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The exact many-body wave function for small numbersN,5 of two-dimensional Coulomb-interacting
electrons trapped in a parabolic potential placed in a perpendicular magnetic field are investigated. The reduced
wave function of this system, which is obtained by fixing the positions ofN−1 electrons, exhibits strong
correlations between the fixed electrons and the zeros of the wave function. These zeros are often called
vortices. The wave functions are obtained from an exact-diagonalization scheme and the results are compared
with results obtained from the recently proposed rotating electron molecule(REM) theory. We find that the
vortices cluster around the fixed electrons and repel each other, which is the case to a much lesser extent for
the REM results.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect1

(FQHE) indicated the existence of a new state of matter cor-
responding to a novel type of strongly correlated quantum
many-body state. Already the first steps towards the under-
standing of this effect involved the addition of extra zeros to
the many-particle wave function in order to account for the
electron-electron correlation. The Laughlin wave function2 at
filling factor n=1/s2p+1d reads

C = p
j,k

szj − zkd2p+1expF−
1

4o
l

uzlu2G , s1d

where units are used such that the magnetic length is set
equal to unity. Here,z=x− iy is a complex number express-
ing the two-dimensional coordinates of the electrons. If one
fixes the coordinates of all electrons except one, the resulting
wave function will have zeros of order 2p+1 located at the
positions of all fixed electrons. The wave function(1) em-
bodies the strong correlation between the electrons as the
wave function(and the probability to find an electron) in the
vicinity of one of the fixed electrons vanishes more quickly
than prescribed by the Pauli exclusion principle alone. We
also note that in Laughlin’s wave function, all the zeros are
rigidly bound to the electrons and there are no free zeros. In
this respect, the wave function(1) is rather special since a
different distribution of zeros(e.g., around or between the
fixed electrons) would also be able to serve the purpose of
stronger correlation and reduced interaction energy.

In the subsequently formulated composite fermion(CF)
theory,3–5 the strong correlations were dealt with in a differ-
ent way, by introducing weakly interacting quasiparticles.
Also here, the zeros of the many-body wave function played
a central role. A zero in the wave function can also be inter-
preted as a vortex, i.e., when going around a zero its phase
changes by 2pn, and the winding numbern equals the order
of the zero. The new quasiparticles of the CF theory were
interpreted as electrons with an even number of vortices or
magnetic-field fluxes attached to them. When a particle
moves around a closed loop, it encircles the usual Aharonov-

Bohm flux due to the external magnetic field, which is partly
canceled by the vortices attached to the electrons. Therefore,
the quasiparticles can be regarded as moving in an effective
magnetic field which is much weaker than the applied mag-
netic field.

When constructing the CF wave function, a Jastrow factor
szk−zld2p was introduced for each pair of electron coordi-
nates, quite similarly to Laughlin’s wave function. Subse-
quently, the lowest-Landau-level(LLL ) projection procedure
was introduced with the consequence that the vortices are no
longer rigidly bound to the electrons. Thus, the relative dis-
tribution of zeros and electrons becomes less restrictive, and
their correlations in this composite fermion liquid were in-
vestigated numerically in recent papers.6–8

It is clear that zeros of the wave function are crucial to
understand several phenomena and therefore we investigate
in the present paper the electron-vortex correlations in a fi-
nite system by starting from exact many-body wave func-
tions obtained by means of a direct numerical diagonaliza-
tion. Our model system is a quantum dot containing a few
(up to four) electrons. Quantum dot systems with few elec-
trons have been studied extensively and even almost exact
results have been obtained; see, e.g., Ref. 9. Our numerical
results are compared to those obtained from the analytically
available rotating-electron-molecule10,11 (REM) wave func-
tions. This recently formulated theory is a competitor11 (or at
least an alternative) to the CF approach. It is derived from
a more solid theoretical background, and introduces no
a priori requirements on the positions of the zeros of the
wave function.

The REM wave functions are constructed as single unre-
stricted Hartree-Fock-Slater determinants and thus might
overlook correlations between single-electron orbitals cen-
tered at different localized electrons. In extended two-
dimensional(2D) systems, it was found12 that inclusion of
such correlations substantially improved the Hartree-Fock
result and led to the prediction that the Wigner crystal be-
comes the ground state at a filling factor belown< 1

7 in
accordance with the experiments.13 As a matter of fact, the
question of the experimental determination of the transition
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between the series of FQHE states and the Wigner crystal is
rather complex due to the possibility of multiple intersec-
tions on the nonmonotonous(as a function ofn) ground-state
energy curve of the FQHE liquid with a smooth dispersion of
the Wigner crystal. A series of FQHE states following the CF
states emanating fromn= 1

6 andn= 1
8 were observed14 even in

the realm of Wigner crystallization(down ton= 1
9), however

only at elevated temperatures, which allows for the interpre-
tation of the formation of FQHE states by melting the elec-
tron crystal. These facts confirm the relevance of the CF
model in the Wigner crystal regime. Yi and Fertig15 con-
structed crystalline states with Laughlin correlations. Since
incorporation of such correlations transforms electrons into
CFs, one is led to consider the Wigner crystal of composite
fermions.16 This work has resulted in the prediction of the
crystal energy gaps, in reasonable agreement with the
experiments.17

The paper is organized as follows. The model, numerical
procedure, and the REM wave functions are described in
Sec. II. The simple case of a two-electron quantum dot is
described in Sec. III. Three- and four-electron dots are the
subject of Secs. IV and V, respectively, and our conclusions
are given in Sec. VI.

II. COMPUTATIONAL PROCEDURE

Let us consider a parabolic quantum dot withN
=2, . . . ,4 electrons placed into a perpendicular magnetic
field of strengthB. We work with dimensionless oscillator
units,18 that is, lengths are measured in oscillator lengths
a0=s" /m* v0d1/2 and energies in"v0, wherev0 is the con-
finement frequency. Then the relative strength of the inter-
electron interaction is given by the dimensionless coupling
constantl=a0/aB

* expressed as a ratio of the oscillator length
to the effective Bohr radiusaB

* =«"2/e2m*. Here, « is the
dielectric constant of the medium andm* is the effective
electron mass. The magnetic-field strength is expressed
as a ratio of the cyclotron and confinement frequencies
g=vc/v0. The resulting dimensionless Hamiltonian

Ĥ =
1

2o
i=1

N F− ¹i
2 + S1 +

g2

4
Dr i

2G +
g

2
L + o

i,j=1

i. j

N
l

ur i − r ju
, s2d

is solved by direct diagonalization in the subspaces of given
angular momentumL, which is a good quantum number. The
results regarding the dependence of the ground-state angular
momentum on the confinement and the magnetic-field
strength for the case of four electrons in the dot were ana-
lyzed in Ref. 18. Throughout this paper we takel=2, which
is a typical value for experimentally realized quantum dots.19

We found that higher values ofl require longer calculations
times20 and did not result in new physics.

In the present work, we concentrate on the fully polarized
ground states and investigate the information encoded in the
corresponding ground-state many-body wave function,

Csr 1, . . . ,r Nd, s3d

or, to be more precise, on thereducedwave function, which

depends only on the position of one electron while the coor-
dinates of the remainingN−1 electrons are set to fixed val-
ues. Due to the Pauli principle, the reduced wave function
has zeros at the positions of the fixed electrons. There are
additional zeros which are not fixed at the electrons whose
distribution will be the main object of interest in the present
work. In order to locate the positions of the vortices, we first
locate the positions of the minima of the squared absolute
value of the reduced wave function using a standard proce-
dure of steepest descent from a randomly chosen initial
point. Then, by performing a walk along a small circle
around the located points and inspecting the change of the
phase of the wave function, we are able to distinguish actual
zeros from other minima and determine their order, i.e., the
winding number.

We complement the results obtained from the exact diago-
nalization (ED) by those given by the REM wave
functions.10,11 These functions are available analytically and
help to make some exact statements. These functions are
constructed by placing Gaussians at the classical positions of
electrons in strong magnetic fields and a subsequent restora-
tion of symmetry. For a small number of electronssNø5d,
the electrons crystallize into a single ring21 and the resulting
wave function of the angular momentumL reads11

CL = o
0øl1,l2,¯,lN

l1+¯lN=L Sp
j=1

N

l j ! D−1

3S p
1ø j,køN

sinFp

N
sl j − lkdGD

3Dsl1,l2, . . . ,lNdexpS− o
j=1

N

zjzj
* /2D . s4d

Here, zj denote the complex electron coordinates measured
in units lcÎ2 with lc=Î"c/eBbeing the magnetic length, and
D is the Slater determinant

Dsl1,l2, . . . ,lNd = detfz1
l1,z2

l2, . . . ,zN
lNg. s5d

The wave function describes spin-polarized states of angular
momentumL=L0+Nm whereL0=NsN−1d /2 is the smallest
possible angular momentum ofN spin-polarized electrons in
the lowest Landau level, andm is a non-negative integer.

Already from the general form of the REM wave function
(4), several conclusions regarding the distribution of zeros of
the reduced wave function can be drawn. First, as far as the
positions of zeros are concerned, the exponential factor in
Eq. (4) can be ignored, that is, zeros can be found from the
linear combination of the Slater determinants which expands
into a homogeneous polynomial10 PLfzg of order L. There-
fore, scaling the coordinates of all fixed electronszj →azj,
j =1, . . . ,N−1 results in scaling of the positions of zeros.
Moreover, the polynomialPLfzg is translationally invariant,10

therefore rigid shifting of the positions of the fixed electrons
by the same amount results in a rigid translation of the dis-
tribution of zeros in thezN plane. Due to the circular sym-
metry of the quantum dot, the distribution of wave-function
zeros is also invariant with respect to rotation of the system
as a whole.
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Regarded as a function ofzN, the order of the polynomial
PLfzg is qN=L−sN−1dsN−2d /2. This follows from the fact
that in order for one electron to occupy the orbital with the
largest possible angular momentuml, the remainingN−1
electrons must reside in the lowest possible momentum
states l =0,1, . . . ,N−2. Thus, according to a fundamental
theorem of algebra, the total number of zeros isL for two
electrons,L−1 for three electrons, andL−3 for a four-
electron system.

The question of the number of zeros obtainable from ex-
act diagonalization is more subtle. If the ED procedure in-
cludes only the single-electron states from the lowest Landau
level, the resulting wave function is a polynomial times a
Gaussian, i.e., it has a similar structure to the REM wave
function but the expansion coefficients are now determined
numerically. Thus, in the case of the lowest-Landau-level
approximation, we expect to find the same number of vorti-
ces as predicted from the REM wave function. However, if
higher Landau levels are included, the ED wave function
(with the exponential removed) involves Laguerre polynomi-
als of the argumentuzju2 and thus becomes nonanalytical.
This fact prevents us from making any exact statements re-
garding the total number of zeros. However, in the high-
magnetic-field limit, the lowest Landau-level approximation
becomes rather accurate and inclusion of higher Landau lev-
els modifies the calculated wave function only at large dis-
tances from the quantum dot center. Thus one may still ex-
pect to find the same number of zeros as predicted from the
earlier argument.

On the other hand, the nonanalyticity of the ED wave
function makes it possible to observe besides vortices also
antivortices, i.e., zeros around which the phase winds in the
opposite direction.

III. TWO-ELECTRON QUANTUM DOT

For the sake of completeness, we begin with the simplest
case of two electrons in a dot. We evalute the reduced wave
function in a ground state of angular momentumL=7 and
plot its phase as a function of the coordinates in Fig. 1. One
electron is fixed atsx,yd=s1,0da0. Different shades of gray
correspond to different values of the phase between −p and
p. Zeros of the wave function are located at the points where
the phase is not determined and the winding number indi-
cates the order of the zero. We see that in the present case we
have a single zero of seventh order located at the position of
the fixed electron.

This result can be easily understood by recalling that in a
parabolic confinement potential, the center-of-mass(CM)
motion and the relative motion can be separated. The CM
motion is not affected by the electron-electron interaction. In
the ground state, the CM motion is in its lowest state and its
wave function is just a Gaussian of the CM coordinate,
which does not lead to the appearance of any zeros. The
wave function of the relative motion at small values of the
relative coordinater =r 1−r 2 behaves as,rmeimf, where the
relative angular momentumm coincides with the total mo-
mentum L. Therefore, in the reduced two-electron wave
function, one always finds just a single “giant” vortex of
vorticity L.

Note that this situation is special to the parabolic confine-
ment case, and deviations from perfect parabolicity lead to
splitting of the multiple vortex to a system of several single
vortices. This was found in the reduced wave function of two
electrons in a confined trion22 where the nonparabolicity of
the potential felt by the electrons was due to the presence of
a nearby hole.

IV. THREE ELECTRONS IN A DOT

The locations of the zeros calculated with the ED method
for the N=3 case are shown in Fig. 2 for the spin-polarized
ground states up toL=21. The angular momenta of these
states are multiples of 3 as predicted by the magic number
theory.23 The two fixed electrons are located atsx,yd
=s±1,0dao. We observe that all zeros appear on a straight
line defined by the two pinned electrons(crosses in Fig. 2).
This result persists also when the two pinned electrons are
located off they=0 axis.

In the case ofL=3, we find only two vortices located at
the positions of the fixed electrons. Increasing the angular
momentum toL=6 results in the addition of three vortices.
One is placed between the fixed electrons and one on each
side. The total number of observed vortices in this case is
L−1, as predicted by the simple estimate. Proceeding to
higher angular momenta, we see that at each step one more
vortex is inserted between the fixed electrons. Whether or not
each time one extra vortex is added on each outer side of
the electrons is difficult to say. The reason is that at large
distances from the origin(typically r .4), the accuracy of
the wave function becomes insufficient due to the limited
basis set used in the numerical calculation. Inaccuracies may
result in “ghost” vortices. Therefore, the calculations were
limited to r <3.5 (beyond which the electron density be-
comes very small, i.e., typicallyuCu2,10−6) and some vor-
tices located outside this region may be overlooked. On the
other hand, for the REM method, all vortices can be found,
including those outsider ,4, which are indicated with ar-
rows in Fig. 3.

FIG. 1. The phase of the reduced wave function for two elec-
trons. One electron is fixed atr =s1,0d. The angular momentum of
the state isL=7 and we find a seventh-order zero located exactly at
the fixed electron. Lengths are measured in units ofa0.
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Addition of the new vortices between or on the outer side
of the fixed electrons leads to a rearrangement of the vortices
which were already present. The vortices are pushed towards
each other and in particular towards the fixed electrons. This

can be seen nicely forL=9, 12, 15, 18, 21 in Fig. 2, where
the pinned electrons(indicated by the crosses) are ap-
proached by two vortices, and later by four.

With increasingg, higher angular momentum states be-
come the ground state. Keeping the angular momentum fixed
and lettingg change shows that the effect of the magnetic
field on the positions of the vortices is surprisingly small. For
example, for theL=12 state the position of the vortex around
0.75 ranged from 0.74 to 0.76 for 0,g,15. This implies
that the position of the vortices is mainly determined by the
value of the angular momentum. Since we are not interested
in the exact position of the vortices but rather in their general
behavior and their interactions, from now on we will take
g=2.

In Fig. 3, we show the distribution of the zeros for the
same angular momenta and the same fixed electron positions
as in Fig. 2, but now obtained from the REM wave functions.
We see that most of the qualitative features are well repro-
duced, except for their positions in the case ofL.6. Note
that between the fixed electrons, the zeros are more uni-
formly distributed and the clustering around the electrons as
seen for the ED method is absent.

As a matter of fact, for the case of three electrons, the
positions of zeros in the REM theory can be calculated ex-
actly. Introducing the center-of-mass coordinatez̄=sz1+z2

+z3d /3 and two relative(Jacobi24) coordinates

za =Î2

3
Fz1 + z2

2
− z3G ,

zb =
z1 − z2

Î2
, s6d

and dropping the exponential factors in Eq.(4), the polyno-
mial part of the REM wave function can be written10 in a
particularly simple form

PLsza,zbd = sza + izbdL − sza − izbdL. s7d

Note that the three-electron problem has been solved almost
exactly for quantum dots9 and extended systems25 by intro-
ducing simple orthonormal bases for the relative motion. Al-
though generally additional diagonalization in these bases is
needed, it was found25 that the off-diagonal matrix elements
are typically an order of magnitude smaller and thus the in-
troduced basis states are rather good approximations of the
eigenstates. We observe that the three-electron REM wave
function defined by the polynomial of Eq.(7) coincides10

with the lowest basis functionum,0l introduced in Ref. 25.
Equating(7) to zero and taking theLth-order root, we find

za + izb = sza − izbdexps2pik/Ld, k = 1,2, . . . ,L − 1. s8d

Note that there areL−1 roots as the meaningless rootk=0
has to be omitted. Equation(8) is readily solved with the
result za=zbcotanspk/Ld, and using the specific valuesz1,2

=s±1,0d we find the positions of the roots

FIG. 2. The location of the zeros of the reduced wave function
in a three-electron quantum dot for different values of the angular
momentumL, calculated with the ED method. Two electrons are
fixed at r =s1,0d and r =s−1,0d. The zeros located on the pinned
electrons are indicated by crosses and the dots mark the free zeros.
Note that all zeros fall on a single straight line. Lengths are mea-
sured in units ofa0.

FIG. 3. The same as in Fig. 2 but now for the REM wave
function. The number of observed zeros is the same, however their
clustering around the fixed electrons is not seen. The arrows indi-
cate vortices which are outside the plotted region. They are only
indicated on the right side, but evidently are also present on the left
side. Note that for the REM result, lengths are originally measured
in units of lcÎ2, but can be perfectly rescaled to units ofa0 to match
the ED result.
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z3 = Î3cotanSpk

L
D, k = 1,2, . . . ,L − 1. s9d

Note that despite using the specific values for the coordinates
of the fixed electrons, this result is still general since employ-
ing the above-discussed symmetry properties of the REM
wave functions, any randomly fixed two-electron positions
(for N=3) can be mapped ons±1,0d.

The result given in Eq.(9) correctly predicts the appear-
ance of all zeros on a single straight line and reveals a simple
rule for their distribution. The angular momentum for which
the REM function is valid must be a multiple of 3, that is,
L=3n, with n being an integer. Therefore, among the roots
(9) there always are two(namely, k=n and k=2n) whose
positionsz3= ±1 coincide with the fixed electrons. Moreover,
these two solutions,k=n and k=2n, divide the interval
k=1, . . . ,L−1 into three equal parts. Thus, we can confirm
the rule which was already apparent in the ED results: every
time the angular momentum is increased by 3, three new
vortices enter the quantum dot, and one of them is placed
between the fixed electrons while the other two are on the
outer sides(some of the latter zeros are indicated outside the
plottedx region in Fig. 3). This is in agreement with our ED
results when we limit ourselves to theuxu,3.5 region.

Note that the analytic expression(9) obtained from the
REM theory fails to predict the clustering of zeros around
the fixed electrons. Namely, Eq.(9) suggests that the density
of vortices is largest aroundz3=0 and monotonically de-
creases to both sides. This is opposite to the ED result, which
clearly shows that the density of vortices tends to increase
around the fixed electrons and is somewhat lower right in the
middle between the two electrons. The REM approach is
unable to reflect the subtle interaction between the electrons
and the zeros, but at larger distances from the pinned elec-
trons it predicts the zeros at approximately the correct posi-
tions, as can be seen forL=6, 12, 18 aroundx=3.

V. FOUR ELECTRONS

In theN=4 case, the three pinned electrons can be placed
in many different ways. We consider three main configura-
tions: a half-square triangle(corresponding to the classical
positions in a Wigner crystal21), an equilateral triangle, and a
line configuration.

Figure 4 shows the positions of zeros corresponding to the
half-square triangle configuration, calculated with the ED
method. The pinned electrons are located atr =s±1,0d and
r =s0,1d, i.e., at the three corners of a square, and the con-
sidered angular momenta areL=6, 10, 14, 18, i.e., the ones
corresponding to the full spin polarization in the ground
state. One immediately notices that the positions of the zeros
of the wave function are arranged on rays(shown by the thin
lines in Fig. 4). Again, it is possible to spot a simple rule
analogous to the one obtained for the preceding three-
electron case that explains the location of the zeros. At the
lowest possible angular momentumL=6, there are three ze-
ros whose positions coincide with the pinned electrons. Each
time the ground-state angular momentum is increased by
four, four new zeros are added. One is placed inside the

triangle defined by the three pinned electrons and the other
three end up on the rays outside the triangle. In this case, we
looked at points up tor <4 from the origin, thus some of the
zeros are located outside this region, whereuCu2 is negligibly
small. One notices again that the free zeros seem to gather
around the pinned electrons, which is clearly seen, e.g., for
L=18. Note that theL=18 state corresponds to then= 1

3
Laughlin state following the formulan=fNsN−1dg2L. In Fig.
4, one can actually see three vortices(one attached to the
pinned electron and two free vortices) in the close neighbor-
hood of the pinned electrons. Our results are in agreement
with those of Saarikoskiet al.,8 who also found the addition
of a single vortex whenL increases to its subsequent allowed
value, inside the quantum dot(inside the area defined by the
fixed electrons).

The number of zeros inside the triangle formed by the
pinned electrons increases by one each time the angular mo-
mentum increases by four. So, forL=14 there are two zeros
located inside the triangle, and it is interesting to see how
their arrangement can agree with the external symmetry de-
fined by the pinned electrons when the half-square triangle is
transformed into an equilateral one. As can be seen from Fig.
5, instead of two zeros inside the triangle, four zeros are
formed. One of them is placed into the center and actually is
an antivortex(see the inset of Fig. 5 for a contour plot of the
phase of the wave function), while the other three vortices
are arranged on the vertices of an equilateral triangle, thus
the symmetry adapts to the external symmetry and the total
vorticity is preserved. Apparently this configuration is pre-
ferred over the merging of two zeros into a single one with
vorticity two (which would be sufficient to adapt to the sym-
metry). This phenomenon shows that the zeros do not like to
sit on the same spot, and there is a certain repulsion between
them, i.e., there is a clear tendency not to form vortices with
winding numbern.1. As a rule, we may state that we can
expect the formation of antivortices whenever the symmetry,
implied by the pinned electrons, forces vortices to come too
close to each other. This will be the case forL=26 in this
system, but it will also be the case in systems with more
electrons.

This result is in contrast with the REM result, which pre-
dicts that the two zeros inside the triangle join into one giant

FIG. 4. The location of the zeros of the reduced wave function
for four electrons for different angular momentaL, calculated with
the ED method. Three electrons are fixed atr =s±1,0d and r
=s0,1d forming a half-square configuration. Lengths are measured
in units of a0.
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vortex, as can been seen from Fig. 6 forL=14. Apparently,
the REM is not capable of describing the subtle interaction
between the zeros due to its restriction to analytic wave func-
tions. One also notes that again in REM there is no congre-
gation of zeros around the pinned electrons in Fig. 6, and as
for N=3 the vortices rather tend to accumulate in the center
between the electrons.

One may wonder how strongly the exact location of the
fixed electrons influences the positions of the vortices.
Therefore, we consider the case of a line arrangement of the
electrons. In Fig. 7, we show the location of the zeros for a
line configuration calculated with the REM method. The
three electrons are fixed atr =s±1,0d and r =s0,0d. Notice
that forL=14, there are two vortices between the electrons in
contrast to the previous cases shown in Figs. 4 and 6, where
only one vortex is situated in the area between the electrons.

The reason is that a single vortex would be located on top of
the middle electron. The system tries to prevent having
higher-order zeros and resolves this issue by taking one of
the vortices, which was previously(see Figs. 4 and 6) out-
side the inner electron region, and placing it between the
electrons, which results in a symmetric distribution of vorti-
ces. In contrast to the two-electron case, there are zeros
which appear next to the line defined by the three pinned
electrons. When we look at the locations, we can derive a
simple rule that explains the addition of the vortices: every
time one goes to the next magic angular momentum, four
zeros are added. The first time, they are added on they=0
line and are equally distributed in between the pinned elec-
trons. In the next step, they are added symmetrically above
and below they=0 line. These two rules alternate each time
the angular momentum is increased by four.

In the case of four electrons in the dot, it is not possible to
derive and solve a general compact expression for the poly-
nomial describing the distribution of zeros in the REM wave
function, as was done for the three-electron dot. For the
present configuration featuring the arrangement of three
pinned electrons into one line, such a polynomial has the
form zsz2−1dQLszd, where the first two factors represent the
zeros located on the fixed electrons, and the polynomial
QLszd describes the distribution of the vortices. In Table I, we
give this polynomial for the considered valuesL=6, 10, 14,
18. Note that thanks to the symmetry of the configuration,
only evenz powers appear inQlszd.

Next, we compare the previous REM results with our ex-
act calculation. Therefore, we show in Fig. 8 the same con-
figuration as in Fig. 7 but now the results are obtained with
the ED method. The location of the zeros is qualitatively
similar to those for the REM functions, but again we see that
there is a much stronger clustering around the fixed electrons

FIG. 5. The location of the zeros of the reduced wave function
for four electrons whenL=14 for the equilateral triangle configu-
ration, calculated with the ED method. Three electrons are fixed at
r =s±1,0d and r =s0,Î3d. An antivortex appears aroundr =s0,0.5d
indicated by the open dot. The inset shows a contour plot of the
phase near the position(indicated by the square in the main figure)
of the antivortex. Lengths are measured in units ofa0.

FIG. 6. The location of the zeros of the reduced wave function
for four electrons for different angular momentaL, calculated with
the REM method. Three electrons are fixed atr =s±1,0d and r
=s0,Î3d. The zeros located on the pinned electrons are indicated
with a cross and the free zeros are indicated with a dot. Note that
the zero in the middle forL=14 is in fact a giant vortex of vorticity
2 as is apparent from the inset, which shows a contour plot of the
central region.

FIG. 7. The location of the zeros of the reduced wave function
for four electrons for different angular momentaL, calculated with
the REM method. Three electrons are fixed atr =s±1,0d and r
=s0,0d. The zeros located on the pinned electrons are indicated
with a cross and the free zeros are indicated by a dot.

TABLE I. The polynomials QLszd for the case when three
pinned electrons are situated on a single line.

L QLszd

6 1

10 3z4−18z2+10

14 3z8−52z6+212z4−448z2+80

18 3z12−102z10+990z8−6160z6+14 003z4

−7837z2+291
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and the vortices above and below they=0 line are much
farther away.

To summarize the dependence of the location of the vor-
tices on the positions of the fixed electrons, we show in Fig.
9 a 3D plot for L=14 in which we fix two electrons atr
=s±1,0d and move the third electron along the vertical axis
from r =s0,0d to r =s0,2d. Notice that we can clearly see(i)
how the vortices move with changing symmetry of the fixed
electron distribution,(ii ) the appearance of an antivortex

when the two inner vortices come close to each other,(iii )
how the antivortex exists over a certain range before merging
with a vortex and being annihilated, and(iv) how the posi-
tions of the two vortices are rotated over 90° with respect to
the position of the electrons when one electron moves away
from the two others, i.e., with increasingz. This rotation
occurs through the intermediate creation of an antivortex.

Similar results for the REM reduced wave function are
shown in Fig. 10. One observes that also here the relative
position of the vortices is rotated over 90° but that in this
case no antivortex is formed to make this happen, i.e., the
two vortices join in one giant vortex of vorticity two and
then they separate again into two distinct vortices.

Another interesting thing to investigate is the evolution
from a triangle configuration towards a line configuration. As

FIG. 11. Vortex positions calculated with the ED method forL
=14. Three electrons are fixed atr =s±1,0d and r =s0,0.273d. The
zeros located on the pinned electrons are indicated with a cross and
the free zeros are indicated by a dot. An antivortex(open dot)
appears atr =s0,3d. The inset shows the phase of the reduced wave
function around the antivortex. Lengths are measured in units ofa0.

FIG. 8. The same as in Fig. 7 but calculated with the ED
method. Three electrons are fixed atr =s±1,0d and r =s0,0d.
Lengths are measured in units ofa0.

FIG. 9. The position of the inner vortices as a result of the
movement of the fixed electrons forL=14. Two electrons are fixed
at r =s±1,0d and the third one is fixed atr =s0,zd. The projections
of the vortex positions on thex=0 andy=0 planes are given by
dashed lines for clarity. The triangle itself is indicated by dotted
lines. The open dots indicate the region of existence of the antivor-
tex. Only the three fixed electrons forming the triangle and the
vortices inside the triangle are shown. Lengths are measured in
units of a0.

FIG. 10. Same as in Fig. 9 but now calculated with the REM
method. Notice that there is no antivortex present.
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Fig. 8 shows, forL=14 two vortices are located above the
y=0 line atr =s±2.6,1.8d and two below atr =s±2.6,−1.8d.
When we start moving the fixed electron atr =s0,0d up-
wards, the two vortices located above they=0 line will move
closer to each other and finally a vortex-antivortex pair will
be created as soon as they are close enough, as shown in Fig.
11. Going further, a vortex and an antivortex will meet and
annihilate, changing the configuration to one with two vorti-
ces located on thex=0 line. The mechanism behind this is
the same as that shown in Fig. 9.

VI. CONCLUSIONS

We investigated the distribution of zeros of the reduced
many-body wave function in few-electron quantum dots. The
results show that the arrangement of zeros can be described
by a set of simple rules. The number of vortices increases
with Dl =N between two subsequent fully polarized magic
angular momentum states. The vortices(or zeros) between

the electrons are situated on rays pointing away from the
electron cluster. There is clear evidence of repulsion between
the zeros and their attraction to the pinned electrons, leading
to a strong correlation between the vortices and between the
electrons and the individual vortices. Additional vortex-
antivortex pairs can be formed for certain symmetries of the
fixed electron distribution. Qualitatively, several of the re-
sults on the distribution of the zeros can be obtained from an
analytically available rotating-electron-molecule wave func-
tion. However, the REM theory is not able to describe the
condensation of zeros around fixed electrons and the forma-
tion of an antivortex.
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