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We studied the effect of sample geometry on the evolution of the superconducting state in nanoscale Nb
circular and square loops by transport measurements. A multistage resistive transition with temperature is
found for both samples, which is related to the effect of contact leads made from the same superconducting
material. The H-T phase diagrams close to Tc0 show clear periodic oscillations on top of a parabolic back-
ground, i.e., Little-Parks effect. However, the amplitude of the oscillations decreases faster in the circular loop
compared to the one in the square sample. Numerical simulations are conducted within the nonlinear Ginzburg-
Landau theory to show the effect of sample geometry on the nucleation of superconductivity in superconduct-
ing loop structures.
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I. INTRODUCTION

Properties of superconducting vortices in mesoscopic su-
perconductors of size compared to characteristic length
scales �magnetic penetration depth � and the superconduct-
ing coherence length �� are considerable different from the
ones in bulk superconductors. Sample boundary imposes its
geometry on the vortex distribution and, therefore, different
geometries favor different arrangement of vortices. In small
systems, vortices may overlap so strongly that it is more
favorable to form multiquanta giant vortices. The existence
of giant vortex states and transition from the giant vortex
state to multivortex states have already been predicted
theoretically1 and confirmed experimentally using multiple-
small-tunnel-junction method.2 It was also found that the in-
fluence of boundaries can lead to stabilization of the vortex-
antivortex molecules, which preserve the symmetry of the
sample.3 However, such molecules have a very shallow mini-
mum in the free energy4,5 and are very sensitive to the
change of the sample shape.6 Recent theoretical calculations
within the Ginzburg-Landau theory showed that these
symmetry-induced vortex-antivortex molecules can be en-
forced by artificial pining centers7 or by a magnetic dot on
top of the sample,8 with their diagnostic features enhanced
by orders of magnitude.

The critical parameters of mesoscopic superconductors
are also influenced by the vortex structure inside the
sample.9,10 As was first shown by Saint-James,11 each new
vortex entry brings an oscillation in the Tc�H� phase bound-
ary of a superconducting disk, similar to Little-Parks effect
in thin walled loops.12 However, in the former case, the pe-
riod of Tc�H� is not constant and decreases with increasing
the applied field. The properties of superconducting samples
in these two extreme cases have been further investigated
both theoretically1 and experimentally.13

The intermediate case—a superconducting circular loop
with finite width—has also been investigated in the past. For
example, Bardeen14 showed within the Ginzburg-Landau
�GL� theory that the flux is quantized in units of ��0 �with

��1 and �0=hc /2e is flux quantum� in cylinders of very
small diameters and with a wall thickness of the order of the
penetration depth. Groff and Parks showed theoretically that
in the circular loop, the flux through an area S=�rm

2 is quan-
tized in units of �0, with rm= �ri+ro� /2 the arithmetic mean
of the inner �ri� and outer �ro� radii.15 This effective radius
was also predicted to be calculated as ref f =�riro.16 These two
different values rm and ref f are nearly identical for a narrow
ring. Numerical simulations within the GL theory17 showed
that the value of ri�ref f �ro depends on the vorticity L and
in fact ref f turns out to be an oscillating function of the mag-
netic field. It was also found that18 with decreasing the width
of the superconducting loop, the disklike behavior of Tc�H�
with a quasilinear background �characteristic of three-
dimensional �3D� behavior� is shown to evolve into para-
bolic Tc�H� background, superimposed with perfectly peri-
odic oscillations. Morelle et al.,19 studied using transport
measurements the nucleation of superconductivity in a circu-
lar loop for different values of the inner radius ri. They also
found the transition from a one-dimensional to a two-
dimensional regime at larger magnetic field for smaller ri. A
parabolic background superimposed with periodic oscilla-
tions was found in the Tc�H� phase boundary for thinner
loops. At larger magnetic field, the loops recover the behav-
ior of the disk without a hole in the center, which was ex-
plained by the formation of giant vortex states. In an external
flux near �0 /2, a superconducting loop behaves like an Ising
spin due to the degenerate energy states with opposite direc-
tion of the supercurrents. Davidovic et al.20 showed that an
array of such loops can act as a model for a two-dimensional
Ising antiferromagnet.

Oscillations in the Tc�H� phase boundary have also been
observed experimentally in superconducting square loops
with very thin width.13,21 From the previous theoretical
works, we know that the nucleation of the superconducting
state is substantially enhanced in samples with sharp corners
due to the locally enhanced superconducting order parameter
near the corners.5,22,23 However, in the limiting case of very
thin loops, the distribution of the superconducting order pa-
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rameter is uniform along the sample and the effect of the
sample geometry becomes less important. To our knowledge,
there are no theoretical and experimental works devoted to
study the effect of the sample geometry on the fluxoid quan-
tization in superconducting loops with intermediate width.
Therefore, in this paper, we conduct comparative study of
Tc�H� phase boundary in superconducting square and circu-
lar loops by means of transport measurements. We show that
the Tc�H� phase diagram of both samples exhibits periodic
oscillations, similar to the Little-Parks effect. However, the
amplitude of oscillations is smaller in the circular sample
compared to the one in the square sample, which is due to
the geometry of the sample. Our numerical simulations
within the GL theory confirm the experimental findings.

The paper is organized as follows. In Sec. II, we present
sample fabrication and measurement techniques. Experimen-
tal results together with numerical simulations within the GL
theory are presented in Secs. III and IV to investigate the
properties of resistance transitions and the superconducting/
normal phase boundary. Conclusions are given in Sec. V.

II. SAMPLE CHARACTERISTICS AND MEASUREMENT
TECHNIQUE

Superconducting niobium square and circular loops �Fig.
1� were patterned out of t=100 nm thick niobium micro-
bridges with focused-ion-beam �FIB� milling. First, a 300-
nm-thick E-beam resist layer, polymethil methacrylate
�PMMA-950-A4�, was spin coated on silicon substrate with
a 100-nm-thick SiO2 insulator layer. Then, the sample was
baked on a hot plate at 180 °C for 90 s. A pattern of a 4 by
10 	m bridge with standard four-probe transport measure-
ment contacts leads was used for exposure by Raith 150
E-beam machine. Following a development in methyl isobu-
tyl ketone �MIBK� and isopropyl alcohol �IPA� �1:3� solution
for 75 s and washed with isopropanol, the designed pattern
was transformed onto the wafer. A 100-nm-thick niobium
was then deposited on the wafer with an AJA ATC2400 sput-
tering system. The film thickness was determined by a cali-
brated quartz-crystal thickness monitor during the deposi-
tion. The pressure of the working argon gas was maintained
at 1.5 mTorr during sputtering. The growth rate was
3.1 Å /s. After deposition, a standard lift-off procedure using
acetone was followed, leading to only the niobium bridge
structure left on the wafer. A square loop and circular loop

with a hole in each of them were milled with a FEI Nova 600
FIB machine in the middle part of the bridge. A gallium
source was used for producing the ion beam. The accelerated
voltage was 30 kV and the beam current was fixed at 28 pA.
Under this condition, the approximate spot size of the ion
beam was 20 nm. The grooves carved by FIB are more than
150 nm wide to avoid any effects coming from surrounding
superconducting material. We used the combination of
E-beam patterning and FIB milling instead of direct E-beam
patterning of the structures to avoid E-beam resist contami-
nations which degrade the quality of the Nb nanostructures.
More details on the sample fabrication can be found in Ref.
24.

Transport measurements were carried out in a physics
property measurement system �PPMS� �from Quantum De-
sign� by using a standard four-probe dc setup. The magnetic
field is always applied perpendicular to the system. By hori-
zontally rotating the sample, the angle between the surface of
the sample and the magnetic field can be precisely con-
trolled. The range of the rotation is from −10° to 370° with
resolution �0.053°. The Tc�H� phase boundary is deter-
mined from a set of resistance vs temperature R�T� curves
measured at various magnetic fields using a certain resistance
criterion Rc.

III. RESISTANCE TRANSITIONS

Figure 2 shows the resistance versus temperature R�T�
curves for circular �circular symbols� and square �square
symbols� loops at zero magnetic field. The driving current is
10 	A. It is seen from this figure that the resistance of both
samples shows several transition stages. For the circular
loop, the resistance drops sharper at high temperatures, fol-
lowed by slow decrease of the resistance as temperature de-
creases. This can be understood from the width dependence
of the critical temperature of the sample.24 As we see from
the SEM image of the sample �Fig. 1�a��, the width of the
circular loop is larger than the width of the contacts. There-
fore, superconductivity first nucleates at the loop itself �first
drop of the resistance� and later the contacts become super-
conducting. In the case of the square loop �square symbols in

(b)(a)

FIG. 1. SEM images of �a� a circular loop �with outer radius
ro=235 nm, inner radius ri=55 nm, and current contact width
165 nm� and �b� a square loop �with size l=370 nm, hole size
a=130 nm, and current contact width 200 nm�. The thickness of
both samples is t=100 nm.

FIG. 2. The resistance �normalized to the normal-state resis-
tance� R /Rn as a function of temperature T for the circular �circular
symbols� and square �square symbols� samples at zero magnetic
field. The resistance criteria, which was used to construct the Tc�H�
phase diagrams for the loops, are indicated by horizontal gray lines
�see text for discussions�.
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Fig. 2�, the R�T� curve is characterized by a slowly decreas-
ing resistance at high temperatures arising from the nucle-
ation of superconductivity in the contacts, followed by a
sharper drop of the resistance, which corresponds to the tran-
sition of the loop into superconducting state. That is, since
the loop width to contact size ratio is different in two
samples which results in multistage transitions, therefore,
different criteria should be used to define the critical tem-
perature of the loops.

The difference in the behavior of R�T� curves in the above
samples can also be explained by the difference in the trans-
port current density across the sample. In what follows, we
perform numerical simulations within the time-dependent
Ginzburg-Landau �TDGL� theory to study the transport
properties of superconducting loops. We consider a square
superconductor �size l=370 nm, thickness t=100 nm� con-
taining a square hole in the middle �size a=130 nm�. The

magnet field is applied perpendicular to the sample and the
electric current is applied through the current contacts
�length ln=370 nm and width d� �see the inset of Fig. 3�a��.
For this system, we solved the TDGL equation25

u
�1 + 
2���2

� �

�t
+ i� +


2

2

� ���2

�t
	�

= ��− iA�2� + �1 − T − ���2�� �1�

coupled with the equation for the electrostatic potential

�=div�I�����−iA����. We assume a superconductor with
a good thermal contact with the substrate so that we do not
have to couple the TDGL equations with the heat equation.
Here, distances are scaled to coherence length �, time is in
units of �GL=�� /8kBTu, the electrostatic potential � is given
in �0=� /2e�GL, and vector potential A is scaled by Hc2�.
The parameter 
=2�E�0 /� characterizes the chosen super-
conducting material �with �E being the inelastic electron-
collision time�. In the present simulations, we take
��0�=10 nm and ��0�=200 nm �typical values for thin Nb
films26�. The parameter u is equal to 5.79 in accordance with
Ref. 25 and we used 
=10, which is typical for Nb samples
in the range of applicability of the TDGL theory due to small
�E. We limit ourselves to the case when the effect of the
self-induced magnetic field is negligible. Neumann boundary
conditions are taken at all sample boundaries, except at the
end of the leads where we use �=0 and �� �n=−j conditions.

It was shown in Ref. 27 that the presence of voltage and
current leads has an influence on the results of transport mea-
surements in mesoscopic superconductors and depending on
the size and shape of the contacts may lead to a resistance
anomaly close to Tc. Numerical simulations within the
TDGL theory also show the effect of the current contacts on
the critical parameters of the sample.28 To see the effect of
current contacts on the properties of our square loop sample,
we plotted in Fig. 3�a� time-averaged voltage of the sample
as a function of temperature for two different values of the
contact width d. For d=100 nm �solid curves�, which is
smaller than the width of the loop w= �l−a� /2=120 nm,
when starting from the normal state and decreasing the tem-
perature, the loop first becomes superconducting �1� fol-
lowed by the nucleation of superconductivity at the contacts
�2�. The latter is due to the larger current density at the con-
tact leads. Both of these transitions bring a finite jump in the
output voltage �see thick solid curve in Fig. 3�a��, i.e., a
similar multistage transition is seen in the experimental V�T�
curve �see Fig. 2�. The same behavior in V�T� is found for
nonzero magnetic field �3,4� with the only difference that the
transition points shift to lower temperatures �thin solid
curve�. Note that the finite voltage at lower temperatures is
due to superconducting/normal boundaries at the ends of the
contact leads. In the case of larger contact width �larger than
the width of the loop� superconductivity first nucleates at the
contacts �5� with decreasing temperature from Tc0. The loop
itself is in the normal state via the appearance of phase slip
lines �5�.28 With further decreasing the temperature, the
whole sample becomes superconducting �6�. At nonzero
magnetic fields, the phase slip lines convert themselves into
a flow of �kinematic� vortices �7� �Ref. 29� and vortices can

d

l
l

n

ta

FIG. 3. �Color online� Theoretically calculated time-averaged
voltage V as a function of temperature T for the sample illustrated
in the inset of �a�. The size of the superconducting loop is
l=370 nm, thickness is t=100 nm, the hole size is a=130 nm, the
contact length is ln=370 nm, and the widths of the contact are
d=100 nm �solid curves� and d=300 nm �dashed curves�. The re-
sults are obtained for the driving current 20 	A and the applied
magnetic fields H=0 �thick curves� and H=200 G �thin curves�.
The contour plots �1–8� show the Cooper-pair density at tempera-
tures indicated in �a� for H=0 �1,2,5,6� and H=200 G �3,4,7,8�.
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be trapped inside the hole at small temperatures �8�. The
V�T� curve �dashed curves in Fig. 3�a�� also shows multi-
stage transitions as in the case of the smaller contact width
�solid curves� with the difference that the temperature range
between the transitions becomes smaller. Thus, multistage
transitions in the experimentally obtained R�T� curves are
due to the nucleation of superconductivity in different parts
of the sample. Therefore, the constructed superconducting/
normal phase boundary strongly depends on chosen resis-
tance criterion.

IV. Tc(H) PHASE DIAGRAM

As shown in the insets of the figure, multistage transition
is still preserved in the R�T� curves in the presence of the
magnetic field, which is due to the contacts made from the
same material as the sample itself. Therefore, the Tc�H�
phase diagram will also depend on the transition criterion.
Figure 4 shows the experimental Tc�H� phase boundary of
the samples constructed using three different criteria of
superconducting-normal transition resistance Rn. As demon-
strated in Fig. 4�a�, for the case of the circular loop, although

all three criteria give the same parabolic background �typical
for thin stripes in perpendicular field�, periodic oscillations
are obtained only when we use 75% Rn criterion �solid
circles�. However, in the case of the square sample �Fig.
4�b��, the parabolic background, superimposed on top of a
periodic oscillation, is obtained by 10% Rn criterion �open
squares�. As mentioned in the preceding section, in order to
observe the superconducting/normal boundary of the loop
�instead of the leads�, we need to use a different resistance
criterion for loops with different contact sizes. Therefore, the
usual 50% Rn criterion cannot be applied to our measured
systems. Fitting the linear part of the phase diagrams, we
obtain the coherence lengths of ��0�=9.42 nm and
��0�=10.86 nm for the circular and square samples, respec-
tively, which are typical for Nb thin films.26

Figure 5 shows the H-T phase diagrams �in normalized
temperature� of the circular and square samples determined
at 75% and 10% of the normal-state resistance, Rn, respec-
tively. As we mentioned above, the phase diagrams of both
samples show clear oscillations with period �350 G super-
imposed on top of a parabolic background. However, the
amplitude of the oscillations vanishes faster in the circular
loop �solid circles� compared to square loop �open squares�:
only first two peaks are clearly seen in the case of circular
loop, while for the square sample, fourth peak is still visible.
Second, the transition from parabolic to �quasi-�linear regime
takes place at higher temperatures for the circular sample.

Since the width w and the thickness t of the loops become
comparable to ��T� close to Tc0, the parabolic background of
the H-T curve in the perpendicular field should coincide with
the one obtained in the parallel field by multiplying the latter
with a scaling factor t /w �Refs. 24 and 30�. Solid and dashed
curves in Fig. 5 show the scaled H-T curves of the circular
and square loops, respectively, in parallel magnetic field. The
scaling factors are 0.54 �for the circular loop� and 0.56 �for
the square sample�. The scaling factor for the circular loop is

FIG. 4. �Color online� Tc�H� phase diagrams of the �a� circular
and �b� square loops obtained with different transition criteria: 75%
Rn, 50% Rn, and 10% Rn. Insets show the resistive transitions R�T�
in different applied fields. The driving current in both cases is
10 	A.

FIG. 5. �Color online� H-T phase diagrams of the circular
�circles� and the square �squares� loops. Solid �dashed� curve is the
result obtained in parallel magnetic field for the circular �square�
loop, scaled with a scaling factor 0.54 �0.56�. The phase boundary is
determined at 75% and 10% of the normal-state resistance, Rn, for
circular and square samples, respectively.
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very close to t / �Ro−Ri�=0.556, whereas in the case
of the square sample, the scaling factor is smaller than
2t / �l−a�=0.83. The discrepancy in the latter case is due to
the larger contact leads.

As we have mentioned in Sec. I, in circular loops with
finite width, the magnetic flux through the hole is not quan-
tized in multiples of �0, rather it is quantized over the area
with effective radius ref f. From the period of oscillations

H
350 G, we find an effective radius ref f 
140 nm for
the circular sample, which is very close to the arithmetic
mean of the outer ro and inner ri radii. For the square loop,
the side length of the effective area, lef f, over which the flux
is quantized in units of �0 equals to lef f 
247 nm. This
value is also very close to the arithmetic mean of the size of
the sample and the hole �l+a� /2=250 nm. Another formula
for lef f is given in Ref. 20, assuming uniform nucleation, as
lef f =��l2−a2� / �2 ln�l /a��=239.51 nm. This effective area
gives us the field H1=360.85 G, which is slightly larger than

the experimentally obtained period of the oscillations in the
H-T phase diagram.

To find out whether the difference in the H-T phase dia-
grams of the two considered samples is due to the sample
geometry or because of the contacts, we conducted numeri-
cal simulations within the GL theory. For the given samples,
we solved two coupled GL equations, which can be written
in dimensionless units in the following form:

��

�t
= �− i�� − A� �2� − ��1 − ���2� , �2�

− 
A� =
t

�2� 1

2i
����� � − ��� ��� − ���2A�� , �3�

where t is the sample thickness and �=��T� /��T� is the GL
parameter. The same dimensionless units are used as in Eq.
�1�. We followed the approach of Ref. 1 to solve Eqs. �2� and
�3� self-consistently. Superconducting-vacuum boundary
condition �−i�� −A� �� �n=0 is used at the inner and outer
boundaries and the temperature is included in the calcula-
tions through the temperature dependence of the coherence
length ��T�=��0� /�1−T /Tc0 and the penetration depth
��T�=��0� /�1−T /Tc0.

Figure 6�a� shows the calculated H-T phase diagrams for
the circular �solid curves� and square �dashed curves� loops.
Note that theoretically, we do not calculate the resistance but
rather determine for given temperature the magnetic field at
which the superconducting state is completely disappeared.
Possible difference between theory and experiment is also
due to the difference in the criterion to determine the Tc-H
curves. Moreover, the presence of current �voltage� contacts,
which are not taken into account in the present calculations,
also may lead to the discrepancy between the theory and the
experiment.27

The square sample has the same dimensions as the square
loop in the experiment �see Fig. 1�b�� and the circular sample
has the same superconducting area as the square loop �i.e.,
ro= l /��, ri=a /���. As we see from this figure, the H-T
curves of both samples overlap when they are in the Meiss-
ner state �L=0 state�, i.e., the sample shape does not affect
the phase boundary in the Meissner state, as was also shown
in preceding works.5,9 For the L=1 state, a difference is
found only far away from the superconducting/normal tran-
sition: the penetration of the first vortex in the circular
sample occurs at lower magnetic field values and the expul-
sion takes place at larger magnetic fields for a fixed tempera-
ture. For the L=2 state, a significant increase of the vortex
stability is found for the square sample compared to the cir-
cular loop. The difference in the H-T boundary of the two
samples becomes more pronounced for the vortex states with
larger vorticity L. However, this enhancement of the critical
parameters is not due to the stability of different vortex states
favored by the geometry of the sample as was reported in
preceding works5,9 because for the considered temperature
range, all vortices are located inside the hole. Figures
6�b�–6�g� show the spatial distribution of the Cooper-pair
density, the phase of the superconducting order parameter,
and local magnetic field distribution in both samples for the

h
max

h
min

2�

FIG. 6. �Color online� �a� H-T phase diagrams of the circular
�solid curves� and square �dashed curves� loops. The size of the
square sample is l=370 nm, the size of the hole is a=130 nm, and
the thickness is t=100 nm. The circular sample has the same su-
perconducting area as the square sample, i.e., ro= l /��, ri=a /��,
and t=100 nm. Contour plots of the ��b� and �e�� Cooper-pair den-
sity, ��c� and �f�� phase of the order parameter, and ��d� and �g�� the
magnetic field distribution for the ��b�–�d�� circular and ��e�–�g��
square loops at temperature T=0.98Tc0 and in magnetic fields ��b�–
�d�� H=1144 G and ��e�–�g�� H=1205 G.
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L=4 state near the superconducting/normal transition point.
Since all the flux goes through the hole, the superconducting
order parameter is uniformly suppressed in the circular loop
�Fig. 6�b�� like in the case of a giant vortex in a supercon-
ducting disk.2 However, in the square loop, larger Cooper-
pair density is preserved at the corners of the sample �Fig.
6�e�� as was shown in previous studies.5,22,23 Therefore, we
conclude that the increase of the H-T phase boundary in the
square loop is due to the enhancement of superconductivity
at the sharp corners of the sample. The smaller amplitude of
the experimental Tc�H� oscillations in circular loop as com-
pared to the square one can also be explained by the latter
effect.

V. CONCLUSIONS

In conclusion, using transport measurements, we studied
the effect of sample geometry and current contacts on the
nucleation of superconductivity in mesoscopic circular and
square loops. The R�T� curves show multistage transitions
which correspond to the nucleation of superconductivity at
the contacts and/or at the loop itself. For both samples, the

Tc�H� phase boundary shows a parabolic background with
periodic oscillations superimposed on top of it. In a circular
loop, the amplitude of the oscillations is weaker and the tran-
sition to the linear T�H� regime occurs at higher temperature.
Numerical simulations within the GL theory show that the
difference in the H-T phase boundary in these two samples is
due to the enhanced superconductivity at the corners of the
superconducting square loop.
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