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A two-dimensional mesoscopic system of arbitrary shape placed in a perpendicular homogeneous magnetic
field is investigated for arbitrary boundary conditions. The energy spectrum of quantum dots and the phase
boundary of mesoscopic superconductors are obtained. The wave function for quantum dots and the complex
order parameter for mesoscopic superconductors exhibit the simultaneous stabilization of vortices and antivor-
tices at specific ranges of the magnetic field for noncircular symmetric samples. When the vorticity is changed,
we found that antivortices can be introduced into the system in order to preserve the symmetry of the sample
in the vortex pattern.
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I. INTRODUCTION

The rapid development of nanostructuring in the last
decades has made it possible to achieve important scientific
and technological advances. Modern processing techniques
allow the creation of mesoscopic two-dimensionals2Dd sys-
tems which has led to a very rich variety of new physical
phenomena.1 Here we will show that additional theoretical
insight in these 2D systems can be gained by solving its
associated Schrödinger equation with different boundary
conditions.

On the one hand, solving the 2D Schrödinger equation
with Dirichlet boundary conditions enables us to study a
single electron in a quantum dotsQDd, the man-made
equivalent of an atom. We consider semiconductor QDs
where the lateral confinement energy is much smaller than
the perpendicular confinement so that we may assume that
effectively the electron is moving in two dimensions. This
situation corresponds to a quantum billiard model exten-
sively studied experimentally and theoretically.2,3 Not only
the possible applications of QDsssuch as transistors, lasers,
etc.d, but also the fact that the properties of these “designer
atoms” can be changed in a controlled way by electrostatic
gates, changes in the dot geometry, or applied magnetic field,
make them an interesting study object to understand more
about the quantum world.4

On the other hand a similar differential equation describes
mesoscopic superconductors. Superconductors are in the me-
soscopic regime when the size of the sample becomes com-
parable to the penetration depthlsTd or the coherence length
jsTd, wherelsTd and jsTd are typical length scales of the
Ginzburg–LandausGLd theory.5–7 Here we use the linearized
GL equation to study the superconducting-normal phase
boundary of the superconductors. The linearized GL equa-
tion is formally equivalent to the Schrödinger equation for a
free particle, except for the boundary condition: we have to
solve the Schrödinger equation but now with Von Neumann
boundary conditions. The 2D Schrödinger equation with Von
Neumann boundary conditions describes not only supercon-
ducting wires but also thin superconducting samples as con-
sidered in Ref. 8 for a small and thin superconducting

square. We investigate the possibility of influencing the criti-
cal parametersscritical temperature and critical magnetic
fieldd of the superconductor by manipulating the boundary
conditions. These critical parameters determine whether or
not the material is in the superconducting state and therefore
by manipulating those boundary conditions it is possible to
reach higher critical magnetic fields and higher critical tem-
peratures.

In this paper we combine the study of both systems, put
an emphasis on the differences and resemblances of both
physical systems, and concentrate on the appearance and dis-
appearance of vortices and antivortices as function of the
magnetic field. Furthermore, we generalize previous
works8–10 and consider arbitrary boundary conditions and ar-
bitrary potential heights. Of particular interest to us are the
vortex patterns in mesoscopic 2D systems which are formed
when a perpendicular magnetic field is present. A vortex can
be defined as a flow with closed streamlines with a phase
singularity in the center of it. In a quantum mechanical pic-
ture, this means that the wave function in the center of a
vortex must be zero, since the wave function has to be a
single-valued function. Vortices, which are a well-known
phenomenon in nature, can be found on different scales, e.g.,
at the cosmic levelsgalaxiesd but also on the atomic level.
We will find that vortices and antivortices appear both in the
QD and in superconducting systems.

The vortices in quantum mechanical systems reveal im-
portant information about the system. As the wave function
is zero in the center of a vortex, the vortex pattern in QDs
indicates the highest probability to find an extra electron if it
would be added to the system. The pattern of vortices is
therefore closely related to the correlations between electrons
in a multi-electron QD.11,12 Recent work with STMsscan-
ning tunneling microscopyd and SFM sscanning force mi-
croscopyd showed that it is possible to image electron flow in
a 2D electron gas13 and a QD.14 We propose to use these
techniques to image vortices in QDs.

In the context of a mesoscopic superconductor, vortices
can be seen as an electromagnetic whirlpool through which
the magnetic field penetrates the sample. One finds vortices
in bulk superconducting materialssonly in type-II supercon-
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ductorsd as well as in mesoscopic superconductors. Since
superconductivity is destroyed where the magnetic field pen-
etrates the sample, vortices moving through the samplese.g.,
because of a varying magnetic fieldd lead to dissipation and
are therefore a serious problem limiting commercial applica-
tions. The critical parameters for superconductivity are deter-
mined by the vortex pattern and this pattern is determined by
the geometry of the sample.8,15–17This opens the possibility
to manipulate the critical parameters, which in turn becomes
important when we are interested in using superconductors
as components, e.g., for cryoelectronics.

In pioneering work by Chibotaru and co-workers8–10 it
was found that the vortex patterns which are formed have the
same symmetry as the sample. In order to realize this they
found the surprising result that for certain ranges of the mag-
netic field antivortices are introduced into the system. Their
approach was based on an analytical gauge transformation
for the vector potential which can only be realized for regular
polygons. Here we follow a very different approach in which
we solve the 2D differential equation using the finite differ-
ence technique. This approach gives us the flexibility to con-
sider arbitrary geometries for the sample boundary and also
arbitrary boundary conditions for the wave function.

The paper is organized as follows. In Sec. II we discuss
the differential equation which has to be solved and the nu-
merical procedure. Section III then presents the results for
the QD with different confinementsssquare, rectangle, and
triangled, while Sec. IV discusses the results for the super-
conducting films, wires, and thin superconducting squares
near the superconducting/normal phase boundary. Finally,
Sec. V sums up the most important conclusions.

II. THEORY

First we discuss the theoretical framework of the QD. The
Hamiltonian for a single electron in a 2D QD, placed in a
magnetic field is given by

H = Sp +
e

c
AD 1

2msx,yd
Sp +

e

c
AD + Vsx,yd, s1d

whereA is the vector potential corresponding to the perpen-
dicular applied magnetic fieldB and Vsx,yd is the confine-
ment potential of the 2D QD. Equations1d must be solved
using Dirichlet boundary conditions. The calculated energy
will be given in units ofE0="2/2mSas function of the flux
f /f0=BS/ shc/ ueud through the surface areaS of the QD.

Second, we study mesoscopic superconductors. The lin-
earized GL equation describes a superconductor near the
superconducting-normal state phase transition and is given
by

1

2m* S"

i
= +

e*

c
AD2

C = − asTdC, s2d

wherem* =2me, e* =2e, andasTd is a temperature-dependent
constant. The complex order parameterCsrd determines the
number of Cooper pairs throughuCsrdu2=nssrd which is the
density of Cooper pairs in the superconductor. The complete
GL equation has an extra nonlinear term proportional touCu2

which can be neglected at the superconducting-normal phase
boundary. Notice that the linearized form of the GL equation
is the regular Schrödinger equation for a free particle in
which −asTd plays the role of the eigenenergy.

The general boundary condition for superconductors,
found by de Gennes,18 is given by

nS− i" = +
e*

c
ADC = − i"bC, s3d

wheren is the unity vector perpendicular to the surface of
the superconductor andb is a real number. This parameterb
determines the boundary conditions:

s1d A superconductor/vacuum sor superconductor/
insulatord transition is realized forb=0, which means
that no superconducting current can flow out of the
superconductor.

s2d b,0 describes a superconductor/metal interface,
which will cause superconductivity to be weaker at
the edges of the sample. Forb→−` this condition
reduces to the Dirichlet boundary condition for a QD,
which is also realized at a superconductor/
ferromagnet interfacessuperconductivity will be
strongly diminished at the edges of the sampled.

s3d b.0 enhances superconductivity, which can be
achieved experimentally by putting the mesoscopic
superconductor in contact with another supercon-
ductor with a higher critical temperatureTc or through
a special treatment of the surfaces of the
superconductor.

Previous publications in this area for fixed finite values of
the parameterb are Refs. 8, 19, and 20.

We numerically calculate the eigenvalues for both the QD
and the mesoscopic superconductor. Apart from the spec-
trum, we are specifically interested in the vortices in both
systems. To discuss the vorticity in a QD, we borrow an
aspect that is used in the physics of mesoscopic supercon-
ductors and can be determined for both systems: the vorticity
salso called “winding”d number is defined by18

l =
1

2p
R

C

= u ·ds, s4d

whereC is the contour along the boundary of the sample and
u is the phase of the wave functionC= uCueiu. The vorticity
number is directly related to the expectation value of the
angular momentum operatorLz, as for an eigenstate of a
given vorticity l the leading angular dependence in the de-
composition of the wave function is exps−ilud. Vortices cor-
respond to circular current patterns throughjsrd, =usrd.

We solved the Schrödinger equation numerically using the
finite difference techniquesfor the QDsd and the method of
the finite elements, implemented inFEMLAB sfor the mesos-
copic superconductor in a magnetic fieldd.21 To calculate ei-
genvalues and eigenvectors, we usedARPACK,22 a routine
based on the Lanczos algorithm.

The results for the QD in Sec. III A recover the results
found by Chibotaruet al.10 for the energy and vorticity of
electrons in a square confinement. Here, we extend those
results to a finite height confinement potential and to trian-
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gular and rectangular shaped QDs. The technique used in
Ref. 10 is limited to specific geometries for the QD and to
hard wall confinement. Chibotaruet al.8 also studied the lin-
earized GL equation for mesoscopic superconductors, but
only for the caseb=0. Our approach is more general and
allows arbitrary values ofb and arbitrary shapes of the me-
soscopic superconductor.

III. DIRICHLET BOUNDARY CONDITIONS (QUANTUM
DOT)

Because the energy spectrum, the vortex pattern and other
calculated values of the confined electron obtained from Eq.
s1d will be strongly influenced by the exact geometry, we
consider different shapes forVsx,yd. We start with a square
well and investigate the influence of the depth of the well on
the energy spectrum and the vortex pattern. Next the sym-
metry of the confinement potential on the vortex pattern is
investigated by implementing infinite high rectangular and
triangular wells.

A. Infinite square well

Figure 1sad shows the energy spectrum of a square well
with hard wall confinement as function of the magnetic field
f /f0, wheref=BS is the flux through the square,S=W2,
andW the width of the square. For comparison, the spectrum
of a circular well sdashed curvesd with the same surface
area is also shown. The energy spectrumsin units of
E0="2/2mSd of a circular well with hard wall confinement
can be calculated semi-analytically23,24 and exhibits many
more crossings than the spectrum of the square well. The
latter can only be obtained numerically. The energy spectrum
of the square well exhibits several anticrossings as a result of
the mixing of different angular momentum states.

In a circular well the vorticity number is just the rotational
quantum number of the corresponding eigenstateskLzl /" is a
good quantum numberd, which is no longer the case in a
squaresand other geometriesd becausefH ,LzgÞ0. As a con-
sequencekLzl is no longer quantized and it varies continu-
ously for the square well as the magnetic field variesfsee
Fig. 1sbdg. As kLzl /" is related to the vorticity numberl it
implies that vortices or antivortices will have to enter/exit the
sample to obtain lower or higher values ofkLzl. Notice from
Fig. 1sad that parts of the energy spectrum of the disk match
the spectrum of the square dot and therefore we expect to
find for these matching parts the same result forkLzl /" andl,
respectively, as is indeed the casefsee Fig. 1sbdg. Near
avoided crossings,kLzl /" changes rapidly with the magnetic
field to thel value of the corresponding circular disk energy
levels.

To investigate the changes in the vortex pattern, Fig. 2
shows vector plots of the gradient of the phase of the wave
function at different values of the magnetic field using the
wave functions that correspond to the energies indicated by
the dots in Fig. 3. The images shown in Figs. 2sad–2scd
clearly demonstrate the transition from a totall value of 4 to
l =0 for the upper energy level of the anticrossing: the tran-
sition is made by creating a vortex–antivortex pair at the

corners of a square and subsequently four vortices move to-
ward the corners of the well and disappearssee also Ref. 10d.
For the lower energy levelfFigs. 2sdd–2sfdg the opposite oc-
curs: there is a transition froml =0 to l =4 by the entry of
four vortices through the center of the edges of the square
well. These four vortices nucleate with four antivortices
which were already present in the system, so thel value of
the remaining vortices adds up to 4. The disappearance of
these four vortex–antivortex pairs is even more clearly illus-
trated in Fig. 4.

The positions of one pair of vortices—the vortexsvortex
penetrating the sampled and the antivortexsantivortex
present in the sampled—clearly demonstrates that for an in-
creasing magnetic field:sid an extra vortex appears,sii d the
vortices move toward each other, andsiii d the vortex–

FIG. 1. sad Energy spectrum of an electron in an infinite high
square wellslines+symbold and in an infinite high circular well
sdashed linesd, placed in a magnetic fieldB perpendicular to the
surface, as function of the fluxf=BS through the surfaceS of the
square. f0 denotes the elementary flux quantumhc/ ueu and
E0="2/2mS. The numbers indicated on the spectrum are thel quan-
tum numbers for the circular disk.sbd Expectation value of the
angular momentum operatorLz as function of the fluxsmagnetic
fieldd. scd Expectation valuekx2+y2l as function of the fluxsmag-
netic fieldd. The same type of symbols are used in all three figures
for curves corresponding to the same energy level.
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antivortex pair disappears. Notice that the vortex configura-
tions of Figs. 2sad and 2sfd belong to the same circular disk
level l =4, but the vortex configurations are rotated over 45°
with respect to each other. Similarly the vortex positions for
the other vortex configurations—before and after the
anticrossing—belonging to the same disk level are rotated by
f=45°.

Similar results can be seen for other anticrossings: vorti-
ces and antivortices are created in a way that the pattern
always reflects the square geometry. Another example de-
picted in Figs. 2sgd–2sld shows the transition froml =−1 to
l =3 and vice versa. The exit of the vortices happens again
through the cornersfFigs. 2sgd and 2shdg, leaving one anti-
vortex sl =−1d in the middlefFig. 2sidg, while the entry of
four vortices occurs through the edges of the samplefFig.
2skdg, creating a totall value of 3fFig. 2sidg.

Since the wave function has to be zero at the location of
the vortexsa vortex contains a phase singularityd, the pen-
etration or expulsion of vortices implies that the wave func-
tion also has to change continuously in order to let the vortex
pattern be modified. The expectation valuekx2+y2l as func-

tion of the magnetic field in Fig. 1scd shows this: it demon-
strates how the wave function—despite an increasing mag-
netic field—can become more extended in order to let the
vortices pass through the system. Only when the magnetic
field is large enough such that the confinement of the elec-
tron becomes determined by the magnetic field instead of the
square well, the value ofkLzl /" will no longer change. The
major changes inkLzl /" and kx2+y2l occur where the anti-
crossings in the spectrum are found.

B. Finite square well

The spectrum for the square well of finite heightV0/E0
=100 is shown in Fig. 5. It appears as a scaled version of
Fig. 1sad for the infinite well. In Fig. 5 the energy is lower
sbecause the particle is less confined than in the infinite welld
and the anticrossings are located at smaller magnetic field
values because the magnetic confinement will dominate the
potential confinement for lower magnetic fields. We can con-

FIG. 3. Zoom of the energy spectrum of the square wellsfull
linesd and the circular wellsdashed linesd. The current flow patterns
si.e., the vortex structured in the pointssad–sld are shown in Fig. 2.
The gray circle highlights a crossing in the spectrum that will be
discussed further in combination with Figs. 7–9.

FIG. 4. Position of a vortex–antivortex pair as function of the
flux smagnetic fieldd. The inset schematically shows the vortex pat-
tern and the set of vorticesscircled paird that was used to determine
the position in thex directionsthe y coordinate does not change in
that directiond. W is the side length of the square.

FIG. 2. Vortex patterns insad–sld for the infi-
nite square well. A clockwise current flowsi.e., a
vortexd corresponds tol = +1, while l =−1 corre-
sponds to a counterclockwise current flowsi.e. an
antivortexd.
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clude that the height of the barrier does not fundamentally
change the behavior of the energy spectrum.

Because now the electron wave function is different from
zero in the barrier it allows the appearance of vortices or
antivortices in the barrier region. Thus vortices will nucleate
in the barrier material which is very different from the infi-
nite well case where they can only nucleate at the edge of the
sample. This new behavior is illustrated in Fig. 6fcompare
with Figs. 2sad–2sfdg. But once the vortices enter the well
region their qualitative behavior is similar to the one we
found for the infinite well case.

C. Infinite rectangular well

In the previous paragraphs we focused on systems with a
C4 symmetryssquaresd. If we switch to rectangular wells we
reduce the symmetry of the confinement further. We consider
a system with surface areaW3Ws1−dd, where the param-
eter d defines the aspect ratio of the two sides of the rect-
angle. This reduced symmetry will influence the number of
anticrossings in the energy spectrum, which can be seen
clearly in Fig. 7. It shows how a pair of energy levels that
forms a crossing when the system is still a squaresd=0, see
gray circle in Fig. 3d changes to an anticrossing when the
symmetry of the system becomes rectangularsdÞ0, see gray
circle in Fig. 8d. The size of the level splitting in the anti-
crossing shown in Fig. 7 can be fitted to

DE/E0 = ad2 + bd + c, s5d

where a=26.69±0.92,b=21.81±0.29, andc=−0.01±0.02.
Since the system with reduced symmetry shows more anti-
crossings, we also expect a reduction in the symmetry of the
density. The inset of Fig. 7 shows a detail of two energy
spectra for different values ofd and we use these two cases
to study the density of both systemsssee Fig. 9d. The letters
sad–sdd in the inset in Fig. 7 indicate the corresponding wave
functions that were used to calculate the density, which is
shown in Fig. 9. It is clear that by changing the square to a
rectangular, the wave functions are not just squeezed into the
new geometry, but they change fundamentally: even the
number of maxima, zeros, and nodal lines change. In Fig.
9sad, we find 4 maxima and 5 zeros in the density arranged
along the diagonals of the square. This configuration changes
into 4 maxima along the diagonals of the rectangle, 4 zeros
arranged in a rectangle, and a line of zero probability at
y=0 fFig 9scdg. For the lower branchssee inset of Fig. 7d the
density consist of 4 maxima along thex=0 andy=0 lines
and one zero in the centerfFig. 9sbdg. When the aspect ratio
is d=0.3, this zero stays in the centerfFig. 9sddg, but now we
only find maxima along they=0 line and 4 submaxima on
the diagonal of the rectangle.

FIG. 5. Energy spectrum for an electron in a finite height square
well sV0/E0=100d as function of the fluxf=BSthrough the surface
S of the well. Note thatE0="2/2mSandf0=hc/ ueu.

FIG. 6. Vortex patterns insad–sdd for the finite height square
well. The wave functions that correspond to the points indicated in
Fig. 5 were used to make these plots. The square indicates the
boundary of the well.

FIG. 7. Energy difference between a pair of energy levels for
different values ofd. Inset: detail of the studied pair of energy
levels at different values ofd. The complete spectrum ford=0 and
d=0.3 can be found in Figs. 3 and 8, respectively, with a gray circle
indicating the studied crossing/anticrossing.

FIG. 8. Energy spectrum for an electron confined in a rectangu-
lar well sd=0.3d. The gray circle indicates the anticrossing that was
studied in Fig. 7.
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This sensitivity of the wave function on the geometry of
the sample is similar to what was recently found for the
single-particle Kohn–Sham orbitals in a density functional
theory study of rectangular QDs with few electrons in a mag-
netic field.25

D. Infinite triangular well

Another interesting case is the one with triangular sym-
metry. We consider an equilateral triangle of which the posi-
tion of the mesh points are rotated with respect to the triangle
in order to make sure that the position of the triangle does
not influence the numerical results. We first focus on the
energy spectrum that shows more anticrossings than the
spectrum of the square well as a consequence of the reduced
symmetryfFig. 10sadg. As we discussed in Sec. III A, anti-
crossings correspond to a change of the expectation values
kLzl /" and therefore the entry/exit of vortices in the system
will take place at these anticrossings. Therefore the vortex
pattern sFig. 11d and the expectation valueskLzl /" and
kx2+y2l have also been calculatedfFigs. 10sbd and 10scdg.

The wave functions corresponding to the indicated points
sad–sfd in Fig. 10sad were used to determine the vortex pat-

FIG. 10. sad Energy spectrum of an electron in an infinite high
triangular well placed in a magnetic fieldB perpendicular to the
surface, as function of the fluxf=BS through the surfaceS of the
triangle. f0 denotes the elementary flux quantumhc/ ueu and
E0="2/2mS. sbd Expectation value of the angular momentum op-
eratorLz as function of the fluxsmagnetic fieldd. scd Expectation
value kx2+y2l as function of the flux smagnetic fieldd.
W8=2/Î43W, whereW is the length of a side of the triangle. The
same type of symbols are used in all three figures for curves corre-
sponding to the same energy level.

FIG. 11. Vortex patterns in pointssad–sfd indicated in Fig. 10sad
for the triangular well.

FIG. 12. The energy levels as function ofb sthe parameter that
determines the boundary conditiond.

FIG. 9. Probability of the electron corresponding to pointssad–
sdd, which are indicated in the inset of Fig. 7. Highslowd density is
given by the darkslightd regions.
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terns shown in Fig. 11. The initial number of vortices in Fig.
11sad adds up to a total ofl =2. Figure 10sbd indicates that
the total l value for that energy level will diminish as the
magnetic field increases, which can be seen in Figs. 11sbd
and 11scd: three vortices exit the sample through the corners
of the triangle and leave one antivortex in the middle,
l =−1. Further increasing the magnetic field we expect a
strong increase of thel value in pointsdd findicated in Fig.
10sadg, because of the strong rise ofkLzl /" at f /f0<6. This
is illustrated in Fig. 11sdd where 6 vortices enter through the
sides of the triangle, bringing the totall value to 5. Beyond
this point, no additional vortices enter or exit the sample
anymore. As we expect, Figs. 11sed and 11sfd of the lower
energy level in Fig. 10sad show the opposite situation of Figs.
11sbd and 11scd: in Fig. 11sed we find one antivortex in the
middle and as the magnetic field increases, three vortices
enter through the edges of the sample, which results in a total
of l =2. Notice that we find a remarkable 60° rotation be-
tween the arrangement of exiting vortices in Figs. 11sad and
11sbd as compared to the entry of vortices in Fig. 11sfd. A
similar phenomena was found for the square sample in Fig.
2. Also notice how the vortex pattern keeps the 120° rota-
tional symmetry in all figures, which is a consequence of the
fact that the differential equation is linear. The latter implies
that the wave function has the same symmetry as the con-
finement potential.

IV. VON NEUMANN BOUNDARY CONDITIONS

A. One-dimensional well with Von Neumann boundary
conditions

To investigate the influence of the parameterb on the
energy spectrum of a 2D system, it is instructive to solve first
the Schrödinger equation for an electron in a one-
dimensionals1Dd well with the general boundary condition
n ·=c /c=b, wheren is the unity vector perpendicular to the
edge of the sample. The spectrum is obtained from the tran-
scendental equation

tanskWd =
2bk

b2 − k2 , s6d

wherek=Î2mE/"2. This transcendental equation has to be
solved numerically, but we discuss first some limiting cases.

s1d Limit b→−`: tanskWd=0⇒E="2p2n2/2mW2, which
corresponds to the energy levels for a 1D infinite well. This
case corresponds to the Dirichlet boundary conditions.

s2d Limit b→0: This results in tanskWd=0, which gives
the same resultE="2p2n2/2mW2, but with the fundamental
difference thatn=0 is also a solution.

s3d b.0: For positiveb values superconductivity is en-
hanced at the edges of the sample. Therefore it is possible to
havek= ik and this yields

sb2 + k2dtanhskWd = 2bk, s7d

In the situation of largekW we find that b2+k2−2bk
=0⇒k2=−b2, which means thatE=−"2b2/2m implying
negative energy values which are not possible in the Dirich-
let case. Note that Eq.s7d reduces to Eq.s4d of Ref. 19 for
largek values.

s4d Limit b→`: We can also have tanskWd=0⇒E
="2p2n2/2mW2 and these solutions are identical to the one
for the Dirichlet boundary conditions.

The numerical solutions to Eq.s6d for the 5 lowest levels
are given in Fig. 12 as function ofb. All the limiting cases
mentioned above can be found in the figure. Notice the re-
markable behavior of the two lowest levels forb.0 which
become degenerate and split off from the rest of the spec-
trum.

The wave functions of the ground state in Fig. 13sad illus-
trate more clearly what happens when we change the bound-
ary conditions. Forb→−` the wave function has to be zero
at the boundary of the wellsfull curved, andb→−` corre-
sponds to the Dirichlet boundary conditions. Forb=0
sdashed curved the derivative of the wave function has to be
zero at the edges. The lowest level wave function, which is
zero at the edges forb=−`, evolves continuously to a con-
stant function forb=0. For positiveb values, the wave func-
tion becomes strongly localized at the boundaries of the well

FIG. 13. Wave functions of the
ground sad, the first sbd, and the
secondscd excited state for differ-
ent values ofb. W is the width of
the well.

FIG. 14. Comparison of the effective critical temperatureffor
1D si.e., filmd and 2D si.e., squared confinementg with the critical
temperatureTc of the bulk superconductor as function of the bound-
ary conditions, indicated by the parameterb.
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sdotted curved. In Figs. 13sbd and 13scd we show the wave
function of the first two excited states. These figures make it
physically understandable why forb@0: sid the two lowest
levels become degenerate, andsii d why the second excited
state has an energy which is equal to the ground state energy
for b!0.

The ground state energy level presented in Fig. 12 can be
used in the context of superconductivity. In the linearized GL
equation,asTd corresponds to the energy we obtained in the
1D Schrödinger equation. We find the following relation be-
tween energy and critical temperatureTc

* :

E

E0
= S W

js0dD
2S1 −

Tc
*

Tc
D ; E0 =

"2

2mW2 . s8d

Here we replacedT by Tc
* , the effective critical temperature

of the superconductor, because the linearized GL equation is
valid exactly at the superconducting-normal phase boundary.
This implies that the temperatureT corresponds to the effec-
tive critical temperatureTc

* . Using the ground state energy,
which is the energy level of significance for superconductiv-
ity, we obtain Tc

* shown in Fig. 14. The effective critical
temperatureTc

* of the mesoscopic sample is compared to the
critical temperatureTc in bulk material. Notice that for nega-
tive values ofb we find thatTc

* ,Tc, thus superconductivity
is reduced, while for positiveb valuesTc

* .Tc, which indi-
cates enhancement of superconductivity. These results are
valid for superconducting films, where the confinement is
one-dimensional.

B. Two-dimensional square well with Von Neumann boundary
conditions (no magnetic field)

Since the 2D potential wellswithout an applied magnetic
fieldd is equivalent to two decoupled 1D wells, we can use
the results of the 1D well to obtain the results for the 2D

system. Figure 15 shows the energy spectrum for the 2D well
for sad negative andsbd positiveb values. This spectrum can
be directly obtained from the 1D casesFig. 12d because of
the separability of the variables:Esnx,nyd=Enx

+Eny
where

Eni
is the 1D energy level as depicted in Fig. 12. Theb.0

spectrum shown in Fig. 15sbd needs extra discussion. Each
branch consists of 4 levels. The lowest branch is constructed
from the statessnx,nyd=s1,1d ,s1,2d ,s2,1d ,s2,2d where the
middle two, i.e.,s1,2d and s2,1d, are degenerate. The next
branch consists of two energy levels which are each twofold
degenerate:s1,3d, s3,1d, s2,3d, s3,2d.

Only the ground state of the energy spectrum is significant
for the superconducting/normal boundary. Figure 14 shows
the link between the temperature and the boundary condi-
tions sparameterbd. Notice that there are two different cases:
negative values ofb corresponding toTc

* ,Tc, thus super-
conductivity is reduced, while forb.0 we haveTc

* .Tc,
which implies enhancement of superconductivity. For 2D
confinement the effect of the parameterb on Tc

* is larger than
in 1D, i.e., superconducting film, case, which was already
previously demonstrated in Refs. 19 and 20.

C. Two-dimensional square well with Von Neumann boundary
conditions (with magnetic field)

Adding a magnetic field makes the situation a lot more
complicated and forces us to use numerical techniques to
calculate the energy spectrum. Our numerical approach en-
ables us to calculate the energy spectrum as function of the
applied magnetic field for any value ofb. A similar study for
circular wires was presented in Ref. 26. Figure 16 shows the
result of the numerical calculations and displays the energy
spectrum for a positivesb=1d and a negativesb=−1.25d
value ofb. The ground state in these figures shows an oscil-
lating behavior. If we link the energy to the parameterasTd,

FIG. 15. Spectrum as function of the param-
eter b for a square sample. Note that
E0="2/2mS.

FIG. 16. Spectrum as function of the fluxf
through the surfaceS of the square well for
sad b=−1.25 and sbd b=1. The units are
E0="2/2mSandf0=hc/ ueu.
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we find oscillations in the superconducting-normal phase
boundarysFig. 17d. At zero magnetic field we can already
see thatb=1 corresponds to enhanced superconductivity
sinceTc

* /Tc.1, while b=−1.25 clearly illustrates that these
boundary conditions cause a reduced effect on superconduc-
tivity. By calculating the expectation value of the angular
momentum operatorLz for this system, we find that every
oscillation corresponds to the entry of a vortexsl value indi-
cated in Fig. 17d: as the magnetic field increases, vortices
gradually penetrate the sample and will eventually destroy
superconductivity, no matter how low the temperature.

The phase diagram for an arbitrary value ofb is shown in
Fig. 18, where the number of vortices at the S/N boundary in
a superconducting square are indicated. Alternatively, we can
divide the plane into a part where the sample is supercon-
ducting and a part where it is in the normal phase which is
shown by the dashed line in Fig. 18. The dashed line which
separates both regions depends on the size of the sample. In
Fig. 18 we tookW/js0d=5. The current patterns that corre-
spond to thel values in Fig. 18 are shown in Fig. 19. For
l =2 and l =6, a double quantized vortex, i.e., a giant
vortex,27 appears in the center of the sample. Such giant
vortices were recently experimentally observed in Ref. 28.
For a givenl value only a single pattern is found at the S/N
boundary, but the pattern becomes more compact asb de-
creases. Figure 19 shows how the symmetry of the square is
preserved in the vortex pattern. Forl =3 andl =7 this can be
realized by adding antivortices. Such geometry induced an-
tivortices were predicted in Ref. 8 but have, up to now, not
been observed experimentally. A probable reason17 is their

small stability region when one moves away from the S/N
boundary. Notice that by decreasingb, the ground state
evolves to a state that contains no vorticessl =0d, which is
the case for the ground state of an electron in a QD that is
found for b→−`.

V. CONCLUSIONS

We found that confinement and boundary conditions play
an important role in the properties of mesoscopic samples. It
strongly influences the vortex pattern and the eigenenergies.

The vorticity number, the expectation value of the angular
momentum operatorLz and the energy spectrum are closely
related to each other for all the studied cases of QDs. The
energy spectrum of the QD exhibits more anticrossings as
the symmetry is reduced, this is translated into a step in the
value ofkLzl /" which in turn corresponds to a change of the
vorticity number l. Therefore, fundamental changes in the
vortex pattern occur for lower symmetry samples with varia-
tion of the magnetic field. The vortex pattern undergoes
changes near every anticrossing of energy levels. By chang-
ing the magnetic field, vortices and antivortices are created
in such a way that the symmetry of the sample is reflected in
the vortex pattern as agrees with Ref. 10.

Furthermore, critical parameters for superconductors can
be influenced by changing the boundary conditions and the
applied magnetic field. For example, we found that the ef-

FIG. 18. Phase diagram for the vorticity of a mesoscopic super-
conductor at the S/N boundary.b is the parameter determining the
boundary conditions,f=BSandf0 is the elementary flux quantum.
The dashed line separates the superconducting phasesSd with the
normal phasesNd and is drawn forW/js0d=5.

FIG. 17. Superconducting—normal state phase boundary for
b=−1.25sleft curved andb=1 sright curved for the case of a square
with width W/js0d=5.

FIG. 19. Schematic vortex patterns for differ-
ent values ofl. Only a small part of the square
with W/js0d=5 near the vortex pattern is shown.
A counterclockwise rotation corresponds tol =1,
a clockwise rotation tol =−1 sRef. 29d. The
double circle in the case ofl =2 andl =6 indicates
a giant vortex which caries two flux quanta.
These patterns can be found in areas with corre-
spondingl-value in Fig. 18.
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fective critical temperature of the sample depends on the
boundary conditions and can be diminishedseffective critical
temperature lower than the bulk critical temperatured or en-
hancedseffective critical temperature larger than the bulk
critical temperatured. As function of the magnetic field the
effective critical temperature at the S/N boundary exhibits an
oscillatory behavior reminiscent of the stepwise increase of
vorticity in the sample. In order for the symmetry of the

sample to be reflected in the vortex pattern, which is a con-
sequence of the linearity of the GL equation, giant vortices
and antivortices have to be added.
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