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The time evolution of the magnetization of a magnetic molecular crystal is obtained in an external time-
dependent magnetic field, with sweep rates in the kT/s range. We present the “exact numerical” solution of the
time-dependent Schrödinger equation, and show that the steps in the hysteresis curve can be described as a
sequence of two-level transitions between adiabatic states. The multilevel nature of the problem causes the
transition probabilities to deviate significantly from the predictions of the Landau-Zener-Stückelberg model.
These calculations allow the introduction of an efficient approximation method that accurately reproduces the
exact results. When including phase relaxation by means of an appropriate master equation, we observe an
interplay between coherent dynamics and decoherence. This decreases the size of the magnetization steps at the
transitions, but does not modify qualitatively the physical picture obtained without relaxation.
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I. INTRODUCTION

There has been increased interest in the study of crystals
consisting of high-spin molecules such as Mn12-Ac and
Fe8O. These organic molecules, also known as molecular
nanomagnets,1 contain transition metal atoms with strongly
exchange-coupled spins, which causes the individual mol-
ecules to behave as a single large spin. Experiments on the
magnetization dynamics of these molecular crystals have
shown the presence of a series of steps in the hysteresis
curve at sufficiently low temperatures.2–5 This behavior is a
consequence of quantum-mechanical tunneling of spin states
through the anisotropy energy barrier and occurs when the
external field brings two levels at different sides of the bar-
rier into resonance. This macroscopic quantum effect has
been the subject of intensive experimental and theoretical
investigation which revealed additional remarkable proper-
ties of the magnetic molecules. A connection between elec-
tromagnetic radiation and the magnetic tunneling process has
been established, both emission6,7 and absorption8,9 of micro-
wave radiation have been observed in recent experiments. It
has been proposed that the physical mechanism responsible
for the radiation is a collective quantum effect known as
superradiance.10–12 However, taking the time scale of relax-
ation into account, a maserlike effect is more likely to be
responsible for the observations.13 Furthermore, the change
in magnetization can be described in terms of avalanches,
which were recently shown to propagate through the crystal
in an analogous way to that of a flame front in a flammable
chemical substance �deflagration�.14,15 It has also been
suggested16 that these molecules can be used for implement-
ing a quantum computational algorithm.

In this work we study the dynamics of the multilevel sys-
tem corresponding to the 21 spin states of the Mn12-Ac
molecule �S=10� in a time-dependent magnetic field. An
“exact numerical” solution of the relevant time-dependent
Schrödinger equation is obtained in the whole time interval

of interest. The results show that, although the usual qualita-
tive picture of consecutive two-level transitions holds, the
transition probabilities deviate significantly from the predic-
tions of the Landau-Zener-Stückelberg17–19 �LZS� model.
This deviation is closely related to the multilevel nature of
the problem: Since the actual level structure is determined by
the total 21 level Hamiltonian, the time dependences of the
energy levels are too complex to be described within the LZS
framework. This is emphasized by the fact that for low-field
transitions, where the dependence of the energy levels on the
external magnetic field is close to the idealized LZS assump-
tion, the difference between the exact transition probabilities
and those obtained using the LZS formula is small. This
result is in agreement with previous theoretical studies as
reported in Ref. 20. However, here we provide examples for
high-field transitions where the single relevant parameter of
the LZS model �which is essentially the level splitting in
appropriate units� is the same, but the transition probabilities
determined from our exact numerical calculations turn out to
be rather different. An efficient approximation method based
on non-LZS two-level transitions is introduced, which is able
to describe the dynamics with high accuracy. Furthermore,
relaxation effects are also included. By considering realistic
dephasing rates, it is shown that for field sweep rates in the
kT/s range, neither unitary time evolution nor relaxation
dominates the dynamics. The interplay between these two
processes results in a decrease of the transition probability at
a given avoided level crossing.

The paper is organized as follows. In Sec. II the relevant
Hamiltonian is discussed, along with its level structure, and
the dynamical equations in the adiabatic basis are introduced.
Results related to the solution of the time-dependent
Schrödinger equation are presented in Sec. III, and the con-
sequences of relaxation effects are discussed in Sec. IV. Fi-
nally in Sec. V the results are summarized and conclusions
are presented.
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II. MAGNETIC LEVEL STRUCTURE AND DYNAMICAL
EQUATIONS

Experimental3,4,21–24 studies on crystals of Mn12Ac sug-
gest that the spin Hamiltonian for this system can be written
as

HS�t� = H0�t� + H1�t� , �1�

where H0 is diagonal in the eigenbasis ��m�� of the z compo-
nent of the spin operator Sz:

H0�t� = − DSz
2 − FSz

4 − g�BB�t�Sz. �2�

Here the last term in the right-hand side describes the cou-
pling to an external magnetic field applied along the z direc-
tion, which is parallel with the easy axis of the crystal. This
external field is time dependent, with sweep rates on the kT/s
scale.25 H1 in the Hamiltonian contains terms4,22 that do not
commute with Sz:

H1 = C�S+
4 + S−

4� + E�S+
2 + S−

2�/2 + L�S+ + S−�/2. �3�

In the present paper we will concentrate on Mn12-Ac, which
can be considered as a representative example of molecular
nanomagnets. In this case the values of the parameters in H0
are D /kB=0.56 K, and F /kB=1.1�10−3 K. The coefficients
in H1 do not have unanimously accepted values, but they are
essential for the determination of the transition probabilities
and can be obtained by fitting the theoretical results to ex-
perimental magnetization curves.13 In this paper we use L
=0.025g�BB �representing a weak misalignment in the ex-
ternal field B�, E /kB=−4.48 10−3 K, C /kB=1.7�10−5 K un-
less otherwise stated. We note that the main conclusion of
this paper is not related to the particular choice of the con-
stants above. Different set of constants obviously leads to
different quantitative behavior, but the effects presented here
are qualitatively universal.

Considering the total Hamiltonian �1� as the generator of
the time evolution, the corresponding time-dependent
Schrödinger equation governs the dynamics. We can also use
a density operator � to describe the system and write

��

�t
= − i�HS,�� , �4�

where �=1. Relaxation effects can then be included through
additional terms on the right hand side of this equation, see
Sec. IV for more details.

A direct calculation of the time-dependent solutions of
Eq. �4� when expanded in the ��m�� eigenbasis of the spin
operator Sz turns out to be a rather difficult problem: even for
large field sweep rates �i.e., kT/s�, the saturation of the mag-
netization is reached in a few ms. During this time, roughly
109 Bohr oscillations take place due to H0, raising demand-
ing requirements on the accuracy of the numerical process.
An alternative and more efficient way of dealing with this
equation is based on the expansion of the time-dependent
states in an adiabatic basis, i.e., the set of the instantaneous
eigenstates of HS�t�:

HS�t��En�t�� = En�t��En�t�� . �5�

It is convenient to label these states so that they corre-
spond to the eigenenergies in increasing order: E0�t��E1�t�
� ¯ �E20�t� at all times. The energy curves En�t� are thus
continuous. It must be stressed that the time dependence of
these states is parametrical. In fact they are in a one-to-one
correspondence with the external field, and thus the value of
the time-dependent B completely determines the states �En�.
Next, the density operator is expanded in the time-dependent
basis determined by Eq. �5�:

��t� = 	
nm

ei
t0
t �Em−En�dt��nm�t��En�t���Em�t�� . �6�

Using Eq. �4� to calculate the dynamics, and Eq. �5� to obtain
the time dependence of the adiabatic states, one finds that the
time evolution of the matrix � takes the form of a von Neu-
mann equation

��

�t
= − i�H̃,�� , �7�

where H̃ is given by

H̃nm�t� = i�En�
�HS

�t
�Em�

ei
t0
t �En−Em�dt�

En�t� − Em�t�
, �8�

if n�m, and H̃nn=0. This expression explicitly shows that
an appreciable change in the populations �nn and �mm is ex-
pected around the avoided crossing of the levels En and Em,
i.e., when the denominator in Eq. �8� has a local minimum. A
qualitatively similar conclusion follows from a degenerate
perturbation calculation13,26–31 around the avoided level
crossings; but note that Eq. �8� is an exact result.

The level scheme and the minimal energy difference be-
tween levels at the avoided crossings are shown in Fig. 1. As
a guiding line, far from the crossings we can associate a label
m to each energy eigenvalue En in such a way that the over-
lap ��m �En�� is maximal over all possible values of m be-
tween −10 and 10. This assignment is based on the fact that
H1 is a relatively weak perturbation to H0, thus—at least for
low energies and far from the crossings—the eigenstates of
the full spin Hamiltonian are close to that of H0. As a con-
sequence of the labeling convention introduced after Eq. �5�,
a given adiabatic eigenstate �En� before and after the avoided
crossing of the levels En and En±1 corresponds to two differ-
ent states �m�� �m��, see Fig. 1. In other words, if the popu-
lation corresponding to a certain adiabatic state does not
change while passing a crossing, the expectation value of Sz
and thus the magnetization does change.

The fact that the level splittings at the avoided crossings
can differ by 12 orders of magnitude, raises an additional
difficulty when using Eq. �7� to calculate the dynamics, be-
cause the derivatives also change in a similarly wide range.
Therefore it turned out that a combination of Eqs. �4� and �7�
leads to the most efficient method: when some populated
levels are too close to each other, Eq. �7� is no longer able to
provide the required accuracy, therefore we change the basis
and use Eq. �4� for a short time interval after which it will be
safe again to work with Eq. �7�. Thus the control parameter
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defining the step size needed to have the required accuracy
for such a long calculation is essentially the minimal distance
between the populated levels.

The dynamical equation �7� indicates that the usual ap-
proach of treating the problem as a sequence of two-level
transitions �each taking place at the corresponding level
crossing� may provide an accurate approximation to the time
evolution. In this framework the dynamics of the states cor-
responding to the anticrossing levels is governed by a 2�2
Hamiltonian resulting from the reduction13,26–31 of the com-
plete HS to the relevant level pairs. Additionally, in this ap-
proach it is usually assumed that the time dependence of the
diagonal elements of the reduced Hamiltonian is linear, while
the off-diagonal ones are constants:

Hred�t� = �� �t �/2

�/2 − �t

 . �9�

With these assumptions each avoided level crossing is iden-
tical to the LZS model,17–19 which has an analytical solution
yielding the transition probability

PLZS = 1 − e−	�2/2� �10�

in the long-time limit. Note that small values of PLZS means
no appreciable change either in the population of the eigen-
states of Sz, or the magnetization �but almost complete ex-
change of the populations of the adiabatic states�; PLZS�1 is
observable as a step in the magnetization, while the popula-
tions of the adiabatic levels are practically unchanged. The
formula for PLZS has been used in several interesting
experiments32–34 related to various molecular nanomagnets
when analyzing the data. Corrections to the LZS approxima-

tion originating from dipolar interactions �the importance of
which has been pointed out in Ref. 35� were investigated in
Ref. 36. It is important to emphasize that PLZS depends on
the ratio � /��, i.e., on a single parameter �which, in appro-
priate dimensionless units, is simply the level splitting�. In
the next section we show that the dynamics in the whole spin
Hilbert-space can no longer be described by a single param-
eter, and consequently the exact transition probabilities can
be significantly different than PLZS.

III. UNITARY TIME EVOLUTION

In this section we calculate the unitary dynamics de-
scribed by Eq. �4�. Initially the external magnetic field is
zero, then it raises to its maximal value of Bmax, i.e., B�t�
= f�t�Bmax. Here we consider three analytical shapes of the
function f�t�: a linear, a sine and a tangent hyperbolical
pulse, see the inset in Fig. 3. We construct these pulses in
such a way, that the maximal external magnetic field rate
w=max�dB /dt�=Bmax max�df /dt� is the same and falls in
the kT/s range:

f1�t� =
wt

Bmax
, �11a�

f2�t� = sin� wt

Bmax

 , �11b�

f3�t� =
1

2
�tanh�2wt − 


Bmax

 + 1� , �11c�

where the shift 
 in f3�t� has to be chosen such that at t=0
the external magnetic field is negligible.

The initial state at the beginning of the calculation �t=0�
is the lowest energy eigenstate that later crosses other adia-
batic states, i.e., ����0�= �E1���m=−10�. This means that
we follow the lowest increasing curve on the level scheme
shown in Fig. 1, and the energy levels that cross this line
correspond to decreasing energies and thus do not meet any
other levels later. Similarly, if initially the ground state �E0�
was populated, it would not give any contribution to the
steps in the magnetization curve, it simply leads, to a very
good approximation, to an additional constant. �Which is the
reason for our choice of the initial state.�

The expectation value �Sz� as a function of the external
magnetic field B is shown in Fig. 2 for the sine pulse �11b�
and different values of the maximal sweep rate w. The steps
seen in this figure are very similar to the experimental
curves, but differ from the result that can be obtained by
using the LZS theory �also plotted in Fig. 2�. Faster sweep
rates mean smaller transition probabilities between the eigen-
states of Sz. Although the exact dynamics is different from
the LZS result, in the investigated sweep rate range we found
that �Sz� scales with the sweep rate almost exactly the same
way as one could deduce from PLZS. Additionally, Fig. 2 also
shows that since the states �m� are not exact eigenstates of
the complete spin Hamiltonian HS, there are rapid oscilla-
tions in �Sz� for higher external fields, which are clear indi-

FIG. 1. The level scheme of the Hamiltonian �1� as a function of
the external magnetic field B. The energy levels corresponding to
the exact eigenstates �En� have “zigzag” form, while the approxi-
mate eigenenergies corresponding to the eigenstates of Sz are almost
straight lines �with periodically changing black and grey sections�
for low energies. �A few examples are labeled in the figure.� The
inset shows the minimal distance between levels as a function of B,
the horizontal position of the crosses coincide with the avoided
level crossings shown in the main part of the figure.
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cations of the Bohr oscillations corresponding to different
eigenenergies of HS. We will find that if we take relaxation
effects into account �Sec. IV�, these oscillations disappear on
a very short time scale.

Comparison between the results for �Sz� for different
functional shapes of the external magnetic field B�t� is shown
in Fig. 3 in case of a maximal sweep rate of w=2 kT/s. Note
that the difference is not too large; in this sweep rate range it
is not the functional time dependence of B�t� that determines
the heights of the steps seen in the magnetization curve, but
rather its time derivative at the avoided level crossings. In
other words, the approximation of a linearly increasing field
B around a certain transition point is sufficient to accurately
describe the dynamics at that transition.

The population of the different eigenstates of Sz and the
adiabatic states �En�t�� are shown in Fig. 4 as a function of B

for the representative example of a pulse with linear shape
and w=1 kT/s. As we can see, at the beginning of the time
evolution, when the splitting of the adiabatic levels are very
small and the magnetization is almost constant, the popula-
tion of the �m=−10� state does not change significantly ei-
ther. Around B=5 T the tunneling probability between dif-
ferent states �m� and �m�� becomes appreciable, leading to the
steps seen in Figs. 2 and 3. Note that the population of the
adiabatic levels show an opposite behavior: initially practi-
cally all the population of the lower adiabatic level is trans-
ferred to the higher one at the avoided crossings. On the
other hand, for larger external field values a nonzero popu-
lation remains on the lower adiabatic level, leading to a no-
ticeable change of the magnetization. The reason for the
rapid oscillations in the populations of �m� seen in Figs. 2–4
is that at that high field strength Sz and HS do not commute,

FIG. 2. The expectation value of �Sz� �solid lines� as a function
of the external magnetic field B for different sweep rates. The exact
results are compared with the predictions of the LZS approximation
�dashed lines�. The pulse shape corresponding to this figure is given
by Eq. �11b�. Above 5.7 T rapid oscillations appear, see text for
more details.

FIG. 3. The expectation value of �Sz� as a function of the time-
dependent external magnetic field B�t�, which is shown in the inset,
for three different pulse shapes with w=2 kT/s.

FIG. 4. The population of the levels corresponding to the states
�En� �a� and �m� �b� as a function of the external magnetic field for
a linear pulse with w=1 kT/s. For the sake of simplicity in �b� we
show only populations larger than 0.05.
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therefore the states �m� are not exact eigenstates of the com-
plete spin Hamiltonian. These oscillations disappear when
we include relaxation, see Sec. IV.

If we restrict ourselves to the LZS model, then starting
from the ground state it is sufficient to find the first value of
B at which this adiabatic level anticrosses the next one, cal-
culate the LZS parameter � /�� and use PLZS to obtain the
population of the two relevant adiabatic levels after the tran-
sition, and repeat this process until the end of the time evo-
lution. This approach includes the slow change of the levels
�En�t��, causing a slight continuous increase of the magneti-
zation as a function of B, but this effect is difficult to see in
Figs. 2 and 3: the steps dominate the behavior of �Sz�. How-
ever, the LZS result obtained in this way is quantitatively
different from the exact �Sz��t� curve that was calculated by
taking all the 21 levels into account �see Fig. 2�. The position
of the steps �determined by the avoided crossings� are the
same, but their heights are different, and this difference can
be as large as 30%. In order to discuss this difference in more
detail, we determined the sweep rates that resulted in 50%
transition probability in the LZS model for each transition
seen in Figs. 2 and 3. Next we calculated the deviations from
the LZS result for these different transitions. As an overall
tendency, we found that the difference between the LZS and
the exact result is smaller for transitions at low magnetic
fields. For example, in the case of the �E9�→ �E10� transition
�corresponding to the almost invisible small step at 4.66 T in
Figs. 2 and 3�, this difference is only 6%. We note that this is
in agreement with Ref. 20, where �using the parameters of
Fe8O� only a small difference was found between the exact
21-level dynamics and its LZS counterpart for the transition
around 0.43 T.

In order to understand the physical reason for this effect,
we have to investigate the relation between PLZS at a certain
anticrossing and the relevant transition probability resulting
from the present calculation. The first important point to take
into account is that, to a very good approximation, the tran-
sitions seen in Fig. 4 take place between two neighboring
adiabatic levels. For sweep rates in the kT/s range the char-
acteristic time of the transitions37,38 at the avoided level
crossings neither overlap nor influence each other. Let us
now concentrate on a single step, as an example we focus on
the vicinity of B=5.7 T �see Fig. 5�, where the anticrossing
levels E11 and E12 correspond to the states �E11���m=−10�
��m=−1�� and �E12���m=−1� ��m=−10�� before �after� the
transition.

The most remarkable point concerning Fig. 5 is that it was
obtained by assuming that only the adiabatic levels �E11� and
�E12� play a role in the transition, the dynamics has been
reduced to these two relevant levels. Calculating the same
transition by taking all the 21 levels into account shows that
this approximation estimates the exact dynamics with high
accuracy. More generally, it is always possible to perform a
similar reduction around a given avoided level crossing.
Thus we obtain a method where a sequence of effective two-
level transitions can describe the time evolution. The results
obtained in this way are practically the same as those of the
exact calculation, and considering the numerical costs, this is
a very effective method.

However, the time dependence of the expectation value of
�Sz� obtained in this way is still different from the LZS result,
despite the fact that the LZS theory is also based on a two-
level approximation. Note that all the curves shown in Fig. 5
were calculated using the same numerical method, the pulse
shape �f1�, the initial state, and the level splitting were also
the same for all the calculated sweep rates: the only differ-
ence was the time dependence of the energy levels and their
coupling. �In fact, as it is clear from Eqs. �6�–�8�, it is only
the energy difference E12�t�−E11�t� that plays a role here.�
These are multilevel effects: the time dependence of the 2
�2 Hamiltonian obtained by the reduction of HS to the rel-
evant level pair is affected by all the other levels, similarly to
a renormalization effect. The influence of the states not tak-
ing part in the transition results in a time dependence of the
parameters of the reduced Hamiltonian which is slightly dif-
ferent from the LZS model described by Eq. �9�. That is, the
single parameter � /�� is not enough to describe these tran-
sitions, or in other words, we have time-dependent factors in
the LZS matrix elements ��t� ,��t�. That is emphasized by
calculating the long time limit transition probability for the
same transition shown in Fig. 5 with different parameters in
the Hamiltonian �3� in such a way that the sweep rate and the
level splitting are fixed. As an example, we consider the level
splitting � at this transition as a function of only two param-
eters, namely, C and L; we do not change D, F, and E in HS.
First we calculate ��C ,L� using the parameters given in Sec.
II and obtain �0=1.47�10−4 �in K�. Then we solve the
equation ��C ,L�=�0 to find the parameter pairs �C ,L� that
correspond to the same level splitting as it was initially. It
turns out that there are several disconnected lines in the C-L
plane along which ��C ,L�=�0, and consequently PLZS is
constant for a given sweep rate. However, as we can see in
Fig. 6, the calculated non-LZS transition probabilities, long
after the transition took place, strongly depend on the param-
eter C in Eq. �3�: they range from 5% up to 65%, and can be
both higher and lower than PLZS. Different symbols in Fig. 6

FIG. 5. The population of the level E11 around the transition
�E11�→ �E12� for different sweep rates. We compare the exact results
with those from the LZS model. The external field pulse corre-
sponding to this figure is given by Eq. �11a�.
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correspond to different lines along which ��C ,L�=�0. In
any case, we can conclude that the final transition probability
at a given high-field avoided crossing is also influenced by
the levels that do not take part in the relevant transition, and
can therefore not be described within the framework of the
LZS model. In other words, for high-field transitions appear-
ing in fast sweep rate experiments as in Ref. 25, a theory
with the level splitting as a single parameter is not sufficient
to describe the tunnel process, and a multilevel calculation as
presented here is necessary. Additionally, not only the exact
magnitude of a certain magnetization step is different from
those predicted by the LZS model, but also the relative
heights of these sudden changes of the magnetization, which
makes possible a direct experimental check of the validity of
the LZS model.

IV. RELAXATION EFFECTS

So far we considered unitary time evolution, i.e., the
Hamiltonian �1� governed the dynamics. However, hyperfine
and dipolar interactions,35,39 and the influence of
phonons40,41 are not included in HS. In other words, there are
additional degrees of freedom that can be considered as the
environment of the investigated 21 level spin system, and
any realistic description should take their influence into
account.13,30,42,43 Additionally, as we shall see in this section,
the rapid oscillations seen in Figs. 2–4 disappear on a very
short time scale when relaxation influences the dynamics.

Since phase relaxation is usually much faster than energy
exchange between the investigated quantum system and its
environment, we concentrate on this kind of decoherence,
and assume a Lindblad-type44 dynamical equation

��

�t
= − i�HS,�� +

�

2
�2Sz�Sz − Sz

2� − �Sz
2� . �12�

Note that quantum-mechanical phase difference is usually
extremely sensitive to environmental noise, and the most im-

portant effect of any coupling to the environment is the sup-
pression of phase coherence.

The local field corrections originating from nuclear spins
�hyperfine interaction� are a possible source of decoherence.
Typical hyperfine fields for Mn12-Ac can be estimated to be
between 20 and 40 mT �see Chap. 9 of Ref. 1�. Assuming
that this field is randomly oriented and, additionally, time
dependent due to the relaxation of the nuclear spins, its effect
on the electron spin dynamics can be estimated, and it is
found that at very low temperatures this is the dominant
dephasing mechanism.45 Interaction with the thermal phonon
bath can be described via a general spin-phonon coupling
term,46 and using the traditional Born-Markov approxima-
tion, averaging over the thermal phonon field can be done.
This leads to a temperature-dependent master equation that
contains the phonon-induced contribution to the value of �.
Note that the same equation can be used to estimate the time
scale of the thermally activated relaxation of the
magnetization,30 which—taking into account the uncertainty
of important input parameters such as the magnitude of the
sound velocity—found to be in agreement with the experi-
mental results. Finally, spin-spin dipolar interactions lead to
a complicated many-body problem,35 and the local effect on
a single magnetic molecule results in additional dephasing.
The master equation above incorporates all these dephasing
effects �hyperfine and dipolar interactions, the influence of
phonons� and provides a correct short-time phenomenologi-
cal description. The values for �, based on the argumenta-
tions above, can be estimated to be in the range of
105–107 s−1 for Mn12-Ac in the temperature range of a few
K.

The second term in the master equation �12� will not
change either the magnetization of the sample nor the expec-
tation value of H0. It leads to the gradual disappearance of
the nondiagonal elements of � in the eigenbasis of Sz without
changing the populations �nn. The result of this kind of re-
laxation is quite different during the transitions at the
avoided level crossings and between them. This difference is
clearly seen if we consider sweep rates of the order of kT/s,
when the characteristic transition times are 10−6–10−7 s,
while the spin system spends about 10−3 s between two level
crossings. These time scales should be compared to �−1,
which is in the range of 10−5–10−7 s for low temperatures
�T�2 K� at which several experiments were performed.
Thus, between two crossings, relaxation has enough time to
destroy the phase information almost completely.

In other words, if after an avoided crossing the system is
in a pure quantum-mechanical state �
�, the initial condition
at the next crossing can be considered as the right-hand side
of the following scheme:

�
��
� = 	
nm

�n��m��nm → 	
m

�m��m��mm. �13�

Note that the Hamiltonian part of the time evolution slightly
modifies the process above, but the final consequence, i.e.,
that dephasing changes the initial conditions for the transi-
tions at the avoided level crossings is still valid. Decoher-
ence as described by Eq. �13� plays an important role in the
physical mechanism responsible for the observed form of

FIG. 6. The final population of the level E11 after the transition
�E11�→ �E12� around B=5.7 T as a function of the parameter C in
Eq. �3�. The level splitting min�E12−E11� is kept fixed, leading to
the constant final population in the LZS model indicated by the
solid horizontal line. The magnetic field pulse used is given by Eq.
�11a� with w=1 kT/s.
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hysteresis loops �see Ref. 47 for experimental results on sys-
tems of low-spin magnetic molecules�. We found that even
for such fast external magnetic field sweep rates as a few
kT/s, quantum-mechanical interference does not play an im-
portant role in transitions at consecutive anticrossings, by the
time the system reaches the next transition point, the phase
information has already flown into the environment. For
similar reasons the formation of closed hysteresis curves can-
not be influenced either by quantum interference. However,
even faster sweep rates, or faster return to a certain transition
by superimposing an oscillating magnetic field on a constant
one around a certain crossing, may give rise to quantum-
mechanical interference effects. We predict that such inter-
ference phenomena will show up for magnetic field sweep
rates in the MT/s range. They will be seen as a very strong
dependence of the form of the hysteresis loops on the sweep
rate due to the extreme sensitivity of the process to the rela-
tive phases of the states that take part in a transition.

The phenomena expected around transition regions are
more interesting, as they are consequences of the interplay
between coherent effects and dephasing: the characteristic
time of the transitions are comparable, but usually shorter
than the dephasing time defined by �−1. The general conse-
quence of the second term in the master equation �12� is that
it decreases the transition probability in the ��m�� basis, i.e.,
when relaxation is present, it makes the steps in the magne-
tization smaller �see Fig. 7�. The larger the value of �, the
stronger this effects is, which underlines again the impor-
tance of the relative phase in this physical system. In the
previous section it was shown that phases gained by the adia-
batic states at an anticrossing can remarkably modify the
transition probability, now we see that loss in phase informa-
tion has also strong effects. Note that in contrast with the

coherent case �see Sec. III�, the final transition probabilities
in the presence of dephasing do not scale with the sweep rate
similarly to the LZS case. For larger sweep rates the system
spends less time in the transition region, and consequently
decoherence less strongly modifies the final transition prob-
ability. That is, the larger the magnetic field sweep rate, the
more similar the dynamics around a transition becomes to
the case without dephasing. Additionally, we want to point
out that the coherent oscillations, the consequences of which
has been seen in Figs. 2–4, are strongly damped even for
weak dephasing.

However, the statement that the final transition probabili-
ties are modified by the presence of all the levels and thus
cannot be accurately described within the framework of a
LZS model �even if we include relaxation as well� is also
true in the present case. Additionally, let us emphasize that
the parameter region discussed here is different from the
strongly damped one studied in Refs. 30 and 48, where in-
coherent tunneling can give a proper description. For exter-
nal field sweep rates in the kT/s range, neither coherent time
evolution nor relaxation dominates, which leads to an inter-
esting interplay between these two qualitatively different
processes.

V. CONCLUSIONS

We studied the time evolution of the spin degrees of free-
dom in molecular nanomagnets, with a focus on the mol-
ecule Mn12-Ac in the presence of time-dependent magnetic
field. Using an appropriate “exact numerical” method, we
followed the time evolution from zero external magnetic
field until saturation of the magnetization is reached. We
found that for sweep rates in the kT/s range, steps in the
magnetization originate from two-level transitions which
cannot be described within the framework of the Landau-
Zener-Stückelberg �LZS� model. This observation led us to
the introduction an efficient and accurate approximation
based on two-level non-LZS transitions. This method intro-
duces the possibility of performing long term dynamical cal-
culations that can directly be related to experiments. We also
demonstrated that the sweep rate range of kT/s is special in
the sense that for realistic relaxation times, there are observ-
able consequences of the competition between coherent dy-
namics and decoherence that modify the heights and widths
of the magnetization steps.
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FIG. 7. The effect of phase relaxation on the dynamics of the
magnetization ��Sz�� around the transition �E11�→ �E12�. We as-
sumed a linear pulse given by Eq. �11a� with maximal sweep rate
w=1 kT/s in part �a� and 2 kT/s in part �b�. Note that the origin of
the time axis has been shifted, t=0 corresponds to the time when
E12−E11 is minimal.
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