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Symmetric and asymmetric states in a mesoscopic superconducting wire in the voltage-driven
regime
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The response of a mesoscopic homogeneous superconducting wire, connected with bulk normal metal
reservoirs, is investigated theoretically as a function of the applied voltage. We found both symmetric and
asymmetric states which are characterized by a stationary symmetric and asymmetric distribution of the order
parameter with respect to the center of the wire. For wires with length L of about the relaxation length of the
nonequilibrium quasiparticle distribution function Lg, the asymmetric superconducting state survives up to
higher values of the voltage than the symmetric one and may exist both in the voltage- and the current-driven

regimes.
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In the present paper, we study the voltage response of a
dirty superconducting wire (whose mean free path € is
smaller than the coherence length at zero temperature &,) that
is connected to large normal metal reservoirs with no tunnel
barriers. Recently, it was theoretically found that the resis-
tance of such a system is a highly nonlinear function of the
applied voltage.! The reason is that the applied voltage
strongly modifies the quasiparticle distribution function f(E),
especially its odd part f;(E)=f(—E)—f(E), which leads to a
suppression of the order parameter.! The larger the applied
voltage the more pronounced the suppression of the order
parameter and hence the larger the resistance of the wire.
Actually, it is this mechanism that leads to the appearance of
negative differential resistance in the current-voltage charac-
teristics of a superconducting wire in the voltage-driven re-
gime (see Fig. 2 in Ref. 1).

The authors of Ref. 1 considered the case where f(E,x) is
symmetrical with respect to the center of the wire (it thus
results in a symmetrical suppression of the order parameter
from both ends of the wire), but in principle this restriction is
not necessarily valid and f(E,x) may also be asymmetric, as
we will find in this paper.

A simple example of such a situation is a mesoscopic
normal metal wire, half of which has a resistance larger than
the other half. By applying a voltage to such a sample, the
voltage drop in the high resistance part will be larger than in
the low resistance part (we assume that R;,;,> R,;,,) in order
to satisfy the continuity of the current along the wire, i.e.,
I(x)=const. Thus, we have a larger voltage on the left side
than on the right one, i.e., |V(=L/2)|>|V(L/2)|, and the qua-
siparticle distribution function will be asymmetric.

In a superconducting homogeneous wire, such a situation
can be realized if the superconductivity near one of the ends
of the wire becomes more strongly suppressed than at the
other end at some moment in time [due to fluctuations or due
to the special geometry of the sample (see Fig. 3 and discus-
sion at the end of this paper)]. The resistance of that end will
be larger than the other one and an asymmetrical voltage
drop appears in the wire. Because the deviation of f;(E,x)
from equilibrium is stronger at the end with higher voltage V,
a larger suppression of the order parameter should be found
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here. Thus, there is some kind of positive feedback and
therefore there exists a chance that such an asymmetric state
can be stabilized in time. The aim of our paper is to study
whether or not such a state can be a stable one.

We use a quasiclassical approach to calculate the nonequi-
librium properties of a superconducting wire in the dirty
limit and restrict ourselves to temperatures near 7. This al-
lows us to use the Usadel equation® for the normal «(E)
=cos ® and anomalous B(E)=sin ® quasiclassical Green
functions,>™

d’0 o1 5 .
— + || 2iE-— | = (V¢)* cos O [sin O + 2|Alcos @ =0.
dx Ly

(1)

In the same limit, the diffusive-type equation for the space
dependence of the transverse (even in energy) fy(E)=1
—f(E)-f(-E) and longitudinal (odd in energy) f.(E)=f(
—E)—f(E) parts of the quasiparticle distribution function
2f(E)=1-f(E)-f(E) are given by

N
VI(NT=R) V f1+2N,R, V ¢V fr— L—;(fL—fz) =0,
E

(2a)

N J
VI(NT+ND) V fr] +2N,R, V Y fy — L_21<fT_ (Pa_fz)
E

— 2N,|Alfy=0. (2b)

Here, ¢ is the phase of the order parameter A=|Ale’?, ¢ is an
electrostatic  potential, N,(E)+iR,(E)=cos O(E), N,(E)
+iR,(E)=sin O(E), and ﬁ(E):tanh(E/ZT) is the odd part of
the equilibrium Fermi-Dirac distribution function of the qua-
siparticles. The dimensionless length Lg=VD7g/&,
=\V7Ao/h defines the range over which the nonequilibrium
distribution of the quasiparticles may exist in the sample [ 7
is the finite relaxation time of the nonequilibrium quasiparti-
cle distribution function f(E) due to inelastic electron-
phonon interaction, D is the diffusion constant].

Within the same approach, we have the rather simple self-
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consistent stationary equation for the order parameter A,

d*A ,
a1_2+(1—a2|A|2+‘I'l+llP2)A=O, (3)
dx

which is analogous to the Ginzburg-Landau equation but
with the additional terms W= [gR,(f,—f))dE/|A| and W,
=[{NaofdE/|A|. Because we are interested in a stationary
solution, we removed all time-dependent terms in Eq. (2)
which are present in the original equations.’~

In Egs. (1)-(3), the order parameter A is scaled by the
zero-temperature  value of the order parameter A,
= 1.76kgT, (in weak coupling limit), distance is in units of
the zero temperature coherence length §=\AD/A, and tem-
perature is in units of the critical temperature 7,. Because of
this choice of scaling the numerical coefficients in Eq. (3) are
a;=0.69 and a,=0.33. The current is scaled in units of j,
=Ay/(&p,e) and the electrostatic potential is in units of ¢
=Ay/e (p, is the normal state resistivity and e is the electric
charge).

Through the solution of Egs. (1)—(3), the current in the
system can be found using the following equation:

j=2a,|APPV ¢+f [(NT+N3) V fr+2N>Ryf1. V ldE.
0

(4)

The first term in Eq. (4) may be identified as the supercon-
ducting current and the second one as the normal one. As-
suming that the effect of the free charges is negligible in the
superconductors, the electrostatic potential is determined by
the following expression:

<P=J NifrdE. (5)

0

We used the following boundary conditions for Egs. (1)—(3):
O(xL/2)=A(xL/2)=0

fu(=Lr2) = Hianh 2522 4 anh 52 ]

and
E+V(£L/2) E-V(xL/2)
fr(iL/2)=%[tanh > —tanh —; ]

which models the situation where there is a direct electrical
contact of the superconducting wire of length L with large
normal metal reservoirs at an applied voltage V(xL/2).

The validity of Egs. (1)—(3) is restricted to the tempera-
ture interval A(T)/kzT.<<1,5 which roughly corresponds to
the condition 0.9<T/T,.<1.

The system of Egs. (1)—(3) was numerically solved using
an iterative procedure. First, Eq. (3) was solved by the Euler
method [we add a term JA/dr in the right-hand side of Eq.
(3)] until |A| became time independent. Then, we solved Egs.
(1) and (2) from which we obtained new potentials ¥, and
W, which were then inserted in Eq. (3). This iteration pro-
cess was continued until convergence was reached. In some
voltage interval, no convergence was reached and we iden-
tify it as the absence of stationary solutions to Egs. (1)—(3).
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FIG. 1. (Color online) Current-voltage characteristics of the
symmetric (empty symbols) and asymmetric (filled symbols) states.
Solid curve shows the normal state. Dashed curves mark regions of
absence of the stationary symmetric states. The stationary asymmet-
ric state does not exist for V<V —voltage where the negative-
differential resistance appears for the symmetric state. The critical
voltages for some of the curves are indicated.

Thus, our numerical procedure automatically checks the sta-
bility of the found stationary symmetric and asymmetric
states.

Studying the symmetric states (applying symmetric
boundary conditions V(xL/2)=FV) for short é<L=<Lg
wires, we obtained qualitatively the same results, as in Ref.
1. Namely, the order parameter is influenced by a nonequi-
librium f; along the whole wire and at V~A, it starts to
decay steeply. This results in the appearance of a pronounced
part with negative differential resistance dV/dI in the IV
characteristic (see Fig. 2 in Ref. 1 and Fig. 1 for L2=2'°) for
V>V,. The resistance of the wire effectively increases with
the suppression of the order parameter and the total current
decays. No stationary solutions to Egs. (1)—(3) were found
for samples with lengths larger than approximately 10&(7) at
V~V, and temperatures not far from 7.

For long wires Ly>L> ¢, we found an S shape of the
current voltage characteristic (see Fig. 1) which we can un-
derstand as follows. At V=V, due to the suppression of |A]
near the edges by nonequilibrium f;, the order parameter
decays and the current decreases with increasing voltage.
When the region of suppression of |A| increases up to about
L, the effect of the nonequilibrium f; becomes less pro-
nounced, |A| decreases much slower with increasing voltage,
and the current starts to increase again. At some moment, it
reaches a value close to the depairing current density in the
center of the wire and the state with a nonequilibrium and a
stationary distribution of the order parameter becomes
unstable.® Phase slip centers should appear in the wire. This
is observed as the absence of a stationary solution to Egs.
(1)—(3) in some range of applied voltage (this is indicated by
the dashed lines in Fig. 1). With further increasing voltage
the superconducting region decreases (see Fig. 2 for symmet-
ric case), and we find again a stationary solution. The above
mechanism leads to an S shape for the /V characteristics for
long wires L> L3> &(T).

To find the asymmetric superconducting states in our ho-
mogeneous system, we use the asymmetric boundary condi-
tions V(xL/2)=F V+AV. The potential constant shift AV is
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FIG. 2. (Color online) Order parameter distribution for asym-
metric and symmetric states.

determined from the condition of constant current along the
wire. It increases from zero (at V="V,) to a finite value (at
Vi—critical voltage of the asymmetric state). No asymmetric
states were found for V<<V, In Fig. 1, we show typical IV
characteristics and in Fig. 2, we present the corresponding
distribution of the order parameter for symmetric and asym-
metric states for the same values of the voltage. As expected,
the order parameter is more suppressed on the side of the
wire with maximal absolute value of the voltage. For ex-
ample, if we change the sign of AV, the order parameter
distribution in Fig. 2 will be symmetrically reflected with
respect to x=0.

It is interesting to note that such an asymmetric state may
exist up to larger values of the voltage when L=L;> &, and
even for larger values of the current, than the symmetric state
(the latter property is realized for lengths L~ L for which
the IV characteristic changes slope from a negative to a posi-
tive one for the symmetric state when V>V,). Another in-
teresting property is the existence of a stationary asymmetric
state for voltages when the stationary symmetric state is ab-
sent (see Fig. 1).

The range of the existence of the stationary asymmetric
state is rather small in comparison to the symmetric state
when the length of the wire is much larger than Lg. It exists
only at voltages near V, (see Fig. 1 for small ratio Lg/L).

We did not find any stationary asymmetric states for wires
with Lz~ &T). For small values Ly<<&(T), the asymmetric
state is nearly the same as the symmetric one but shifted with
respect to the point x=0 and the IV characteristics are found
to be nearly identical for both symmetric and asymmetric
states. This is explained by the negligible effect of f; on the
value of the order parameter in this limit.

We should stress that the existence of the asymmetric
state is not connected with the finite relaxation length Lg. We
checked numerically the presence of such a state for super-
conducting wires with Lrp=%. Because our results for the
symmetric state are similar to the findings of Ref. 1, we
expect that the asymmetric state in superconducting wire
should exist at low temperatures.

Experimentally, the asymmetric state may be realized by
adding additional contacts to the superconducting wire with
control current close to the ends of the wire (see Fig. 3). It is
better to contact the wire with the reservoirs made from the
same material and to apply a strong enough magnetic field to
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FIG. 3. Proposed experimental setup to measure transitions be-
tween symmetric and asymmetric states and the current-voltage
characteristic of both states. The curves with empty and filled sym-
bols show the order parameter distribution for a wire with param-
eters as in Fig. 2 and V=0.389.

suppress the superconductivity in the reservoirs (such a pro-
cedure provides good contacts with normal reservoirs). Ap-
plying a strong enough current to only one of the current
contacts, we locally destroy superconductivity and force an
asymmetric distribution of the order parameter. After switch-
ing off the control current, the asymmetric distribution
should be stable (for a proper choice of the working point at
the IV characteristic). To return to the symmetric state, we
should apply identical control current at both current con-
tacts. We need a series of tunnel junctions along the wire to
measure locally the strength of the order parameter. Alterna-
tively, one can use superconducting probes to distinguish the
part of the superconductor which is in the normal or super-
conducting state. When in the normal state, the supercon-
ducting probe measures the electrostatic potential.

Any real sample has intrinsic inhomogeneities. In Fig. 4,
we present /V characteristic of the sample with weak inho-
mogeneities on the edges. Namely, we supposed that the
right and left ends of the wire with lengths 10, and 13§,
respectively, have a critical temperature that is locally
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FIG. 4. (Color online) Current-voltage characteristics of the ho-
mogeneous wire (solid and black squares) and wire with intrinsic
asymmetry in physical properties (gray triangles). For the inhomo-
geneous wire, we took the critical temperature at the left and right
ends of the sample with lengths 10&, and 13§, respectively, locally
smaller by 1%.
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smaller by 1% as compared to the rest of the sample. This
imposes the intrinsic asymmetry to the sample and favors the
formation of the asymmetric states when V=V,,. For the pa-
rameters used for Fig. 4, it results in larger values of the
critical voltage (in voltage-driven regime) and the critical
current (in current-driven regime) for the transition to the
normal state.

One may also impose the inhomogeneity by using the
effect of a magnetic field. If, for example, one of the ends of
the wire is wider than the other one, the magnetic field will
suppress the order parameter more strongly in the wider part.
Then, the transition from symmetric to asymmetric state may
lead to an abrupt “enhancement” of the critical current by the
applied magnetic field.

Good candidates to observe the predicted asymmetric
state are dirty aluminum and zinc with their relatively large
coherence lengths [£,(0) ~0.15 um and £,,(0)~0.25 um]
and Lg(Al)~9 um and Lg(Zn)~35 um [Lg(Al)~60 and
Li(Zn) ~140]. The strictest restriction in order to observe
these effects is that there should only be small heating of the
sample. Heating will initiate the transition of the sample to
the normal state and hide the predicted effects.

For other low-temperature superconductors (Nb, Pb, In,
and Sn), we have L;<<10 (we used data for 7z at T~ T, from
Ref. 7). It means that at 7=0.9, the coherence length is
comparable with Lg. Under these conditions, we did not find
the asymmetric state.
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To conclude, we theoretically found that for a supercon-
ducting wire connected with normal reservoirs, there may be
three stationary states at a given value of the applied voltage
difference 2V>2V,—one symmetric state and two asym-
metric states. The latter can be transferred into each other by
reflecting with respect to the center of the wire. These three
states are characterized by symmetric and asymmetric distri-
butions of the order parameter, respectively. The degeneracy
is most pronounced in the limit L= L;> ¢ because the order
parameter may vary on distances of the order Lp> ¢ due to
the long relaxation length of the odd (in energy) part of the
nonequilibrium quasiparticle distribution function and it pro-
vides the basis for the appearance of different effects. For
example, it leads to an S behavior of the IV characteristic of
the wire being in the symmetric state. In the same limit, the
stationary asymmetric state may exist even when the sym-
metric one only exists as a time-dependent one (phase slip
state) (see Fig. 1). Moreover, there exists a critical length of
the sample for which a stationary asymmetric state does exist
up to a larger value of the current than the stationary sym-
metric one (see Fig. 1 and case L;=2%).
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