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Spin polarization in a two-dimensional electron gas modulated periodically
by ferromagnetic and Schottky metal stripes
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Spin-dependent electron transport in a two-dimensional electron gas, periodically modulated by parallel
ferromagnetic and Schottky metal stripes, is studied theoretically. Assuming ballistic transport, the spin-
dependent transmission, conductance, and polarization are evaluated for a range of experimentally accessible
parameters. The structures of these quantities for one ferromagnetic-Schottky stripe unit can be significantly
enhanced with increasing the number of units and highly polarized transport can be achieved. This structure is
rounded off but survives to a good extent for finite temperatures of a few degrees. Results are given for parallel
as well as antiparallel magnetizations of the ferromagnetic stripes between two consecutive units. In the latter
a high degree of spin selection results and the spin polarization can be controlled very efficiently with Schottky

metal stripes.
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I. INTRODUCTION

Recently the electronic transport properties of two-
dimensional electron gas (2DEG) in the presence of inhomo-
geneous magnetic fields have attracted considerable atten-
tion. For instance, the experimental realization of magnetic
dots and antidots and the patterning of ferromagnetic (FM)
materials integrated with semiconductors (SC) have created
magnetic barriers (MB) or wells, periodic and quasiperiodic
magnetic superlattices and motivated a considerable amount
of research.! The combination of FM and SC materials is
realized by deposing an FM material on top of a near-surface
2DEG formed in modulation-doped semiconductor
heterostructures.> The FM material provides a magnetic field
which influences locally the motion of the electrons in the
semiconductor heterostructure. The effects caused by the MB
system? are very different from the well-known potential bar-
rier because the electron tunneling becomes a two-
dimensional (2D) problem. The transmission depends not
only on the energy of the impeding electrons but also on the
direction of their velocity toward the barrier. When both the
charge and the spin of the electrons are taken into account,
the electronic transport can become spin polarized.*’
Several works have explored the possibility of producing
spin memory devices® or spin transistors,” as well as exploit-
ing the properties of spin coherence for quantum
computation.!®!! The feasibility of spin filtering in MB
nanostructures has been studied and discussed extensively in
the last decade.'>”'® Very recently it was shown?® that the
intrinsic symmetry in a single FM stripe structure can be
broken and thus spin filtering can be achieved by placing a
Schottky normal-metal (SM) stripe parallel to the FM stripe
on top of the 2DEG. Considering such a structure as a single
unit and repeating it periodically, spin-polarized transport
can be enhanced significantly upon increasing the number of
units. In addition, a good spin-selection control can be
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achieved by considering antiparallel magnetizations of the
FM stripes between two consecutive units. Further, we pro-
vide some finite-temperature results and show that these ef-
fects survive for finite but low temperatures.

In Sec. IT we present the formalism and in Sec. III the
numerical results. Concluding remarks follow in Sec. I'V.

II. FORMALISM

We consider a 2DEG in the (x,y) plane modulated peri-
odically by parallel FM and SM stripes placed on top of the
structure. Two units of such a structure are schematically
depicted in Fig. 1. The widths of the FM and SM stripes are,
respectively, dy; and dg, D is the spacing between these
stripes, and z;, the distance between them and the 2DEG. We
assume that the magnetic field provided by the FM stripes
B.(x) and the electrical potential induced by the Schottky
stripes U(x) are homogeneous in the y direction and vary
only along the x axis in the manner shown in Figs. 1(b) or
1(d). The Hamiltonian describing such a system, in the
single-particle, effective-mass approximation, is

2 A 2 “oh
oo Lot eAWE 0 a8 ohp )
2m 2m 2m0 2

Here m" is the effective mass and m, the bare mass of the
electron, (p,,p,) the components of the electron momentum,
and g* the effective Landé factor. Further, o is the electron
spin pointing up (o=+1) or down (o=-1), and A(x) is the
component of magnetic vector potential given, in the Landau
gauge, by A=[0,A,(x),0]. Because the system is transla-
tional invariant along the y direction the solution of the sta-
tionary Schrodinger equation HW(x,y)=EW(x,y) can be
sought in the form W(x,y)=exp(ik,y)i(x) with fik, the ex-
pectation value of the momentum p, in the y direction. The
wave function ¢(x) satisfies the following one-dimensional
(ID) Schrodinger equation:
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FIG. 1. (a) Schematic illustration of the structure. On top of a
2DEQG, parallel FM and SM stripes are placed periodically as shown
for only two units. The various parameters are defined in the text.
The magnetization of all FM stripes is parallel to the x axes. (b) The
profile of the magnetic field B,(x) and of the electric potential U(x)
corresponding to (a). (c) As in (a) but with the magnetization of any
two consecutive FM stripes antiparallel to each other. (d) The same
as in (b) for the structure shown in (c).
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If we introduce the characteristic parameters:® wy=eBy/m"
with B, a typical magnetic field, and €§=ﬁ/ eB, the
Schrodinger equation becomes

p
{d 5 +2[E-V(x,k )]} #(x) =0, (3)

where all quantities are expressed in dimensionless units: x
—{px,E—hw.E and

V(x,k,) = [k, + A),(x)]2/2 +U(x) + g'm" oB.(x)/4my, (4)

with Ay — B €A, B.(x)—ByB.(x) and k,—k,/{5 The
problem is now reduced to a 1D-tunneling problem. The 1D
potential V(x,k,) depends on the wave vector k,, the arrange-
ment of stripes, and also on the interaction between the non-
homogeneous magnetic field and the electron spin. Matching
the wave functions and their derivatives at all interfaces, the
spin-dependent transmission probability through this system
T,(E k), for electrons incident with energy E, wave vector
ky, and spin orientation o can be determined with the transfer
matrix technique.?! Then one can evaluate the electron spin
polarization defined by
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FIG. 2. Logarithm of spin-dependent transmission probability as
a function of energy for one unit, with U=8 in. (a) and U=-8 in.
(b), and for ten units with U=8 in. (¢) and U=-8 in. (d). The other
parameters are k,=0, B=6, and dyy=D=dg=1.
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In addition, one can evaluate the conductance G as the
electron flow averaged over half the Fermi surface?

/2

G=2G, 2, T (Ef, \E'TEF sin ¢)cos ¢dd

o=—1,1J-7/2

=2G, 2,

o=-1,1

T Ep\2E su)du, (6)

where ¢ is the angle of incidence relative to the x direction
Go=¢’m"vpL,/h* where L, is the length of the structure in
the y direction and v the Fermi velocity.?* The total conduc-

tance is the sum of the spin-up and spin-down conductances.

III. NUMERICAL RESULTS

The transmission probability and the polarization of trans-
mitted electrons for different numbers of units have been
calculated using the simplified magnetic field and electric
potential profile shown in Figs. 1(b) and 1(d). The &-function
magnetic field profile is an approximation for the real fringe
fields of the ferromagnets and we assume that the effect of
the parallel magnetic field component on the electron can be
neglected. In previous works'?® it was shown that such a
o-function approximation is sufficiently accurate for obtain-
ing qualitatively correct estimates for the tunneling proper-
ties. The material parameters used in the calculation were
taken for InAs systems. Explicitly, we used m"
=0.024 mg, g*=15 and the estimate By=0.1 T which is a
realistic value. This leads to the units €3=813 A, and E,
=hwy=0.48 meV. In Sec. Il A we present results corre-
sponding to the profile of Fig. 1(b) and in Sec. III B those for
the profile of Fig. 1(d).
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FIG. 3. Energy dependence of the spin-polarization P for U=8
(top panel) and U=-8 (bottom panel). The dashed, solid, dotted,
and dash-dotted curves are, respectively, for one, two, ten, and
twenty units. The parameters are those of Fig. 2.

A. Parallel magnetizations

In Fig. 2 we plot the spin-up and the spin-down transmis-
sion probabilities as a function of the energy for B=6 (the
strength of B,) and dyy=D=dg=1 with U=8 (upper panels)
or U=-8 (lower panels) and the indicated number of units.
For one unit the transmission for U=-8 is very different
from that for U=8. The reason is that for positive U the
transmission relies on spin-dependence resonant tunneling
through quasibound states of an asymmetrical double barrier
well system, while for negative U the tunneling is through
the virtual states produced by the above potential well. For
negative U at least one more FM stripe is necessary to assure
the possibility of resonant tunneling. The presence of the
Zeeman term alters the transmission probability for all val-
ues of energy. For positive U the resonant peaks shift to
higher energy for the spin-down electrons, and to lower en-
ergy for the spin-up electrons but this shift is nonsymmetric.
Increasing the number of units leads to more pronounced
resonance peaks for positive or negative U. In the latter case
though the shifting of the peaks depends on their position.
The first resonance is shifted to higher energy for spin-up
electrons, and lower energy for spin-down electrons relative
to the corresponding one when the Zeeman term is ne-
glected. Each peak consists of n—1 peaks, where n is the
number of units, due to the dispersion determined by the
imposed periodicity and the coupling among successive
quantum wells [Fig. 2 (right panels)].

The electron spin polarization P, given by Eq. (5), is
shown in Fig. 3. The results for 1, 2, 10, and 20 units are
shown, respectively, by the dashed, solid, dotted, and dash-
dotted curves for U=8 (top panel) and U=-8 (bottom
panel). For one unit one can see that the polarization changes
sign when the electron energy varies between the values that
give the resonances for both spin orientations. The change of
P for two units is small for positive U because the transmis-
sion (not shown) does not change significantly. This change
is rather significant for negative U because of the possibility
of resonant tunneling: The potential contains an asymmetric
double barrier-well system. The polarization of transmitted
beams can reach 100%.
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FIG. 4. Conductance versus Fermi energy for spin-down (a) and
spin-up (b) electrons and two different electric barrier heights U
==+8. Panels (c) and (d) show the relative spin-conductance excess
versus Fermi energy for U=8 in. (c) and U=-38 in. (d). The dashed
and solid curves are for one and two units, respectively.

Having seen the transmission and polarization results, one
may wonder to what extent their structure is reflected in mea-
surable quantities, which involve some kind of averaging,
such as the conductance G given by Eq. (6). Figures 4(a) and
4(b) show the conductances versus Fermi energy for spin
down (a) and spin up (b) and two electric barrier heights U
= =8, with one unit (dashed curves) and with two units (solid
curves). The two conductances generally decrease when the
number of units is increased except at the resonance posi-
tions. The reason is that the transmission probability peaks
are sensitive to the width of the potential barriers, they are
sharper when the barriers become wider. By increasing the
number of units the total width of the barriers increases as
well and the conductance, which is determined by the trans-
mission probability, generally decreases. As a consequence,
the peak-to-valley ratio increased. For example, for U=-8
around 5Ey/E these ratios are 2.97 and 11.2 for spin-down
and spin-up electrons, respectively, while it is clearly seen
that there is no valley at all for spin-down electrons when
only one unit is present. To investigate the spin current trans-
port (i.e., AG=G,—G_) versus the charge transport (i.e., G
=G,+G_), the quantity AG/G=(G,-G_)/(G,+G_) was cal-
culated. Here G, and G_ are the conductances with electron
spin up and spin down, respectively. This quantity'*** ex-
presses the relative spin-conductance excess at the Fermi en-
ergy, i.e., for zero temperature. Panels (c) and (d) show the
relative spin-conductance excess versus the Fermi energy for
U=8 (c) and for U=-8 (d) with one unit (dashed curves) and
with two units (solid curves). It is found that AG/G in-
creases (decreases) with the Fermi energy in the low-energy
region for positive U (negative U) and it reaches ~100%
even with a doubling of the number of units both for positive
and negative U, although the corresponding conductances in
the energy region are rather small. This behavior can be un-
derstood by inspection of the transmissions shown in Fig.
2(c); there it is clearly seen that in the low energy region new
resonances appear for U=—8. When the Fermi energy varies
from the resonant peak to the adjacent valley, AG/G. is
switched from positive to negative values for both negative
and positive U values.

Here we should notice that there are two other possibili-
ties to repeat the unit: The first unit with positive U value
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FIG. 5. Relative spin-conductance excess as a function of the

Fermi energy for U=—-8 (upper panel) and U=8 (lower panel) with

dy=D=dg=1 in the first unit and d,;=D=0.5,dr=1 in the second
one.

and the second with a negative value of U or vice versa. The
behavior of the transmission or conductance will be different
than those discussed above. Of course, the behavior of the
system depends on the geometrical arrangement of the
stripes, too. In Fig. 5 we show the relative spin-conductance
excess versus Fermi energy, when the second unit contains a
layer with a smaller width, e.g., dy=D=0.5. While for
U=-8 (upper panel) the change of AG/G is small, the varia-
tion in case of U=8 (lower panel) is much larger. It should
be emphasized that the intrinsic symmetry of the FM barriers
holds independent of their number, and in order to have spin
polarization the potential barriers are necessary. Figure 6
shows the spin-down and spin-up conductances (upper pan-
els) as well as the relative spin-conductance excess (lower
panels) versus Fermi energy for 20 units with U=8 (left
panels) and U=-8 (right panels). We see again a consider-
able structure in AG/G brought about by the increased num-
ber of identical units whereas in Fig. 5 this structure resulted
from the different sizes of the two units involved.

To generalize our results to nonzero temperature we
have to replace any function of G(E), which depends on the
Fermi energy Ep, by the corresponding average over the de-
rivative of the Fermi function: G(u)=JdeG(g)(=dfy/de),
where fo={exp[(s—w)/kzT]+1}~" and w is the chemical po-
tential. Figure 7 shows the spin polarization at three different
temperatures for U=-8 (upper panel) and U=8 (lower
panel). The number of units is 20. As can be seen, finite
temperatures smoothen the zero-temperature results, e.g., of
Fig. 6 but a significant structure remains, especially for U
=8, up to T=4 K.

21,23
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FIG. 6. Conductance and relative spin-conductance excess as a
function of Fermi energy for 20 units, U=8 (left panels) and U
=-8 (right panels), B=6, and dy,=D=dg=1.

B. Antiparallel magnetizations

Another method to realize wave vector filtering and spin
polarization in a 2DEG, using only antisymmetric double-
barrier magnetic structures, was reported in Ref. 18. The
relevant magnetic field profile is shown in Fig. 1(d) and the
magnetizations of any two consecutive FM stripes are anti-
parallel to each other. In such a system the potential U(x) is
absent, i.e., dg=0. The resulting potential V(x,k,) has an
even symmetry with respect to k, about the center. As we
know, for particles traversing a potential in opposite direc-
tions the transmission is always equal. Therefore, such

1.0

0.5

AGIG

FIG. 7. Relative spin-conductance excess, through 20 units, as a
function of energy for finite temperatures. The solid, dashed, and
dotted curves are for 7=0.2 K, T=1 K, and T=4 K, respectively.
The other parameters are B=6, and dy,;=D=dg=1.
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FIG. 8. Conductance versus the Fermi energy for spin-down
(solid curve) and spin-up (dashed curve) electrons for asymmetric
double magnetic barriers with D=dy,;=1 and B=6. In the inset the
relative spin-conductance excess is shown as a function of the
Fermi energy.

symmetry results in the invariance of the transmission with
respect to the replacement k,— —k,. It is thus sufficient to
take only positive k, values into account. For such a system
the resonant peaks, relative to those with parallel magnetiza-
tions, shift to higher energy for spin-down electrons, and to
lower energy for the spin-up electrons. The resonance peaks
are extremely sharp, so 7_ nearly vanishes for those energies
where T, is in resonance and vice versa. Therefore the po-
larization of transmitted electrons can reach 100%. The reso-
nance peaks for both spin-up and spin-down electrons shift
to lower energy by increasing the separation D or by de-
creasing the magnetic barrier intensity. This sharpness ap-
pears in measurable quantities also, as clearly seen in Fig. 8§,
where the spin-up (G,, solid curve) and spin-down (G_,
dashed curve) conductances are shown. The inset shows the
relative spin-conductance excess versus the Fermi energy, for
InAs with B=6,D=dy=1. It is found that the AG/G in-
creases with Fermi energy in the low-energy region and it
reaches nearly 100% at resonant energy for o=+1 and re-
mains almost at this value until the resonant energy for o=
—1 is reached, despite the averaging of the transmission
probability over half the Fermi surface. For Fermi energies
that are higher than the latter resonant energy, the relative
spin-conductance excess remains negative in this range in
which 7_ dominates. Further raising the Fermi energy makes
AG/G increase and reach about 100%.

To assess the effect of breaking the symmetry of the an-
tisymmetric double-barrier magnetic system with SM stripes,
we have numerically calculated the AG/G for the system
depicted in Fig. 1(d). Figure 9 shows the relative spin-
conductance excess for asymmetric double-barrier magnetic
barrier system, i.e., two units of FM and SM stripes with
antiparallel magnetization of the FM stripes B=6 and U=
—8. The dashed curve is for D=2; d,;=1 and the solid one
for D=dy,=dg=1. It is clearly seen that the spin polarization
can be changed efficiently with the SM stripes and results in
an approximate periodic behavior of AG/G. The results are
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FIG. 9. Relative spin-conductance excess as a function of the
Fermi energy for asymmetric double magnetic barriers: Two units
of FM and SM stripes with antiparallel magnetization of the FM
stripes and B=6 and U=-8. The dashed curve is for D=2,d),=1
and the solid one for D=dy,=dg=1.

similar to those obtained for the transmission through a
waveguide, as a function of its length, in the presence of
spin-orbit interaction.?’

IV. CONCLUDING REMARKS

We studied spin-polarized, ballistic electron transport in a
two-dimensional electron gas periodically modulated by fer-
romagnetic and Schottky metal stripes. The spin-dependent
transmission, conductance, and polarization show a consid-
erable structure as a function of the incident electron (Fermi)
energy and of the various parameters that characterize the
periodically repeated unit. This structure is significantly en-
hanced with increasing number of units and shows that a
highly polarized transport can be achieved. In some cases the
polarization acquires an approximate square-wave character
as a function of the Fermi energy, cf. Fig. 3, lower panel. The
relative spin-conductance excess exhibits a considerable
structure, cf. Fig. 5, for positively and negatively charged
Schottky metal stripes although the structure has only two
units. In general, the structure in all these quantities is
rounded off at finite temperatures but survives up to a few
degrees, cf. Fig. 7.

We presented results for parallel as well as antiparallel
magnetizations of the ferromagnetic stripes between two
consecutive units. As Figs. 8 and 9 demonstrate, in the latter
case a high degree of spin selection results and the spin po-
larization can be controlled very efficiently with Schottky
metal stripes which break the symmetry of the potential cre-
ated by the magnetic barriers.

We are not aware of any transport experiments involving
the structures we studied. We hope that our findings, espe-
cially those for antiparallel magnetizations, will motivate ap-
propriate experiments.
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