ��a�
and �b�� �̄=2, �̄=1 and ��c� and �d�� �̄=−2, �̄=1. The solid yel-
low circle in �a� and �c� indicates the quantum ring.
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character can be understood from the behavior of the singlet-
triplet splitting �EST �see Figs. 8�c� and 8�d�� where the ex-
change interaction is very sensitive to the spin orientation of
the two electrons. The latter can change heavily even by a
slight variation in the RSOI and DSOI.27 Therefore the rela-
tive strength between the RSOI and DSOI would lead to a
different behavior of the singlet-triplet splitting �EST, which
results in different phase diagrams.

Finally we turn to the discussion how to detect the two
electron spatial anisotropic distribution. The two electron
spin states have been previously measured by the tunneling
process through quantum dots.35 Here we propose an optical
method, i.e., optical absorption in the infrared regime, to
detect the electron spatial anisotropic distribution. This
method is able to detect more directly the anisotropic elec-
tron distribution and the overlap factor between the ground
and first excited states, i.e., anisotropic absorption. Consider
a beam of linear-polarized light incident along the z axis. We
calculate the optical-absorption index in the infrared regime.
In Fig. 9 we plot the optical absorption index as a function of
the angle � of the polarization plane of the incident linear-
polarized light with respect to the x axis. From the figure,
one can find that the optical-absorption index oscillates peri-
odically with increasing crystallographic angle �. Due to the
azimuthal periodic potential induced by the interplay
between the RSOI and DSOI and the Coulomb repulsion
between the two electrons the electron distributions are
strongly localized in the ring along the crystallographic
direction �= �	 /4, i.e., a bar-bell-like distribution
�see Fig. 7�. The bar-bell-like distribution certainly leads to
an anisotropic behavior of the optical absorption, i.e., peri-
odical oscillation of the optical absorption as a function of
the crystallographic direction � �see Fig. 9�. By reversing the
direction of the perpendicular electric field, i.e., �̄ to −�̄, the
optical absorption will change strongly since the electric di-
pole of the two electrons change from parallel to perpendicu-

lar with respect to the polarization vector of the incident
light. This large variation provides us with an efficient tool to
detect the anisotropy in the electron distribution.

IV. SUMMARY

We investigated theoretically the two electron states in
quantum rings in the presence of SOIs under a perpendicular
magnetic field using the CI method. We found that the single
quantum ring behaves like a laterally coupled quantum dot,
and the coupling strength induced by the interplay between
the RSOI and DSOI can be tuned by changing the strength of
the SOIs. The interplay can lead to singlet-triplet state mix-
ing and to an anticrossing behavior between the singlet and
triplet states with changing magnetic field. The Coulomb in-
teraction can lead to a decrease �increase� in the energy of
the triplet �singlet� state, consequently it reduces signifi-
cantly the critical magnetic field corresponding to the
singlet-triplet transition. Interestingly, the two electron
ground state displays a bar-bell-like spatial anisotropic dis-
tribution in the quantum ring fixed at a specific crystallo-
graphic direction, which results in anisotropic optical prop-
erties that can be tuned electrically.
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APPENDIX: OPTICAL-ABSORPTION INDEX

When a beam of light is incident on a 1D ring, the system
Hamiltonian reads

H =
1

2m�
�p1� + eA� �2 +

1

2m�
�p2� + eA� �2 + HSO + V + HCoul,

�A1�

where the spin-orbit term HSO=���xky −�ykx�
+���xkx−�yky�, the Coulomb interaction term

FIG. 8. �Color online� Phase diagrams as function of magnetic

field and the strength of the SOIs for �a� �̄= �̄ and �b� �̄=2�̄. ��c�
and �d�� Contour plots of the energy differences between the singlet

and triplet states �EST for �c� �̄= �̄ and �d� �̄=2�̄.

FIG. 9. The optical-absorption coefficient as a function of the
direction of the polarized vector of the incident linear-polarized

light. �̄=9, �=1 /	2 , �=3.35E0 �the solid line� �̄=10 and �the
dashed line� �̄=−10.
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HCoul=
1

4	
0

e2

r , the radial confining potential V, and the vec-

tor potential A� of incident light,

A� = �
k

A0��� �ak�ei�−�t+k�
� ·r�� + ak�

+ ei��t−k�
� ·r��� , �A2�

here ak� ,ak�
+ are photon annihilation and creation operators,

respectively. k� is the wave vector of the incident light. The
first and second terms in Eq. �A2� describe the photon ab-
sorption and emission processes, respectively.

Adopting the electric dipole approximation, the electron-
photon interaction term becomes

Hep =
e

m�
�A� · p1� + A� · p2� � �A3�

and the absorption rate is

Wab =
2	

�
�
�,f

��f �Hep�i��2��Ef� − Ei�� , �A4�

where �i� and �f� represent the initial and final states which
are the direct product of the electron states and the photon
states ���n���. Ei� and Ef� represent the total energy that are
the sum of the electron and photon energy of the initial and
final states. The absorption and emission rates can be written
as

Wab =
2	

�
�
�,f ,i


 eA0

m� �2

��f ���� · �p1� + p2� ��i��2

�n���Ef − Ei − ��� , �A5�

Wem =
2	

�
�
�,f ,i


 eA0

m� �2

��i���� · �p1� + p2� ��f��2

��n� + 1���Ei − Ef + ��� , �A6�

and the total rate is given by

Wstim = Wab + Wem. �A7�

In the 1D ring system the emitted photons are directed in
arbitrary directions in space and the number of photons
reaching the detector is negligible. The total rate is

Wstim =
2	

�

 eA0

m� �2

�
2,1

��2���� · �p1� + p2� ��1��2 n���E12 − ��� ,

�A8�

where E12=E2−E1.
Light damping in media can be described as

F�x� = F0e−�x, �A9�

where � is the absorption index of the medium and F0 is the
flux at x=0.

The energy flux equation is

� · F� +
�n�

�t
= 0 �A10�

and the flux can also be written as F=vgn�, here vg=c /� is
the speed of energy flux and � is the refraction index of the
medium. Thus

� =
1

F

dn�

dt
=

Wstim

vgn�

�A11�

and from Eq. �A8� we find

� =
2	

�

 eA0

m� �2

�
2,1

��2���� · �p1� + p2� ��1��2

c/�
��E12 − ��� .

�A12�
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