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We study the influence of thermal fluctuations on the magnetic behavior of square mesoscopic supercon-
ductors. The strength of thermal fluctuations are parametrized using the Ginzburg number, which is small
�Gi�10−10� in low-Tc superconductors and large in high-Tc superconductors �Gi�10−4�. For low-Tc meso-
scopic superconductors we found that the metastable states due to the surface barrier have a large half-life time,
which leads to the hysteresis in the magnetization curves as observed experimentally. A very different behavior
appears for high-Tc mesoscopic superconductors where thermally activated vortex entrance/exit through sur-
face barriers is frequent. This leads to a reduction of the magnetization and a noninteger average number of
flux quanta penetrating the superconductor. The magnetic field dependence of the probability for the occur-
rence of the different vortex states and the fluctuations in the number of vortices are studied.
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I. INTRODUCTION

In the last decade, the study of vortex matter in finite
mesoscopic superconductors attracted a lot of attention, both
experimentally1–10 and theoretically.11–19 Most of the experi-
mental studies on mesoscopic superconductors deal with
conventional low-Tc superconductors. Resistivity measure-
ments are widely used to obtain information on the
superconducting/normal transition.1–4 With ballistic Hall
magnetometry it is possible to measure deep inside the su-
perconducting phase diagram and to obtain information on
the magnetization of the different superconducting states.5–8

Recently, Kanda et al. developed the multiple-small-tunnel-
junction method to distinguish between multivortex and gi-
ant vortex states in mesoscopic superconductors.9,10 Theo-
retically, studies of the Ginzburg-Landau free energy11–17 and
the time-dependent Ginzburg-Landau equations18,19 have
shown how the magnetic and dynamics properties depend on
the sample sizes and geometry. In particular the mesoscopic
samples can develop Abrikosov multivortex states12 and de-
pending on the size of the sample it is possible to observe
first or second order transitions.11 One interesting character-
istic of the magnetic properties of mesoscopic superconduct-
ors is the behavior of the dc magnetization curves. In meso-
scopic superconductors there is a reinforcement of the
surface barrier for entrance and exit of vortices.13,14,18 The
surface barriers allow for the existence of metastable states
of constant vorticity as a function of magnetic field and lead
to a magnetization curve with discontinuous jumps, which
have been observed experimentally.5 All these results are for
conventional low-Tc superconductors, where the effects of
thermal fluctuations are generally small.

A very different situation occurs in macroscopic high-Tc
superconductors where the effects of thermal fluctuations are
important. In particular, fluctuations affect the dynamics of
vortex entrance through the surface barriers.20–24 Recently,
there has been interest in the study of the magnetic properties
of micron-sized high-Tc superconductors.25,26 Single fluxoid
transitions and two-state telegraph noise was measured in
thin film rings at temperatures close to Tc.

26 The fluxoid

transitions were explained by thermally activated penetration
of vortices.

The magnetic and dynamic behavior of mesoscopic super-
conductors is greatly influenced by surface barriers and ge-
ometry effects.13,14,17,18 As a consequence, thermal fluctua-
tions in mesoscopic high-Tc superconductors could lead to
interesting phenomena due to thermally activated vortex
entrance/exit through surface barriers.

In the present paper we study the effects due to thermal
fluctuations on the vortex entry in square mesoscopic super-
conductors. We solve numerically the time-dependent
Ginzburg-Landau equations taking into account demagnetiz-
ing effects and thermal noise fluctuations. The strength of
thermal noise fluctuations is parametrized by the Ginzburg
number. For conventional low-Tc superconductors the Gin-
zburg number is small, while for high-Tc superconductors
this parameter is large. We compare results obtained from the
minimization of the mean field free energy, corresponding to
the equilibrium states in the absence of thermal fluctuations,
with the results from the time-dependent Ginzburg-Landau
�TDGL� dynamics with small Ginzburg number �correspond-
ing to conventional low-Tc superconductors� and the results
for TDGL dynamics with large Ginzburg number �corre-
sponding to high-Tc superconductors�. The magnetization,
the number of vortices, the free energy, etc., are calculated in
each case. We find very good agreement between the results
of free energy minimization and the results of TDGL with
small Ginzburg number. In the case of a large Ginzburg num-
ber the TDGL approach gives different and new results for
the magnetization and the vortex dynamics.

The paper is organized as follows. In Sec. II we give the
two theoretical formalisms used in the present paper. First
we describe how we solve the TDGL equations, obtaining
the magnetic fields via the Biot-Savart law and including
thermal fluctuations. Second, we describe the solution of the
stationary Ginzburg-Landau equations, when the magnetic
field is solved via Ampere’s law. In Sec. III the results of the
TDGL theory are compared with the ones of the stationary
GL theory. In a first step, we neglect the thermal fluctuations
and compare the results both at zero and finite temperature.
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In a second step, we include thermal fluctuations in our cal-
culations and compare the results with small and large Gin-
zburg number. Finally, in Sec. IV we present our conclu-
sions.

II. THEORETICAL FORMALISM

A. Time-dependent Ginzburg-Landau theory

We solve the time-dependent Ginzburg-Landau equations,
in the gauge where the electrostatic potential is zero, and
taking into account thermal fluctuations �see Refs. 27 and
28�, i.e.,

��
−1��

�t
= −

�G
��* + ���r�,t� , �1�

�A
−1�A�

�t
= −

�G

�A�
+ ��A�r�,t� , �2�

where � is the order parameter and A� the vector potential.
��=2mD /�2 and �A=c2 /�n are kinetic coefficients where
�n is the quasiparticle conductivity and D is the electron

diffusion constant. ���r� , t� and ��A�r� , t� are Langevin thermal
noise with average ����= ��A�=0 and the following
correlations:27,28
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The difference G between the superconducting and the
normal state Gibbs free energy is given by
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To include demagnetization fields, the magnetic term in G
�last term� must be integrated inside and outside the sample
volume. The differential equations �1� and �2� must be solved
in the whole space.

Taking the variations in Eqs. �1� and �2�, the normalized
TDGL equations become18,19,27,29,30
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Lengths have been scaled in units of the coherence length

��0�, times in units of t0=4
�n�L
2 /c2 , A� in units of

Hc2�0���0� , � in units of ��= 
mc2 /8
e2��T�2�1/2 and tem-
perature in units of Tc. � is equal to the ratio of the charac-

teristic time t0 for the relaxation of A� and the time tGL for the
relaxation of � :�= tGL/ t0=c2 / �4
�n
2D�, with tGL=�2 /D.
For superconductors with magnetic impurities we have
Dimp=c2 / �48
�n
2�, and therefore �=12 in this case.

The normalized thermal noise correlations are
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is the Ginzburg number31,32 that governs the strength of ther-
mal fluctuations. Gi measures the relative size of the minimal
�T=0� condensation energy Hc

2�0��3�0� within a coherence
volume and the energy of thermal fluctuations at Tc , kBTc.
For conventional low-Tc superconductors Gi�10−8 and for
high-Tc superconductors Gi�10−4 �see Ref. 32�.

Equation �7� is Ampere’s law, i.e.,

J� = 
2 � � � � A� , �11�

where J� is the current inside the sample,

J��r�� = J�n�r�� + J�s�r�� + ��A�r�,t� , �12�

J��r�� = −
�A�

�t
+ �1 − T�Im
�*��− iA� ��� + ��A�r�,t� . �13�

Jn is the current due to the normal electrons, J�n=�nE� , and Js
is the supercurrent.

The Biot-Savart law relates the magnetic induction B�

= � �A� , the applied magnetic field H� a and the sample cur-
rents,

B� �r�� − H� a =
1

4

2 � J��r��� �
r� − r��

�r� − r���3
d3r��, �14�

B� �r�� − H� a = �
A

Q�r�,r���g�r���d3r��. �15�

This equation states that the magnetic field is completely
determined by the externally applied field Ha and by the
currents flowing inside the sample 
which are given by
g�r����. The scalar function g�r��� is the local magnetization or
density of tiny current loops and is given by33

J��x,y� = − ẑ � � g�x,y� = � � ẑg�x,y� . �16�

This guarantees that � ·J� =0.
The kernel Q can be obtained from the Biot-Savart law. In

the dipolar approximation, i.e., for long distances, �= �r�−r���
and Q=−1/4
�3.
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Then g�r�� and Q�r� ,r��� have all the information that we
need to include the demagnetization fields 
and Q�r� ,r��� is a
known and time-independent kernel�. If we write the TDGL
equations in terms of g�r��, and we use the Biot-Savart law,
we only need to solve the differential equations inside the
sample volume and the demagnetization fields are automati-
cally included.34 On the other hand, we can also solve Am-
pere’s law retaining the three-dimensional �3D� nature of the
magnetic field distribution. Both methods are equivalent for
steady-state magnetic phenomena �� ·J=0� when the Biot-
Savart and Ampere’s laws are equivalent.35

In the present paper we will deal with square samples
with thickness d�d���. In this case, the order parameter and
g�x ,y� can be assumed to be uniform in the ẑ direction.
Using the Biot-Savart law it is only necessary to write the
TDGL equations for a two-dimensional �2D� sample,34 i.e.,

��

�t
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�

�1 − T���1 − ���2� − �− i�2D − A� �2�� +

���R� ,t�
�1 − T

,

�17�

�A�

�t
= �1 − T�Im
�*��2D − iA� ��� − � � ẑg + ��A�R� ,t� ,

�18�

Bz�x,y� − Ha = �
A

Q�R� ,R� ��g�R� ��d2R�, �19�

where R� = �x ,y� and R� �= �x� ,y��. We assumed Ha � ẑ. To ob-
tain g�x ,y� we invert Eq. �19� at each time step using the
efficient conjugate gradient method.36

The boundary conditions for this problem, at the surface
of the superconducting sample, are

�− i�2D − A� ���n = 0, �20�

g�b = 0. �21�

B. Stationary Ginzburg-Landau theory

To calculate the equilibrium states we minimize the mean-
field free energy without thermal fluctuations and retain the
three-dimensional magnetic field distribution. The system of
GL equations, using dimensionless variables and the London

gauge � ·A� =0, has the following form:11,12,17

�− i�2D − A� �2� = ��1 − ���2� , �22�

− �3DA� =
d


2��z�j�2D, �23�

where

j�2D =
1

2i
��*�2D� − ��2D�*� − ���2A� , �24�

is the density of superconducting current. The order param-
eter satisfies the boundary conditions

�− i�2D − A� ���n = 0. �25�

The boundary condition for the vector potential in Cartesian
coordinates becomes

A� ��x�=Rs,�y�=Rs
= H0�x,− y�/2, �26�

at the boundary Rs of a larger space grid.
Here the distance is measured in units of the coherence

length �, the vector potential in c� /2e�, and the magnetic
field in Hc2=c� /2e�2=
�2Hc. The superconductor is placed
in the �x ,y� plane, the external magnetic field is directed
along the z axis, and the indices 2D, 3D refer to two- and
three-dimensional operators, respectively.

III. RESULTS

We will compare the results obtained from minimization
of the GL free energy �with magnetic fields solved via Am-
pere’s law� with the stationary states obtained from the dy-
namics of the TDGL equation �with magnetic fields solved
via Biot-Savart law�. We study the influence of the square
symmetry restrictions on the vortex entrance in square
samples. In a first step we will neglect the thermal fluctua-
tions and we will investigate vortex states in mesoscopic
superconducting squares at T=0 and T=0.7Tc, both within
the time-dependent GL theory and within the stationary GL
theory. In a second step we will take into account the thermal
fluctuations in the TDGL theory and again we will compare
the obtained results with the ones from the stationary GL
theory. Such a comparison will be performed both for con-
ventional low-Tc and for high-Tc superconductors. In the last
part we focus on the time average of the order parameter
���m

2 and the number of vortices Nv for low and high-Tc
superconductors.

A. No thermal fluctuations

First we consider superconducting squares with Gi=0, for
which, thermal fluctuations are not taken into account. Fig-
ure 1 shows our results as a function of the applied magnetic
field for a superconducting square with sides equal to W
=10��0� and thickness d=0.1��0�. The GL parameter equals

=1 and temperature T=0.

Throughout the paper, we will show results of the appar-
ent magnetization defined as 4
Ma= �Bz�−Ha. The real mag-
netization is equal to 4
M = �Bz�−H where H is the internal
magnetic field that can also be written as H=Ha− �4
M�N
where N is the demagnetization factor that depends on the
sample geometry. However, Ma is what is measured experi-
mentally.

The square symbols in Fig. 1�a� give the results of the
apparent magnetization, corresponding to the “ground state”
�global minimum of the mean-field free energy� as calculated
within the stationary GL theory. The ground state vortex
transitions are found calculating the free energy of all the
possible �metastable� vortex states that are shown in Fig.
1�b�. The inset is a zoom of the free energy at low fields. The
different branches correspond to different values of the total
vorticity,
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Nv =
1

�0
� 
A +

Js

���2�dl .

Then, according to the global minima of the free energy, the
vorticity changes always by one unit ��Nv=1�.

In Fig. 1�c� we study the behavior of the apparent mag-
netization within the framework of the TDGL theory. The
triangles show the behavior for increasing ��� and decreas-
ing ��� field. Notice that the transitions while increasing the
field or decreasing the field do not occur at the same field
values, i.e., the penetration field �Hp� differs from the expul-
sion field �He�. This hysteresis is due to the surface
barrier.14,18 With increasing and decreasing field we see that
the vorticity changes by four and minus four at the transi-
tions, which means that the vortices enter or leave the sample
by four, i.e., one vortex through each side of the square. This
is shown more explicitly in Fig. 1�d� where the total vortic-

ity, i.e., the number of vortices inside the sample, are plotted
as a function of the applied magnetic field. Of course, fol-
lowing the ground state free energy, the vorticity changes
always by one unit. The fact that in the TDGL results the
vorticity changes by four at the transitions means that, in this
case, there is not a simple dynamical path to break the square
symmetry in the system during the field sweep. The close
circles ��� in Fig. 1�c� are the −Ma /Hc2�T� values corre-
sponding to the metastable states with vorticity equal to a
multiple of four as calculated within the stationary GL
theory. Notice that the values of −Ma /Hc2�T� obtained using
the TDGL and stationary GL theory are similar for the same
number of vortices.

Next, we investigate the influence of finite temperature
neglecting the thermal fluctuations, i.e., Gi=0. Figures
2�a�–2�c� show the same as Figs. 1�b�–1�d�, but now at tem-
perature T=0.7Tc. When we increase the temperature, both
��T�=��0� /�1−T /Tc and ��T�=��0� /�1−T /Tc increase and
the size of the sample decreases measured in units of
��T� 
��T=0.7Tc� /��0�=1.83�. In this case less vortex pen-

FIG. 1. Results at Gi=0 and T=0. �a� The squares ��� show the
apparent magnetization corresponding to the energy ground state
and the straight lines the Ma results of all the metastable states. �b�
Gibbs free energy of the different vortex states, the inset is a zoom
at low fields. Apparent magnetization �c� and the number of vortices
�d� calculated with the TDGL equations, when increasing ��� and
decreasing ��� the external magnetic field. The arrows show the
vortex transition with TDGL.

FIG. 2. Similar results as Fig. 1 but now at T=0.7Tc and Gi

=0. �a� Apparent magnetization, Ma. The results obtained minimiz-
ing the mean-field GL free energy ��� are compared to the dynami-
cal results calculated with the TDGL equations, when increasing
��� and decreasing ��� the external magnetic field. �b� The total
vorticity vs Ha for the same cases as in �a�. �c� Gibbs free energy of
the different vortex states as a function of Ha.
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etration events are necessary to arrive to the normal state.
Notice that this is what happens in a typical experimental
situation when the temperature is increased. The main differ-
ence with the zero-temperature situation is that in the present
case the vorticity changes with �Nv=2 for increasing mag-
netic field while the vorticity changes with �Nv=−1 in most
transitions for decreasing Ha. This behavior is different from
the results obtained in Fig. 1�d� because of the small size of
the sample as compared to ��T�. For example, in Fig. 2�b� we
plot the number of vortices for increasing ��� and decreasing
��� the magnetic field and we compare these results with the
vorticity of the energy ground state ���. The arrows show
the vortex transitions with TDGL. In Fig. 2�b� we see the
presence of hysteresis due to metastable states.

B. Thermal fluctuations

Next, we include thermal fluctuations, i.e., Gi�0 in Eq.
�10�.

It is known that the free energy minima results obtained at
temperature T1 can be rescaled and will be equal to the free
energy minima results of an “equivalent” system at a differ-
ent temperature T2�T1. To be equivalent the systems must
have the same size measured in units of ��T� and the same 
.
In Fig. 3�a� we compare the ground state apparent magneti-
zation results for two situations, �i� a square with sides W
=10��0� and thickness d=0.1��0� at T=0, and �ii� for a
square with W=10��T� and d=0.1��T� at T=0.7Tc for Gi

=10−10. As the size of the system is the same measured in
��T� the latter results can be compared if we normalize the
field by the temperature-dependent Hc2�T�, as we did in Fig
3�a�. We see that thermal fluctuations have broken the sym-
metry restrictions for vortex entrance and in this case �Nv
=2 for Ha�0.8Hc2�T� and �Nv=1 for Ha�0.8Hc2�T�, while
�Nv=4 when neglecting the thermal fluctuations 
see Fig.
1�a��. Even when �Nv=1, the dynamic TDGL results for
−Ma �open symbols� do not follow in detail the −Ma curves
obtained from free energy minimization �solid symbols�.
This behavior will be more clear in Fig. 3�b� in case of a
smaller sample.

In Fig. 3�b� we show the apparent magnetization as a
function of the applied magnetic field for a square with sides
equal to W=10��0� and thickness d=0.1��0� at T=0.7Tc for
Gi=10−8, i.e., a conventional low-Tc superconductor. The
square symbols and the solid curves are the apparent magne-
tization for the ground state and the metastable states as cal-
culated within the framework of the stationary Ginzburg-
Landau theory. The triangles indicate the results with
increasing ��� and decreasing ��� field when using the time-
dependent Ginzburg-Landau theory, taking into account the
thermal fluctuations. For this system size and Gi=10−8 the
TDGL results with increasing and decreasing magnetic field
show that �Nv=1. But, even though �Nv=1, there is still
hysteresis in the −�Ma� curve for such a conventional meso-
scopic low-Tc superconductor. The system clearly does not
follow the mean field free energy minima behavior. Notice
that there is a rather good agreement between the results
from the TDGL theory and the stationary GL theory, both for
the values of −Ma and for the transition fields.

Even when the thermal fluctuations are weak, as in Fig.
3�b�, it is expected that for a sufficient long simulation time
the apparent magnetization would relax until the ground state
is reached. In this case, the relaxation of the magnetic flux is
related with the possibility that vortices overcome the sur-
face barrier by thermal activation. In our simulations we al-
low the system to relax during 250 000 time steps with �t
=0.0045t0, which gives the system the possibility to relax
during t=1125 t0�0.1 �s. However, the hysteresis in the
apparent magnetization curve is also observed experi-
mentally5 in mesoscopic low-Tc superconductors. Conse-
quently, we can conclude that the half-life time of the meta-
stable states is very large in low-Tc superconductors even in
comparison with the usual experimental times.

Next, we repeat the calculation for the same sample as in
Fig. 3�b�, but now including thermal fluctuations of strength
corresponding to a high-Tc superconducting material �Gi

=10−5�. The results are shown in Fig. 3�c�. We see that the
first two penetration fields obtained from the TDGL equa-
tions agree very well with the ones resulting from the mean-
field free energy minima. This means that the effect of the
surface barrier is almost suppressed here, once we allow the

FIG. 3. Results obtained including thermal fluctuations for T
=0.7Tc. �a� Gi=10−10, �b� Gi=10−8, and �c� Gi=10−5. The system
size in �a� is W=10��T�, d=0.1��T� and in �b� and �c� W
=10��0� , d=0.1��0�. The triangles are for increasing ��� and de-
creasing ��� the magnetic field and the solid squares are the results
corresponding to the mean field ground states.
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system to relax a short time. On the other hand, the strong
thermal fluctuations decrease the −�Ma� values in Fig. 3�c�,
with respect to the mean-field values. Below the first pen-
etration field, in the Meissner state, the magnetic flux inside
the sample �BW2� depends only on the penetration length.
Therefore, in the Meissner branch of figure Fig. 3�c� we can
deduce from the slope of Ma�Ha� what appears to be an
increase in � induced by thermal fluctuations. In fact, it is
known that thermal fluctuations can induce an increase of the
effective London penetration length in high-Tc superconduct-
ors �see, for example, Ref. 37�, which is a consequence of
the renormalization of the superfluid density due to thermal
fluctuations, since �eff

2 =mc2 / �8
e2����2��.
In order to understand these effects in Fig. 3�c�, we inves-

tigate the time average of the order parameter ����2� and the
time variations in the number of vortices 
Nv�t�� for low- and
high-Tc superconductors, with Gi=10−8 and Gi=10−5, re-
spectively. In Figs. 4�a� and 4�c� we show ����2� along the x
direction, i.e., from the middle of one side to the middle of
the opposite side of the square, for two values of the applied
magnetic field, Ha=0.42Hc2�T� and Ha=0.75Hc2�T�. We ob-
tain the following results: for Gi=10−8 the number of vorti-
ces do not change in time and the ����2��x� results ��� are
near to the mean field ones �Gi=0�. However, for Gi=10−5

we observe that ����2��x� ��� is lower than the mean field
�MF� result and the number of vortices fluctuates in time.

The field Ha=0.42Hc2�T�, corresponds to the Meissner
state without vortices in the mean-field case, see Fig. 3�b�.

For Gi=10−8 we also obtain that Nv�t��0 for all t. However,
for Gi=10−5 the number of vortices change in time. In Fig.
4�b� we plot a histogram of the different vortex states ob-
tained during 250 000 time steps. We see that the state with
Nv=0 is the most probable one, but that there is also some
probability to have jumps to other vortex states, mainly with
Nv= ±1. Thus the reduction of ����2� from the mean field
result for Gi=10−5 is a consequence of thermal fluctuations
which allow the nucleation of thermally induced vortex-
antivortex pairs38–41 as well as the entrance and exit of ther-
mally activated vortices. This leads to an increase of the
effective �, due to the lowering of ����2�.

Results similar to Figs. 4�a� and 4�b� are obtained in Figs.
4�c� and 4�d� for Ha=0.75Hc2�T�. Figure 4�c� shows that,
for Gi=10−8 ���, we have a vortex state with one vortex:
����2�=0 in the center of the sample where the vortex is
located. However, for Gi=10−5 ���, we observe that
����2��x� is different from zero in the center of the sample.
The corresponding vortex state histogram is shown in Fig.
4�d�. We see that the state with one vortex is the most prob-
able one but that there is also a finite probability for other
vortex states which contribute differently to ����2�. This
makes ����2��0 in the center of the sample. There are con-
tinuous entrances and exits of vortices and the time average
is a mixture of states with different vorticity.

More details about thermal activation of vortices can be
obtained by calculating the average number of vortices �Nv�,

FIG. 4. Time average of the
order parameter in the x direc-
tion, ���m

2 , for Gi=10−8 ��� and
Gi=10−5 ��� for �a� Ha

=0.42Hc2�T� and �c� Ha

=0.75Hc2�T�. �b� and �d� are his-
tograms of the different vortex
states obtained when Gi=10−8.
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�Nv� =
�t

tf − ti
�
t=ti

tf

Nv�t� , �27�

and the probability to have Nv=n vortices �P�Nv=n��,

P�Nv=n� =
�t

tf − ti
�
t=ti

tf

�Nv�t�;n, �28�

both magnitudes can be calculated if we know the number of
vortices in each time step Nv�t�. Where the sum in Eqs. �27�
and �28� are taken between two time values �ti and tf�, and
�Nv�t�;n is the Kronecker delta.

In Fig. 5�a� we plot the average number of vortices and in
Fig. 5�b� the probabilities to find a specific vortex state as a
function of the applied magnetic field. These results where
obtained during the magnetic field sweep up shown in Fig.
3�c� �Gi=10−5�.

In Fig. 5�a�, for Gi=10−5 ��� and small magnetic fields

Ha�0.7Hc2�T��, we see that �Nv� vs Ha follows the mean
field result 
Nv

MF�Ha�� ���. For Ha�0.7Hc2�T� the results are
different, except at the start of each step where �Nv�=Nv

MF.
For strong thermal fluctuations we see that the average num-
ber of vortices can change continuously and is frequently
larger than Nv

MF.
More details about the thermal activation of vortices can

be obtained calculating the probability to have Nv vortices
using Eq. �28�. In Fig. 5�b� we show the probabilities of the
different vortex states for Gi=10−5. The inset is a zoom of
the low magnetic field region in a logarithmic scale. Near
Ha=0, the probability of the zero vortex state is near one

�P�Nv=0��1� and we also see that P�Nv=1�� P�Nv=−1��0.01.
From the inset we find that for Ha�0.5Hc2�T� there is a
discontinuous jump down in P�Nv=0� and that at the same time
the probability of having Nv=1 increases abruptly. When this
happens we see that �Nv�=1 in Fig. 5�a�.

We also calculated the fluctuations in the vorticity 
Nv�t��
and the fluctuations in −Ma�t� /Hc2�0�. The fluctuations in the
magnitude of the apparent magnetization Ma�t� is obtained
through the relation

�Ma = ��Ma
2� − �Ma�2, �29�

where the mean values of Ma �i.e., �Ma� and �Ma
2�� are cal-

culated using the definition given in Eq. �27�.
The fluctuations are shown in Fig. 6. From Fig. 6�a� we

see that the fluctuations in the vorticity increase with increas-
ing field until the first penetration field, Hp1 �first dashed
vertical line�, where there is a remarkable decrease in the
number of vortex fluctuations. The fluctuations in Ma also
decrease at Hp1 as we can see from Fig. 6�b�. At the second
penetration field �second dashed line� in Fig. 6 the decrease
in the fluctuations at Hp2 is almost completely buried under
the thermal noise due to a continuous increase in the fluctua-
tions of the number of vortices with increasing field, as seen
in Fig. 6�a�.

IV. CONCLUSIONS

We studied the influence of the strength of thermal fluc-
tuations on the magnetic behavior of mesoscopic supercon-
ductors. In the absence of thermal fluctuations and surface
imperfections, we found that the vorticity changes by four at
the transition fields due to the symmetry of the mesoscopic
square sample. The surface barriers and the symmetry of the

FIG. 5. �a� Time average of the different vortex states obtained
for Gi=10−5 for increasing ��� and decreasing ��� the magnetic
field. The black squares ��� are the ground state results. �b� Prob-
ability of the different vortex states. The inset is a zoom at low
fields in a logarithmic scale.

FIG. 6. �a� Fluctuations in the number of vortices and �b� in
−Ma /Hc2�0� for Gi=10−5 corresponding to the situation of Fig. 5.
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sample produce hysteresis and metastable states.
In low-Tc mesoscopic superconductors, where thermal

fluctuations are small, we did not find thermally activated
entrance/exit of vortices through surface barriers. This result
agrees with experiments in low-Tc superconductors where
hysteresis in the penetration fields and metastable states were
found.

In low-Tc superconductors, small thermal fluctuations
however are enough to break the square symmetry restriction
to vortex entrance and less vortices penetrate at the same
field.

A different behavior was found when the strength of ther-
mal fluctuations is increased as is the case for high-Tc super-
conductors. In this case there are frequent thermally acti-
vated events of entrance/exit of vortices in agreement with
recent experimental results on micron-sized high-Tc super-
conducting thin film rings.26 We also found that thermal fluc-
tuations increase the effective London penetration depth if
we compare it with the mean field result.

In high temperature superconductors, the d-wave symme-
try of the ground state and the tetragonal symmetry of the
underlying crystalline structure can have an important effect
in some of their macroscopic properties. These have been
modeled by phenomenological Ginzburg-Landau or London
theories, containing mixed gradient couplings to an order
parameter with a different symmetry42,43 or additional quartic
derivative nonlocal terms.44,45 An important consequence of
this is that, at large magnetic fields, the equilibrium vortex
lattice deviates from the triangular Abrikosov lattice to a

square lattice, as it has been observed recently.46 Also the
possible effects in the individual structure of vortices in cu-
prates superconductors has been the subject of intense
research.47 In the case of mesoscopic high-Tc superconduct-
ors, the structure of the vortex configurations confined within
the geometry of the sample and the quantitative values of the
surface barrier and penetration fields could be affected by
such considerations. On the other hand, the qualitative phys-
ics of the thermally activated entrance/exit of vortices
through surface barriers should remain similar to the one
described here with the dynamics of the simple GL equa-
tions. In any case, more experimental and theoretical works
in this field are necessary. Therefore, the study of the physi-
cal properties of mesoscopic high-Tc superconductors can
contribute to the global understanding of these interesting
materials.
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