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The electron states of a finite-width graphene sheet in the presence of an electrostatic confining potential and
a perpendicular magnetic field are investigated. The confining potential shifts the Landau levels inside the well
and creates current-carrying states at or close to the interface with the potential barriers in addition to the edge
states caused by the finite width of the sheet. Detailed energy spectra are given as a function of the quantum
wire parameters. The dependence of the density of states on the confinement potential is evaluated for finite
and zero magnetic fields.
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I. INTRODUCTION

The recent production of single layers of stable carbon
crystals1–3 has attracted much interest in their fundamental
properties and their potential technological applications. The
unusual properties of carriers in graphene are a consequence
of the gapless and approximately linear electron dispersion at
the vicinity of the Fermi level at two inequivalent points of
the Brillouin zone. In the low-energy limit, the quasiparticles
in these systems are described in terms of massless chiral
relativistic fermions governed by the Dirac equation. In par-
ticular, graphene has been shown to display an unusual quan-
tum Hall effect,4–8 in which the quantum Hall plateaus are
found in half-integer multiples of 4. This results from the
fourfold degeneracy of the Landau levels �LLs� along with
the existence of a nonzero Berry phase. The edge states in
graphene in a perpendicular magnetic field have been previ-
ously investigated theoretically for thin graphene strips,9,10

where they were also found to display unusual properties,
such as counterpropagating spin-polarized modes.

Another important result concerning single graphene lay-
ers is the possibility of controlling the electron density and
Fermi level by a gate voltage. This allows the creation of
graphene-based quantum structures such as potential barriers
and quantum wires �QWs�. Theoretical studies have shown
that the relativistic behavior of quasiparticles in graphene
allows the observation of effects such as the Klein paradox,
which is the perfect transmission of relativistic particles
across potential barriers, as well as a direction-dependent
tunneling through barriers.11–15 In addition, recent experi-
mental work has demonstrated electronic confinement in pat-
terned graphene structures created by standard lithography
methods.16

The fact that the interaction of charge carriers with elec-
trostatic potential barriers in graphene is quite distinct from
that in nonrelativistic systems allows one to expect that the
presence of barrier interfaces may create propagating states
which differ significantly from the usual edge states. In this
paper, we investigate such states by considering the interplay
of an electrostatic potential barrier and an external magnetic
field perpendicular to a graphene QW. We thus demonstrate
the existence of propagating interface states and show that

they display properties that contrast markedly with the ordi-
nary edge states.

This paper is organized as follows. In Sec. II, we present
the model and formalism and in Sec. III numerical results.
We conclude with remarks in Sec. IV.

II. MODEL AND FORMALISM

The crystal structure of undoped, defect-free graphene
layers is that of a honeycomb lattice of covalent-bond carbon
atoms. To each carbon atom corresponds a valence electron,
and the structure can be described as composed of two sub-
lattices, labeled A and B. The low-energy excitations of the
system at the vicinity of the K point and in the presence of
both an electrostatic potential U and a uniform magnetic field
B perpendicular to the plane of the graphene sheet are de-
scribed, in the continuum approximation, by the two-
dimensional �2D� Dirac equation

�vF��� · p̂ − eA� + mvF
2�z�� = �E − U�� , �1�

where the pseudospin matrix �� has components given by
Pauli’s matrices, and p̂= �px , py� is the momentum operator.
The “speed of light” of the system is vF, the Fermi velocity
�vF�1�106 m/s�, and A is the vector potential. The eigen-
states of Eq. �1� are represented by two-component spinors
�= ��A,�B�T, where �A and �B are the envelope functions
associated with the probability amplitudes at the respective
sublattice sites of the graphene sheet. The term �mvF

2 intro-
duces an energy gap, which may represent, e.g., the effect of
spin-orbit coupling.

We now consider a narrow graphene layer, of width W, in
the presence of a one-dimensional �1D� potential U=U�x�
and a perpendicular magnetic field B. This allows us to write
the solutions for the spinor components in the form
�A�x ,y�=�A�x�eikyy and �B�x ,y�= i�B�x�eikyy because of
translational invariance along the y direction and the particu-
lar choice of Landau’s gauge A= �0,Bx ,0�. The resulting
equations for �A�x� and �B�x� are

d�A

dx
− �ky − eBx��A = − �E − U�x� + mv f

2��B,
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d�B

dx
+ �ky − eBx��B = �E − U�x� − mv f

2��A. �2�

These equations can be decoupled and, by setting �=	1/2�x
−ky /	�, where 	=�B

−2=eB /
 is the inverse magnetic length
squared, the result is

d2�A/d�2 + ��� + 1� − �2��A −
u�

�� − u + 
�
�d�A/d� + ��A�

= 0, �3�

d2�B/d�2 + ��� − 1� − �2��B +
u�

�� − u − 
�
�d�B/d� − ��B�

= 0, �4�

where �= ���−u�2−
2� /	, u= �
vF�−1U, �= �
vF�−1E, 

=mvF /
, and the prime denotes derivative with respect to �.
For a constant potential U=U0, Eqs. �2� and �3� have well-
known solutions in terms of Hermite polynomials and the
spectrum is

E = ± 
vF
�2n	 + 
2 + U0, �5�

where n is an integer. This contrasts significantly with the
nonrelativistic spectrum E=
�c�n+1/2�+U0.

III. RESULTS

A. Dispersion relation and density of states

First, we consider the effect of a steep potential well U�x�,
with a characteristic width L in a graphene strip of width
W�L. In this case, the derivatives of the potential are
strongly localized functions that have nonzero values only at
the vicinity of the barrier interfaces. The solutions then de-
pend on the width L and the strength of the magnetic field B
through the ratio �B /L. Let us consider initially the case
2�B /L�0.5, which corresponds to classical orbits that fit
inside the QW. We can assume solutions of the form �C

= fC���e−�2/2, C=A,B. For a constant potential, fC are the
well-known Hermite polynomials. Thus, for sufficiently
strong B and small ky, the spinor functions quickly decay
with � and the solutions are, to a good approximation, local-
ized inside the well. Therefore, the energy spectrum is dis-
persionless, and for small n it is the same as that of the LL
for U=0. For larger values of ky, the center of the solutions
�B

2ky is shifted toward the barrier regions. For the lowest LL
�n=0�, one can estimate the limits of the central dispersion-
less region by setting exp�−�2 /2��0.1, or ��2, since in this
case the amplitude of the wave function inside the barriers is
negligible. This gives −1+4�B /L�2ky�B

2 /L�1−4�B /L. For
nonzero values of n, the central dispersionless region of the
spectrum is expected to be narrower, since the spinor func-
tions are less localized and can have a larger magnitude
within the barrier regions.

For sufficiently large values of the momentum along the y
direction, a similar argument shows that the energy levels
may be accurately approximated by the LL shifted by U0 in
the regions 2ky�B

2 /L�−1−4�B /L and 2ky�B
2 /L�1+4�B /L.

For intermediate values of ky, one expects dispersive solu-
tions. These solutions can be described as interface states in
the sense that they are localized electron states in the x di-
rection that propagate along the interfaces with the potential
barriers, in analogy with the edge states of a 2D electron gas
in a magnetic field, but with the fundamental difference that
in the present case the spinor functions are non-negligible
both inside the QW and in the barriers. These are current-
carrying states and, for sufficiently smooth potentials, should
not depend on the microscopic structure of the graphene
sheet. For even larger values of ky, the spinor functions may
be shifted toward the edges of the sample and give rise to
edge states, which have been shown to depend on the shape
of the graphene edges.17

We have considered two specific types of potential wells,
as shown in Fig. 1. The solid line illustrates the step potential
given by

U�x� =
U0

2
�tanh��− x − L/2�/�� + tanh��x − L/2�/�� + 2� ,

�6�

where � denotes the thickness of the interface. The dashed
line in Fig. 1 refers to a parabolic potential

U�x� = 	U0�2x/L�2, 
x
 � L/2

U0, 
x
 � L/2.
� �7�

Figure 2 shows numerical results for the energy spectrum of
a QW with the potential given by Eq. �6�. The results are for
L=200 nm and an interface width of 10 nm, which is much
larger than the lattice parameter of graphene a�0.14 nm,
B=2 T, and U0=50 meV. In this case, we have 2�B /L
�0.18. The vertical dashed lines delimit the range 1
−4�B /L� 
2ky�B

2 /L 
 �1+4�B /L. In contrast with conven-
tional edge states, the barrier interface does not cause a split-
ting of the dispersion branches. This is a consequence of the
difference in boundary conditions at the potential interfaces
and the edges of the graphene sheet; i.e., at the potential step,

FIG. 1. Schematic depiction of the different potential well pro-
files discussed in the text: tangent hyperbolic �solid line� and para-
bolic �dashed line�.
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the wave function is finite and continuous and the associated
probability density can be significant for 
x
�L /2, whereas
at the edges of the sample, as in the case of a graphene sheet
with an armchair termination, the wave function was as-
sumed to vanish. Alternatively, one could use boundary con-
ditions appropriate to a graphene sheet with zigzag edges.
This is equivalent to setting the spinor function to zero at a
single sublattice. A detailed comparison between edge states
in each case has been done in Ref. 17.

For comparison, Fig. 3 shows the spectrum of a parabolic
confining potential given by Eq. �7�. This potential is non-
zero at every point, except at x=0, which is the reason why
the states are dispersive for all values of ky satisfying

2ky�B

2 /L
�1. This result becomes similar to that of the tan-
gent hyperbolic potential for large �.

For weaker fields, such that 2�B /L�0.5, the former pic-
ture breaks down and the magnetic field acts as a perturba-
tion to the zero-field case.12 For B=0, the electron states
inside the QW that propagate perpendicularly to the barrier
interfaces are transmitted without reflection �Klein

tunneling�.11–14 This counterintuitive behavior results from
the absence of a gap in the spectrum and from the chiral
nature of the quasiparticles in graphene. However, recently it
has been demonstrated that nonzero values of momentum
along y allow the existence of confined electron states in a
QW.12 For large values of ky, the dispersion branches are
given approximately by

E = 
vF����/L�2 + ky
2�1/2, �8�

where � is an integer. As a finite magnetic field is introduced,
one can expect a modification of these states. In particular,
one expects the existence of localized states at ky =0. This
situation is observed in Fig. 4, where the energy spectrum is
plotted as a function of wave vector, for the potential given
by Eq. �6�, with U0=100 meV, L=100 nm, W=800 nm, and
B=0.6 T. This case corresponds to 2�B /L�0.66. The figure
shows the existence of dispersive states for a wide range of
wave vectors, as well as dispersionless branches that corre-
spond to the shifted LLs at the barriers.

For small energies and wave vectors, the results for B
=0 show the existence of hole states in the barriers that either
propagate �Klein paradox� or tunnel through the well. For a
finite field, in a semiclassical description, the trajectories of
the holes would be deflected by the magnetic field and would
be confined into closed orbits that cross the QW. A similar
behavior is thus obtained for energies close to zero, as shown
in Fig. 5. The figure shows the wave functions �left, panels
�a� and �c�� and the respective probability densities �right,
panels �b� and �d�� for two states with ky =0 in a QW with the
same parameters as in Fig. 4 and two energies: E
=2.03 meV �upper panels� and E=0 �lower panels�. The
higher-energy state describes holes that cross the well region
via electron-hole conversion and thus show a maximum in
the probability density inside the well, whereas the result for
zero energy corresponds to holes that tunnel across the well
region and are confined by the magnetic field. For higher-
energy eigenstates and ky =0, the wave functions show an
oscillatory behavior inside the potential well and quickly de-
cay in the barriers. Therefore, these states possess a domi-
nant electronlike character.

FIG. 2. �Color online� Energy spectrum of a graphene QW with
armchair edges for B=2 T and in the presence of a potential given
by Eq. �6�, with U0=50 meV and L=200 nm.

FIG. 3. The same as Fig. 2 but for a parabolic potential given by
Eq. �7�, with U0=100 meV, L=200 nm, and B=2 T.

FIG. 4. The same as Fig. 2 but now with U0=100 meV, L
=100 nm, and a smaller magnetic field B=0.6 T.
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For finite values of ky, the spectrum displays dispersive
branches with either positive or negative slopes. The wave
functions in these cases have non-negligible amplitudes in-
side the potential well and in the barriers, and thus are asso-
ciated with propagating electrons and holes. On the other
hand, the states associated with flat energy branches have
finite amplitudes inside the barriers. The propagating states
are found to interact with the dispersionless states, with the
appearance of anticrossings.

The right part of Fig. 6 shows plots of �A for electron
states at the proximity of a specific anticrossing for the situ-
ation corresponding to Fig. 4 that is shown enlarged in the
left part of the figure. The results for points �a� and �b�
�ky2�B

2 /L=2.19� indicate that close to the anticrossings, the
electron states are a superposition of oscillatory states �inside

the QW� and nonpropagating states �at the barriers�, whereas
away from the anticrossings �ky2�B

2 /L=2.59�, the wave func-
tions match the results for either confined states �c� in the
QW or LLs �d� in the barriers. The vertical lines �dotted� in
these figures delimit the QW region.

In the calculation of several physical quantities, the den-
sity of states �DOS� is needed, which is defined as

��E� =
1

S
�
kx,ky

�
n

�„E − En�ky�… , �9�

where S=WL is the total area of the sample and n labels the
different energy branches. The summation over kx is replaced
by an integral, and we obtain

��E� =
WE0

�2��B�2�
n



−�

� �/�

�E − En�ky��2 + �2dky , �10�

where we introduced broadening of the energy levels by re-
placing the � functions with Lorentzians of constant width �;
E0=�2e
B denotes the characteristic energy scale of the sys-
tem.

Figure 7 shows numerical results for the DOS for the
hyperbolic tangent QW, with U0=50 meV, L=200 nm and
for different values of the external magnetic field: B=0.5
�dashed�, 1.0 �dotted�, 1.5 �dash-dotted�, and 2.0 T �solid�. In
all cases, we used � /E0=28. The figure shows that the pres-
ence of the barriers shifts the DOS peaks by U0 from the zero
potential results. In contrast with a conventional 2D electron
gas, all DOS results for graphene show a pronounced peak at
E=50 meV, whereas the remaining peaks are shifted accord-
ing to the different values of B. This is a consequence of the
fact that in graphene, the energy of the LL with index n=0 is
independent of B. In addition, for each value of B extra
peaks result from the LL inside the QW. Due to the square-

FIG. 5. �Color online� Wave functions �left
panels: �A, solid; �B, dashed-dotted� and the re-
spective probability densities �right panels� for
two low-energy states of Fig. 4. Upper panels,
E=2.03 meV; lower panels, E=0 meV.

FIG. 6. Left: A zoom of the electron dispersion branches of Fig.
4 at the vicinity of an anticrossing; the parameters are given in the
text. Right, �a�–�d�: Spinor component �A for some particular states
specified in the text.
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root dependence of the spectrum �see Eq. �5��, the distance
between the peaks decreases as the energy increases. There-
fore, the influence of the LL in the QW becomes more evi-
dent for energies closer to zero. The inset contrasts the DOS
of a nonrelativistic electron gas �green� with the DOS of
electrons in graphene �solid�, for U0=0.

The dependence of the DOS on the barrier height U0 is
shown in Fig. 8, where L=200 nm and B=2 T, for different
values of U0, namely, U0=0 �solid line�, U0=25 meV

�dashed�, U0=50 meV �dotted�, and U0=100 meV �dotted-
dashed�. As the potential increases, there is a clear shift of
the peaks from the values given by Eq. �5� with U0=0, with
the n=0 peak now shifted to the value of U0. Also evident is
the presence of states inside the QW, indicated by the exis-
tence of additional peaks, with positions that are independent
of the potential step. These results indicate that due to the
specific nature of the LL spectrum in graphene, one can in-
crease the DOS at a particular energy by a suitable change of
U0 so that one LL outside the QW is matched with another
LL inside the well. This condition �for 
=0� is expressed as

U0 = 
vF��2n�	 − �2n	� , �11�

where n and n� are integers. This condition is shown in Fig.
8 in the result for U0=25 meV, for the peak at E=84 meV,
with n�=4 and n=2. Figure 9 shows the DOS as a function
of the external magnetic field for E=8 meV, for U0=0 �solid
line� and U0=50 meV �dashed line�. The shift of the LL
brought about by the potential barriers causes the appearance
of several DOS peaks that are absent from the uniform sys-
tem.

B. Energy spectrum versus QW parameters

Figure 10 shows the spectrum, as a function of the mag-
netic field, for two values of the wave vector, �a� ky =0 and
�b� ky =0.1 nm−1, for the QW potential of Eq. �6� with U0
=100 meV and L=100 nm. In both cases, the results show
that the presence of the potential barriers introduces a sig-
nificant modification of the energy eigenstates, in compari-
son with the results for U0=0 �in which case the eigenvalues
are proportional to the square root of the external magnetic
field�. Figure 10�b� shows the presence of the quantized con-
fined states as B tends to 0. These discrete states are initially
very weakly dependent on the external field. As the field
increases, these states interact with the nonpropagating
states, as evidenced by the presence of anticrossings. At

FIG. 7. �Color online� Density of states for a QW on graphene
with U0=50 meV and L=200 nm. B=0.5 T �dashed�, B=1.0 T
�dotted�, B=1.5 T �dashed-dotted�, and B=2.0 T �solid�. Inset:
Comparison between the DOS of a nonrelativistic electron gas
�green� and the DOS of electrons in graphene �solid� for U0=0.

FIG. 8. �Color online� Density of states for a graphene QW with
B=2 T and L=200 nm. The solid, dashed, dotted, and dashed-
dotted curves correspond, respectively, to U0=0, U0=25 meV, U0

=50 meV, and U0=100 meV. The last three curves are shifted up
by 1.25 for clarity.

FIG. 9. �Color online� Density of states as a function of the
magnetic field for E=8 meV, in the absence of a confining potential
�black solid curve� and a graphene QW with U0=50 meV �blue
dashed curve�. L=200 nm in both cases.
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small fields, the figure shows split branches, which are edge
states that arise due to the fact that the spinor amplitudes are
set to zero at the edges of the sample, whose width is W
=800 nm. This corresponds to the boundary conditions of a
graphene sheet with an armchair edge.

The left panel in Fig. 11 shows the dependence of the
energy eigenvalues on the QW width, for ky =0, B=2 T, and
U0=100 meV. The results show that the higher-energy levels
are strongly modified even for wide wells, whereas the
lower-lying states can be accurately described by Eq. �5�
with U0=0 for a relatively thin QW. The figure allows us to
distinguish two regions in the spectrum, which arise due to
the nonuniform distribution of the LLs in graphene. One re-
gion corresponds to the lower-energy states, which arise due
to the strong interaction between the low-energy states in the
well with the shifted negative-energy states in the barriers.
The degeneracy of these states is lifted for small L and the
spectrum shows an approximately linear dependence on the
QW width. In particular, the interaction with the lower-
energy states modifies the E=0 LL for L�80 nm, which is
equivalent to 2�B /L�0.45. The other region corresponds to
higher-energy states, which remain degenerate but are
strongly shifted for small L. These states are weakly depen-
dent on the well width for larger values of L, e.g., for L
�120 nm.

The dependence of the energy spectrum on the potential
barrier height U0 is shown in the right panel of Fig. 11 for
L=100 nm, B=2 T, and ky =0. As U0 increases, the figure
again shows the appearance of two sets of states: one com-
prises states that are weakly dependent on U0 and the other,
states that show a significant dependence on U0. This is
caused by the hole states in the barriers, whose energies are
shifted by the potential. As U0 increases, the LLs in the well
region interact with the set of shifted LLs in the barriers,
causing the appearance of additional electron states at ener-
gies close to zero.

IV. SUMMARY

In this work, we showed the effect of a confining 1D
electrostatic potential on the energy spectrum of electrons in

a graphene QW in the presence of a perpendicular magnetic
field. We found a shift of the Landau levels caused by this
potential, which may be observable by its effect on the quan-
tum Hall steps in the presence of gate voltages. For steep
potential barriers, there is a clear distinction between a low-
magnetic-field regime, characterized by the existence of dis-
persive confined states with small wave vectors inside the
QW as well as nonpropagating states in the barriers, and a
higher-magnetic-field regime, in which there are nonpropa-
gating states inside the well and outside the QW together
with propagating states at the interfaces of the potential bar-
riers. These interface states may cross the Fermi level and,
together with the conventional edge states that arise due to
the finite size of the sample, can contribute to the conductiv-
ity of the system. The modification of the LL spectrum in the
QW is also evident in the shift of the peaks in the DOS in
comparison with the results for zero confining potential,
along with the appearance of additional peaks caused by the
LLs inside the QW.

Experimental verification of these results may be accom-
plished by the fabrication of single layers of graphene on
split-gate electrodes.18–23 Previous studies have shown the
feasibility of the production of mesoscopic devices of
micron-size graphite disks �with 60–100 graphene layers� by
means of focused-ion-beam lithography.24 A similar ap-
proach may be suitable for the experimental investigation of
magnetic interface states on a single layer of graphene.

ACKNOWLEDGMENTS

This work was supported by the Brazilian Council for
Research �CNPq�, the Flemish Science Foundation �FWO-
Vl�, the Belgian Science Policy �IUAP�, and the Canadian
NSERC Grant No. OGP0121756.

FIG. 11. Energy spectrum of a graphene QW for B=2 T and
ky =0. The spectrum is plotted vs the width L in the left panel, for
U0=100 meV, and vs the potential height U0 in the right panel, for
L=100 nm.

FIG. 10. Energy spectrum of a graphene QW with armchair
edges as a function of the magnetic field B, with U0=100 meV, L
=100 nm, and �a� ky =0 and �b� ky =0.1 nm−1.
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