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Geometry and magnetic-field-induced vortices and antivortices in mesoscopic two-dimensional
systems
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A two-dimensional mesoscopic system of arbitrary shape placed in a perpendicular homogeneous magnetic
field is investigated for arbitrary boundary conditions. The energy spectrum of quantum dots and the phase
boundary of mesoscopic superconductors are obtained. The wave function for quantum dots and the complex
order parameter for mesoscopic superconductors exhibit the simultaneous stabilization of vortices and antivor-
tices at specific ranges of the magnetic field for noncircular symmetric samples. When the vorticity is changed,
we found that antivortices can be introduced into the system in order to preserve the symmetry of the sample
in the vortex pattern.
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I. INTRODUCTION square. We investigate the possibility of influencing the criti-
cal parameterdcritical temperature and critical magnetic

The rapid development of nanostructuring in the lastfield) of the superconductor by manipulating the boundary
decades has made it possible to achieve important scientifionditions. These critical parameters determine whether or
and technological advances. Modern processing techniquemt the material is in the superconducting state and therefore
allow the creation of mesoscopic two-dimensio(#D) sys- by manipulating those boundary conditions it is possible to
tems which has led to a very rich variety of new physicalreach higher critical magnetic fields and higher critical tem-
phenomena.Here we will show that additional theoretical peratures.
insight in these 2D systems can be gained by solving its |n this paper we combine the study of both systems, put
associated Schrddinger equation with different boundanan emphasis on the differences and resemblances of both
conditions. physical systems, and concentrate on the appearance and dis-

On the one hand, solving the 2D Schrédinger equatiorappearance of vortices and antivortices as function of the
with Dirichlet boundary conditions enables us to study amagnetic field. Furthermore, we generalize previous
single electron in a quantum ddQD), the man-made work$-%and consider arbitrary boundary conditions and ar-
equivalent of an atom. We consider semiconductor QDsitrary potential heights. Of particular interest to us are the
where the lateral confinement energy is much smaller thagortex patterns in mesoscopic 2D systems which are formed
the perpendicular confinement so that we may assume thathen a perpendicular magnetic field is present. A vortex can
effectively the electron is moving in two dimensions. This be defined as a flow with closed streamlines with a phase
situation corresponds to a quantum billiard model extensingularity in the center of it. In a quantum mechanical pic-
sively studied experimentally and theoretic&ifyNot only  ture, this means that the wave function in the center of a
the possible applications of QOisuch as transistors, lasers, vortex must be zero, since the wave function has to be a
etc), but also the fact that the properties of these “designegingle-valued function. Vortices, which are a well-known
atoms” can be changed in a controlled way by electrostatiphenomenon in nature, can be found on different scales, e.g.,
gates, changes in the dot geometry, or applied magnetic fielgt the cosmic level(galaxie$ but also on the atomic level.
make them an interesting study object to understand mor@/e will find that vortices and antivortices appear both in the
about the quantum worltl. QD and in superconducting systems.

On the other hand a similar differential equation describes The vortices in quantum mechanical systems reveal im-
mesoscopic superconductors. Superconductors are in the msortant information about the system. As the wave function
soscopic regime when the size of the sample becomes cors zero in the center of a vortex, the vortex pattern in QDs
parable to the penetration depttil) or the coherence length indicates the highest probability to find an extra electron if it
&T), where\(T) and &T) are typical length scales of the would be added to the system. The pattern of vortices is
Ginzburg-LandayGL) theory>" Here we use the linearized therefore closely related to the correlations between electrons
GL equation to study the superconducting-normal phas@n a multi-electron QI}12 Recent work with STM(scan-
boundary of the superconductors. The linearized GL equaning tunneling microscopyand SFM (scanning force mi-
tion is formally equivalent to the Schrodinger equation for acroscopy showed that it is possible to image electron flow in
free particle, except for the boundary condition: we have taa 2D electron gdg and a QD' We propose to use these
solve the Schrodinger equation but now with Von Neumanrtechniques to image vortices in QDs.
boundary conditions. The 2D Schrédinger equation with Von In the context of a mesoscopic superconductor, vortices
Neumann boundary conditions describes not only supercorean be seen as an electromagnetic whirlpool through which
ducting wires but also thin superconducting samples as corthe magnetic field penetrates the sample. One finds vortices
sidered in Ref. 8 for a small and thin superconductingin bulk superconducting materialenly in type-Il supercon-
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ductorg as well as in mesoscopic superconductors. Sincaevhich can be neglected at the superconducting-normal phase
superconductivity is destroyed where the magnetic field penboundary. Notice that the linearized form of the GL equation
etrates the sample, vortices moving through the saitgpte, is the regular Schrodinger equation for a free particle in
because of a varying magnetic figleéad to dissipation and which —«(T) plays the role of the eigenenergy.

are therefore a serious problem limiting commercial applica- The general boundary condition for superconductors,
tions. The critical parameters for superconductivity are deterfound by de Genne,is given by

mined by the vortex pattern and this pattern is determined by .

the geometry of the samp¥e>17This opens the possibility n(— ihV + e_A>\p = —ih BV 3)

to manipulate the critical parameters, which in turn becomes c ’

important when we are interested in using superconductors . : .
: wheren is the unity vector perpendicular to the surface of
as components, e.g., for cryoelectronics.

In pioneering work by Chibotaru and co-work&r® it the superconductor anglis a real number. This paramet@r

was found that the vortex patterns which are formed have thgetermmes the boundary conditions:
(1) A superconductor/vacuum (or  superconductor/

same symmetry as the sample. In order to realize this they insulato) transition is realized fof=0, which means
found the surprising result that for certain ranges of the mag- that no superconducting current caﬁ flow out of the
netic field antivortices are introduced into the system. Their superconductor

approach was based on an analytical gauge transformation 2 B<0 describeé a superconductor/metal interface
for the vector potential which can only be realized for regular which will cause superconductivity to be weaker at,
polygons. Here we follow a very different approach in which the edges of the sample Fﬁr—>—o{ this condition
we solve the 2D differential equation using the finite differ- reduces to the Dirichlet bc.)undary condition for a QD
ence technique. This approach gives us the flexibility to con- which is also realized at a superconductor’/
sider arbitrary geometries for the sample boundary and also ferromagnet _ interface(superconductivity will be
arbitrary boundary conditions for the wave function. strongly diminished at the edges of the sanple

The paper is organized as follows. In Sec. Il we discuss o .
the differential equation which has to be solved and the nu- ®) B>.0 enhance§ superconductlv_lty, which can b_e
achieved experimentally by putting the mesoscopic

merical procedure. Section Il then presents the results for . .
superconductor in contact with another supercon-

the QD with different confinementsquare, rectangle, and . : "
trianglg, while Sec. IV discusses the results for the super- ductorw!th a higher critical temperatufg or through
a special treatment of the surfaces of the

conducting films, wires, and thin superconducting squares
superconductor.

near the superconductmg_/normal phase bpundary. I:m'f’“hﬁ”revious publications in this area for fixed finite values of
Sec. V sums up the most important conclusions. the parametes are Refs. 8, 19, and 20

We numerically calculate the eigenvalues for both the QD
Il. THEORY and the mesoscopic superconductor. Apart from the spec-

. . . trum, we are specifically interested in the vortices in both
F'FSt we discuss 'ghe theoretical framework of the QD'.Thesystems. To discuss the vorticity in a QD, we borrow an
Hamiltonian for a single electron in a 2D QD, placed in a

tic field is ai b aspect that is used in the physics of mesoscopic supercon-
magnetic neld 1 given by ductors and can be determined for both systems: the vorticity
H-( +§A> 1 ( +§A>+V(x ) (1)
—\P c /2m(x,y) P c Y

(also called “winding) number is defined B
whereA is the vector potential corresponding to the perpen-

dicular applied magnetic fiel@ andV(x,y) is the confine- _
ment potential of the 2D QD. Equatidil) must be solved whereC is the contour along the boundary of the sample and

- . - 0 - -
using Dirichlet boundary conditions. The calculated energ)/9 is the pha;e of the wave functioh=|W|e ._The vorticity
will be given in units ofE,=42/2mSas function of the flux number is directly related to the expectation value of the
ol po=BS (hc/|e|) through the surface aregof the QD. angular momentum operatdr,, as for an eigenstate of a

Second, we study mesoscopic superconductors. The ifiven vorticity | the leading angular dependence in the de-

earized GL equation describes a superconductor near tH:é)mposmon .Of the wave function is el ‘.9)' Vortices cor-
respond to circular current patterns throygh ~ V 6(r).

superconducting-normal state phase transition and is give L ) i ,
by - We §olved the Schr_odlnger equation numerically using the
finite difference techniquéfor the QD3 and the method of
the finite elements, implemented mEMLAB (for the mesos-
copic superconductor in a magnetic fiefd To calculate ei-
genvalues and eigenvectors, we usePACK,?? a routine
wherem' =2m, &' =2e, and«(T) is a temperature-dependent hased on the Lanczos algorithm.
constant. The complex order parameté(r) determines the The results for the QD in Sec. Ill A recover the results
number of Cooper pairs througf (r)[>=ng(r) which is the  found by Chibotaruet all° for the energy and vorticity of
density of Cooper pairs in the superconductor. The completelectrons in a square confinement. Here, we extend those
GL equation has an extra nonlinear term proportiond3  results to a finite height confinement potential and to trian-

1
IZ—SE V 6-ds, (4)
2 C

1 (4 e \?
2m*<i—v +€A> V=TV, (2)
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gular and rectangular shaped QDs. The technique used in
Ref. 10 is limited to specific geometries for the QD and to
hard wall confinement. Chibotaet al® also studied the lin- 160
earized GL equation for mesoscopic superconductors, but
only for the case8=0. Our approach is more general and 120}
allows arbitrary values oB and arbitrary shapes of the me-
soscopic superconductor.

E/E,
g

1. DIRICHLET BOUNDARY CONDITIONS (QUANTUM i et
DOT)

Because the energy spectrum, the vortex pattern and other
calculated values of the confined electron obtained from Eqg.
(1) will be strongly influenced by the exact geometry, we
consider different shapes f&f(x,y). We start with a square
well and investigate the influence of the depth of the well on =
the energy spectrum and the vortex pattern. Next the sym- A
metry of the confinement potential on the vortex pattern is T'/
investigated by implementing infinite high rectangular and /
triangular wells. 2f

A. Infinite square well

Figure Xa) shows the energy spectrum of a square well
with hard wall confinement as function of the magnetic field
ol ¢y, Where p=BS is the flux through the squar&=W2,
andW the width of the square. For comparison, the spectrum
of a circular well (dashed curvgswith the same surface
area is also shown. The energy spectrdm units of
Eo=#%/2m9 of a circular well with hard wall confinement 0.00
can be calculated semi-analytic&fy* and exhibits many
more crossings than the spectrum of the square well. The
latter can only be obtained numerically. The energy spectrum
of the square well exhibits several anticrossings as a result of FIG. 1. (@ Energy spectrum of an electron in an infinite high
the mixing of different angular momentum states. square well(lines+symbol and in an infinite high circular well

In a circular well the vorticity number is just the rotational (dashed lines placed in a magnetic fiel@ perpendicular to the
quantum number of the corresponding eigenstdtg /7 is a surface, as function of the flu¢=BS through the surfac& of the
good quantum numbgrwhich is no longer the case in a 344are- ¢o denotes the elementary flux quantuht/lel and
square(and other geometrigbecauséH,L,]#0. As a con-  Fo=A"/2mS The numbers indicated on the spectrum are gaan-

. . . . . tum numbers for the circular diskb) Expectation value of the
sequencéL,) is no longer quantized and it varies continu-

o angular momentum operatdy, as function of the fluxmagnetic
ously for the square well as the magnetic field vafigse field). (c) Expectation valuéx2+y?) as function of the fluXmag-

Fig. .1(b)]- As <L;>/ﬁ is relz'ited.to thg vorticity numbdri.t netic field. The same type of symbols are used in all three figures
|mp||es that vortices or antivortices will have to enter/exit thefor curves corresponding to the same energy level.
sample to obtain lower or higher values(af). Notice from

Fig. 1(a) that parts of the energy spectrum of the disk matchorners of a square and subsequently four vortices move to-
t_he spectrum of the_ square dot and therefore we expect t@ard the corners of the well and disappésee also Ref. 10
find for these matching parts the same resulfgf/#A andl, For the lower energy levdFigs. 2d)-2(f)] the opposite oc-
respectively, as is indeed the caggee Fig. Wb)]. Near curs: there is a transition fron=0 to I=4 by the entry of
avoided crossings),)/# changes rapidly with the magnetic four vortices through the center of the edges of the square
field to thel value of the corresponding circular disk energy well. These four vortices nucleate with four antivortices
levels. which were already present in the system, solthalue of

To investigate the changes in the vortex pattern, Fig. Zhe remaining vortices adds up to 4. The disappearance of
shows vector plots of the gradient of the phase of the wavehese four vortex—antivortex pairs is even more clearly illus-
function at different values of the magnetic field using thetrated in Fig. 4.
wave functions that correspond to the energies indicated by The positions of one pair of vortices—the vort@sortex
the dots in Fig. 3. The images shown in Fig$a)22(c)  penetrating the sampleand the antivortex(antivortex
clearly demonstrate the transition from a tdtaklue of 4 to  present in the sample-clearly demonstrates that for an in-
|=0 for the upper energy level of the anticrossing: the trancreasing magnetic fieldi) an extra vortex appearsj) the
sition is made by creating a vortex—antivortex pair at thevortices move toward each other, arii) the vortex—
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FIG. 2. Vortex patterns itia)—(1) for the infi-
nite square well. A clockwise current floie., a
vorteX) corresponds té=+1, whilel=-1 corre-
sponds to a counterclockwise current flGve. an
antivortex.

) 0

antivortex pair disappears. Notice that the vortex configuration of the magnetic field in Fig.(t) shows this: it demon-

tions of Figs. Za) and Zf) belong to the same circular disk strates how the wave function—despite an increasing mag-
level =4, but the vortex configurations are rotated over 45°netic field—can become more extended in order to let the
with respect to each other. Similarly the vortex positions forvortices pass through the system. Only when the magnetic
the other vortex configurations—before and after thefield is large enough such that the confinement of the elec-
anticrossing—belonging to the same disk level are rotated byron becomes determined by the magnetic field instead of the
¢p=45°. square well, the value di,)/% will no longer change. The

Similar results can be seen for other anticrossings: vortimajor changes idL,)/# and(x?+y?) occur where the anti-
ces and antivortices are created in a way that the pattefgrossings in the spectrum are found.
always reflects the square geometry. Another example de-
picted in Figs. 29)—2(1) shows the transition frorh=-1 to
=3 and vice versa. The exit of the vortices happens again B. Finite square well
through the cornerfFigs. 2g) and 2h)], leaving one anti-
vortex (I1=-1) in the middle[Fig. 2(i)], while the entry of
four vortices occurs through the edges of the sanplg.
2(k)], creating a total value of 3[Fig. 2(i)].

Since the wave function has to be zero at the location o
the vortex(a vortex contains a phase singulayjtthe pen-
etration or expulsion of vortices implies that the wave func
tion also has to change continuously in order to let the vorte
pattern be modified. The expectation valpé+y?) as func-

The spectrum for the square well of finite heigly/ Eq
=100 is shown in Fig. 5. It appears as a scaled version of
Fig. 1(a) for the infinite well. In Fig. 5 the energy is lower
fbecause the particle is less confined than in the infinite)well
and the anticrossings are located at smaller magnetic field
_values because the magnetic confinement will dominate the
jpotential confinement for lower magnetic fields. We can con-

-0.35+ Q 4
o
—_— N
=
IO -
c
o Q O
o -0.45+ 1
o
— Vortex penetrating the sample
- - - Anti-voriex present in the sample
-0.50 . ;
3.58 3.60 3.62
o/,
FIG. 3. Zoom of the energy spectrum of the square \fell FIG. 4. Position of a vortex—antivortex pair as function of the

lines) and the circular wel{dashed lines The current flow patterns  flux (magnetic fielgl The inset schematically shows the vortex pat-
(i.e., the vortex structujdn the points(a)—(l) are shown in Fig. 2.  tern and the set of vorticdsircled paij that was used to determine
The gray circle highlights a crossing in the spectrum that will bethe position in thex direction (they coordinate does not change in
discussed further in combination with Figs. 7-9. that direction. W is the side length of the square.
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FIG. 5. Energy spectrum for an electron in a finite height square
well (Vo/Eo=100 as function of the fluxp=BSthrough the surface FIG. 7. Energy difference between a pair of energy levels for
S of the well. Note thaEy=#2/2mSand ¢y=hc/|€]. different values ofé. Inset: detail of the studied pair of energy

levels at different values of. The complete spectrum f@i=0 and
6=0.3 can be found in Figs. 3 and 8, respectively, with a gray circle

clude that the height of the barrier does not 1‘undamenta|l3{ncIicating the studied crossing/anticrossing

change the behavior of the energy spectrum.
Because now the electron wave function is different from

zero in the barrier it allows the appearance of vortices or AE/Ey=as”+bs+c, %)

antivortices in the barrier region. Thus vortices will nucleate

in the barrier material which is very different from the infi- |\ . 26.69+0.92,b=21.81+0.29, anct=-0.01+0.02.

nite well case where they_ can qnly nuclea_te at the edge of th§ince the system with reduced symmetry shows more anti-
sample. This new behavior is illustrated in Fig[dmpare

. ; . crossings, we also expect a reduction in the symmetry of the
with Figs. 2a)-2(f)]. But once the vortices enter the well g P 4 y

\ . 0 o T density. The inset of Fig. 7 shows a detail of two energy
region their qualitative behavior is similar to the one Wespectra for different values of and we use these two cases
found for the infinite well case.

to study the density of both systerteee Fig. 9. The letters
(8)(d) in the inset in Fig. 7 indicate the corresponding wave
functions that were used to calculate the density, which is
In the previous paragraphs we focused on systems with ghown in Fig. 9. It is clear that by changing the square to a
C, symmetry(squarek If we switch to rectangular wells we rectangular, the wave functions are not just squeezed into the
reduce the Symmetry of the Confinement further. We COI’]Side,ﬁeW geometry, but they Change fundamenta”y: even the
a system with surface aré&X W(1-4), where the param- npymber of maxima, zeros, and nodal lines change. In Fig.
eter ¢ defines the aspect ratio of the two sides of the rectg(a), we find 4 maxima and 5 zeros in the density arranged
angle. This reduced symmetry will influence the number ofalong the diagonals of the square. This configuration changes
anticrossings in the energy spectrum, which can be seefto 4 maxima along the diagonals of the rectangle, 4 zeros
clearly in Fig. 7. It shows how a pair of energy levels thatarranged in a rectangle, and a line of zero probability at
forms a crossing when the system is still a squ#e0, see  y=0[Fig 9c)]. For the lower brancksee inset of Fig. J7the
gray circle in Fig. 3 changes to an anticrossing when the density consist of 4 maxima along tkke0 andy=0 lines
symmetry of the system becomes rectangWe# O, see gray  and one zero in the centffig. 9b)]. When the aspect ratio
circle in Fig. 8. The size of the level splitting in the anti- js 5=0.3, this zero stays in the cenfé&ig. 9(d)], but now we
crossing shown in Fig. 7 can be fitted to only find maxima along thg=0 line and 4 submaxima on
the diagonal of the rectangle.

C. Infinite rectangular well

Bl (d 0 5 15 20

10
FIG. 6. Vortex patterns ifa)—(d) for the finite height square

well. The wave functions that correspond to the points indicated in  FIG. 8. Energy spectrum for an electron confined in a rectangu-

Fig. 5 were used to make these plots. The square indicates tHar well (6=0.3). The gray circle indicates the anticrossing that was

boundary of the well. studied in Fig. 7.
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FIG. 9. Probability of the electron corresponding to poias-
(d), which are indicated in the inset of Fig. 7. Higlow) density is
given by the darklight) regions.

oo, ) U]
0 5 10 15 20
' FIG. 11. Vortex patterns in pointg)—f) indicated in Fig. 10g)

160 for the triangular well.

o 2Ok Q"3 i This sensitivity of the wave function on the geometry of
L the sample is similar to what was recently found for the
W gof b single-particle Kohn—Sham orbitals in a density functional

@ theory study of rectangular QDs with few electrons in a mag-

netic field?®

D. Infinite triangular well

Another interesting case is the one with triangular sym-
metry. We consider an equilateral triangle of which the posi-
tion of the mesh points are rotated with respect to the triangle
in order to make sure that the position of the triangle does
not influence the numerical results. We first focus on the
energy spectrum that shows more anticrossings than the
spectrum of the square well as a consequence of the reduced
symmetry[Fig. 10@)]. As we discussed in Sec. Il A, anti-
crossings correspond to a change of the expectation values
(Ly/# and therefore the entry/exit of vortices in the system
will take place at these anticrossings. Therefore the vortex
pattern (Fig. 11) and the expectation valued ,)/# and
(x*+y? have also been calculat¢Bigs. 1@b) and 1Gc)].

The wave functions corresponding to the indicated points

N (8)—(f) in Fig. 10 were used to determine the vortex pat-
(c) : : :

0'000 5 1b 1.5 20
200
o/é,

FIG. 10. (a) Energy spectrum of an electron in an infinite high w’ 1001
triangular well placed in a magnetic fiell perpendicular to the m| ﬂ
surface, as function of the flup=BSthrough the surfac§& of the oF .
triangle. ¢, denotes the elementary flux quantuht/|e and
Eo=%2/2mS (b) Expectation value of the angular momentum op-
eratorL, as function of the fluxmagnetic fielgl (c) Expectation 100 0 =0 0 50 100
value (§2+y2) as function of the flux (magnetic field. B

W =2/{3W, whereW is the length of a side of the triangle. The
same type of symbols are used in all three figures for curves corre- FIG. 12. The energy levels as function gf(the parameter that
sponding to the same energy level. determines the boundary conditjon
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(@)

FIG. 13. Wave functions of the
ground (a), the first (b), and the
second(c) excited state for differ-
ent values of3. W is the width of
the well.

0.0
XW

terns shown in Fig. 11. The initial number of vortices in Fig.  (2) Limit 84— 0: This results in tatkW)=0, which gives

11(a) adds up to a total of=2. Figure 10b) indicates that the same resuE=#272n%/2mW2, but with the fundamental

the totall value for that energy level will diminish as the difference than=0 is also a solution.

magnetic field increases, which can be seen in Fig&)11 (3) B>0: For positiveB values superconductivity is en-

and 11c): three vortices exit the sample through the cornershanced at the edges of the sample. Therefore it is possible to

of the triangle and leave one antivortex in the middle,havek=ix and this yields

I=-1. Further increasing the magnetic field we expect a 5 o a

strong increase of thevalue in point(d) [indicated in Fig. (B + k)tanh(«kW) = 2Bx, (7)

10(a)], because of the strong rise @f,)/% at ¢/ po~6. This  |n the situation of largexW we find that g2+ «?— 28«

is illustrated in Fig. 14d) where 6 vortices enter through the =00 k?=-4%, which means thatE=-#%2%8%/2m implying

sides of the triangle, bringing the totiavalue to 5. Beyond negative energy values which are not possible in the Dirich-

this point, no additional vortices enter or exit the samplelet case. Note that Eq7) reduces to Eq(4) of Ref. 19 for

anymore. As we expect, Figs. (El and 11f) of the lower large « values.

energy level in Fig. 1@&) show the opposite situation of Figs. (4) Limit B—o: We can also have t&kwW)=00 E

11(b) and 1Xc): in Fig. 11(e) we find one antivortex in the =#27;2n2/2mW? and these solutions are identical to the one

middle and as the magnetic field increases, three vortice®r the Dirichlet boundary conditions.

enter through the edges of the sample, which results in a total The numerical solutions to E@6) for the 5 lowest levels

of 1=2. Notice that we find a remarkable 60° rotation be-are given in Fig. 12 as function ¢8. All the limiting cases

tween the arrangement of exiting vortices in Figsialhnd  mentioned above can be found in the figure. Notice the re-

11(b) as compared to the entry of vortices in Fig(fl1A  markable behavior of the two lowest levels f8t0 which

similar phenomena was found for the square sample in Fidsecome degenerate and split off from the rest of the spec-

2. Also notice how the vortex pattern keeps the 120° rotatrym.

tional symmetry in all figures, which is a consequence of the The wave functions of the ground state in Fig(d3llus-

fact that the differential equation is linear. The latter impliestrate more clearly what happens when we change the bound-

that the wave function has the same symmetry as the comry conditions. Fo3— — the wave function has to be zero

finement potential. at the boundary of the welfull curve), and 83— —% corre-

sponds to the Dirichlet boundary conditions. F@=0

(dashed curvethe derivative of the wave function has to be

zero at the edges. The lowest level wave function, which is

A. One-dimensional well with Von Neumann boundary zero at the edges fgB=-o, evolves continuously to a con-
conditions stant function for3=0. For positiveg values, the wave func-

tion becomes strongly localized at the boundaries of the well

IV. VON NEUMANN BOUNDARY CONDITIONS

To investigate the influence of the paramefon the
energy spectrum of a 2D system, it is instructive to solve first

the Schrodinger equation for an electron in a one- T iD-WED) =3
dimensional(1D) well with the general boundary condition N 1D-W/0) =5 p
n-V /=B, wheren is the unity vector perpendicular to the --———- 2D - W/E(0) = 3 s
edge of the sample. The spectrum is obtained from the tran- ,:" ,——2D-W/(0)=5-" .
scendental equation |*_o o

23k Vo AT et

tankW) = ——, (6)
ﬁZ _ k2 ot - ‘

wherek=\2mE/#?. This transcendental equation has to be
solved numerically, but we discuss first some limiting cases. F|G. 14. Comparison of the effective critical temperatfie

(1) Limit B— —o: tan(kW)=00 E=#27?n?/2mWF, which 1D (i.e., film) and 2D(i.e., squarg confinemeri with the critical
corresponds to the energy levels for a 1D infinite well. Thistemperaturd, of the bulk superconductor as function of the bound-
case corresponds to the Dirichlet boundary conditions. ary conditions, indicated by the parameger
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FIG. 15. Spectrum as function of the param-
eter B for a square sample. Note that
Eq=%%/2mS

ol@)

-100 -80 -60 -40 -20

(dotted curve In Figs. 13b) and 13c) we show the wave system. Figure 15 shows the energy spectrum for the 2D well
function of the first two excited states. These figures make ifor (a) negative andb) positive 8 values. This spectrum can
physically understandable why f@> 0: (i) the two lowest be directly obtained from the 1D ca¢Eig. 12 because of
levels become degenerate, afiid why the second excited the separability of the variabIeE(nx,ny):Enx+ Eny where
state has an energy which is equal to the ground state ener@y, is the 1D energy level as depicted in Fig. 12. Thz 0
for p<0. sp'ectrum shown in Fig. 1B) needs extra discussion. Each
The ground state energy level presented in Fig. 12 can bgranch consists of 4 levels. The lowest branch is constructed
used in the context of superconductivity. In the linearized GLfrom the stategn,,n,)=(1,1),(1,2),(2,1),(2,2) where the
equation,a(T) corresponds to the energy we obtained in themijqdle two, i.e.,(1,2 and (2,1), are degenerate. The next
1D Schrédinger equation. We find the following relation be-pranch consists of two energy levels which are each twofold

tween energy and critical temperatu‘r'*g degenerate(1,3), (3,1), (2,3), (3,2).
E w \2 T 42 Only the ground state of the energy spectrum is significant
— = <—> ( _—C>; Eo= . (8) for the superconducting/normal boundary. Figure 14 shows
Eo \&(0) Te 2mw? the link between the temperature and the boundary condi-

Here we replaced by TZ, the effective critical temperature tions (parameteyB). Notice that there are two different cases:

of the superconductor, because the linearized GL equation R€9ative values of corresponding ol <Te, thus super-
valid exactly at the superconducting-normal phase boundaryonductivity is reduced, while fop>0 we haveT >T,
This implies that the temperatuiecorresponds to the effec- Which implies enhancement of superconductivity. For 2D
tive critical temperaturel,. Using the ground state energy, confinement the effect of the paramegeon T, is larger than

which is the energy level of significance for superconductiv-" 1D; 1-€., superconducting film, case, which was already
ity, we obtain T, shown in Fig. 14. The effective critical Previously demonstrated in Refs. 19 and 20.

temperatura”; of the mesoscopic sample is compared to the

critical temperaturd . in bulk material. Notice that for nega-

tive values of3 we find thatT, < T, thus superconductivity ~C. Two-dimensional square well with Von Neumann boundary

is reduced, while for positivgs valuesT,> T, which indi- conditions (with magnetic field)

catgs enhancement of sup_erconductivity. These_ results are Adding a magnetic field makes the situation a lot more
valid for superconductmg films, where the confinement IScomplicated and forces us to use numerical techniques to
one-dimensional. calculate the energy spectrum. Our numerical approach en-
ables us to calculate the energy spectrum as function of the

_ _ _ applied magnetic field for any value gf A similar study for
B. Two-dimensional square well with Von Neumann boundary  cjrcylar wires was presented in Ref. 26. Figure 16 shows the
conditions (no magnetic field) result of the numerical calculations and displays the energy

Since the 2D potential welwithout an applied magnetic spectrum for a positivéd3=1) and a negativgf=-1.29
field) is equivalent to two decoupled 1D wells, we can usevalue of 8. The ground state in these figures shows an oscil-

the results of the 1D well to obtain the results for the 2Dlating behavior. If we link the energy to the paramei€T),

° FIG. 16. Spectrum as function of the fluk
through the surfaceS of the square well for
(@ B=-1.25 and (b) B=1. The units are

Eo=%2/2mSand ¢=hc/|g.
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FIG. 17. Superconducting—normal state phase boundary for F|G. 18. Phase diagram for the vorticity of a mesoscopic super-
B=-1.25(left curve) and =1 (right curve for the case of a square conductor at the S/N boundarg.is the parameter determining the
with width W/ §(0) =5. boundary conditionsp=BSand ¢y is the elementary flux quantum.

The dashed line separates the superconducting pl$aseith the
we find oscillations in the superconducting-normal phaseiormal phaséN) and is drawn folW/ £(0)=5.
boundary(Fig. 17). At zero magnetic field we can already

see thatB=1 corresponds to enhanced superconductivitysmal| stability region when one moves away from the S/N
sinceT /T,> 1,_v_vh|Ie B=-1.25 clearly illustrates that these boundary. Notice that by decreasing the ground state
boundary conditions cause a reduced effect on supercondugyglves to a state that contains no vorti¢es0), which is

tivity. By calculating the ex_pectation value of the angularihe case for the ground state of an electron in a QD that is
momentum operatok, for this system, we find that every ¢, nqg for B—s —o0.

oscillation corresponds to the entry of a vortéxalue indi-
cated in Fig. 1} as the magnetic field increases, vortices

gradually penetrate the sample and will eventually destroy V. CONCLUSIONS
superconductivity, no matter how low the temperature.
The phase diagram for an arbitrary valuggofs shown in We found that confinement and boundary conditions play

Fig. 18, where the number of vortices at the S/N boundary iran important role in the properties of mesoscopic samples. It
a superconducting square are indicated. Alternatively, we castrongly influences the vortex pattern and the eigenenergies.
divide the plane into a part where the sample is supercon- The vorticity number, the expectation value of the angular
ducting and a part where it is in the normal phase which isnomentum operatdr, and the energy spectrum are closely
shown by the dashed line in Fig. 18. The dashed line whiclielated to each other for all the studied cases of QDs. The
separates both regions depends on the size of the sample.anergy spectrum of the QD exhibits more anticrossings as
Fig. 18 we tookW/&(0)=5. The current patterns that corre- the symmetry is reduced, this is translated into a step in the
spond to thel values in Fig. 18 are shown in Fig. 19. For value of(L,)/% which in turn corresponds to a change of the
=2 and 1=6, a double quantized vortex, i.e., a giantvorticity numberl. Therefore, fundamental changes in the
vortex?’ appears in the center of the sample. Such gianvortex pattern occur for lower symmetry samples with varia-
vortices were recently experimentally observed in Ref. 28tion of the magnetic field. The vortex pattern undergoes
For a givenl value only a single pattern is found at the S/N changes near every anticrossing of energy levels. By chang-
boundary, but the pattern becomes more compagh de- ing the magnetic field, vortices and antivortices are created
creases. Figure 19 shows how the symmetry of the square is such a way that the symmetry of the sample is reflected in
preserved in the vortex pattern. Her3 andl=7 this can be the vortex pattern as agrees with Ref. 10.

realized by adding antivortices. Such geometry induced an- Furthermore, critical parameters for superconductors can
tivortices were predicted in Ref. 8 but have, up to now, notbe influenced by changing the boundary conditions and the
been observed experimentally. A probable redsi their  applied magnetic field. For example, we found that the ef-

FIG. 19. Schematic vortex patterns for differ-
ent values ofl. Only a small part of the square
with W/ &(0)=5 near the vortex pattern is shown.
A counterclockwise rotation correspondsl|tol,

a clockwise rotation tol=-1 (Ref. 29. The
double circle in the case 62 andl =6 indicates

a giant vortex which caries two flux quanta.
These patterns can be found in areas with corre-
spondingl-value in Fig. 18.
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fective critical temperature of the sample depends on theample to be reflected in the vortex pattern, which is a con-
boundary conditions and can be diminisietfective critical sequence of the linearity of the GL equation, giant vortices
temperature lower than the bulk critical temperatween-  and antivortices have to be added.

hanced(effective critical temperature larger than the bulk
critical temperature As function of the magnetic field the
effective critical temperature at the S/N boundary exhibits an
oscillatory behavior reminiscent of the stepwise increase of This work was supported by the Flemish Science Foun-
vorticity in the sample. In order for the symmetry of the dation (FWO-VI).
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