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Correlation between electrons and vortices in quantum dots
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The exact many-body wave function for small numbsis:5 of two-dimensional Coulomb-interacting
electrons trapped in a parabolic potential placed in a perpendicular magnetic field are investigated. The reduced
wave function of this system, which is obtained by fixing the positiondNefl electrons, exhibits strong
correlations between the fixed electrons and the zeros of the wave function. These zeros are often called
vortices. The wave functions are obtained from an exact-diagonalization scheme and the results are compared
with results obtained from the recently proposed rotating electron moléRE®) theory. We find that the
vortices cluster around the fixed electrons and repel each other, which is the case to a much lesser extent for
the REM results.
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[. INTRODUCTION Bohm flux due to the external magnetic field, which is partly
canceled by the vortices attached to the electrons. Therefore,

The discovery of the fractional quantum Hall effect the quasiparticles can be regarded as moving in an effectiv
(FQHE) indicated the existence of a new state of matter cor- quasip: o 9 g In an efiective
agnetic field which is much weaker than the applied mag-

responding to a novel type of strongly correlated quantun{ﬂ ™
many-body state. Already the first steps towards the undernet\'lsr:'eld' ina th f .

standing of this effect involved the addition of extra zeros to %? constructing the CF wave function, a Jastrow factor
the many-particle wave function in order to account for the(zk_z') was introduced for each pair of electron coordi-

electron-electron correlation. The Laughlin wave functiah nates, quite similarly to Laughlin’s wave fl_mction. Subse-
filling factor »=1/(2p+1) reads quently, the lowest-Landau-levélLL ) projection procedure

was introduced with the consequence that the vortices are no

. 1 longer rigidly bound to the electrons. Thus, the relative dis-
v=[](z-2% 19XI0{— 4_12 |Z||2} :
|

e @ tribution of zeros and electrons becomes less restrictive, and
j

their correlations in this composite fermion liquid were in-
where units are used such that the magnetic length is s&estigated numerically in recent papérs.
equal to unity. Herez=x—iy is a complex number express- It is clear that zeros of the wave function are crucial to
ing the two-dimensional coordinates of the electrons. If oneunderstand several phenomena and therefore we investigate
fixes the coordinates of all electrons except one, the resultingp the present paper the electron-vortex correlations in a fi-
wave function will have zeros of ordep2 1 located at the nite system by starting from exact many-body wave func-
positions of all fixed electrons. The wave functi@ em-  tions obtained by means of a direct numerical diagonaliza-
bodies the strong correlation between the electrons as tH®n. Our model system is a quantum dot containing a few
wave function(and the probability to find an electrpim the  (up to foun electrons. Quantum dot systems with few elec-
vicinity of one of the fixed electrons vanishes more quicklytrons have been studied extensively and even almost exact
than prescribed by the Pauli exclusion principle alone. Weesults have been obtained; see, e.g., Ref. 9. Our numerical
also note that in Laughlin’s wave function, all the zeros areresults are compared to those obtained from the analytically
rigidly bound to the electrons and there are no free zeros. lavailable rotating-electron-molectfeé! (REM) wave func-
this respect, the wave functiaid) is rather special since a tions. This recently formulated theory is a competitgor at
different distribution of zeroge.g., around or between the least an alternativeto the CF approach. It is derived from
fixed electrongwould also be able to serve the purpose ofa more solid theoretical background, and introduces no
stronger correlation and reduced interaction energy. a priori requirements on the positions of the zeros of the
In the subsequently formulated composite fermi@F)  wave function.
theory2-° the strong correlations were dealt with in a differ- The REM wave functions are constructed as single unre-
ent way, by introducing weakly interacting quasiparticles.stricted Hartree-Fock-Slater determinants and thus might
Also here, the zeros of the many-body wave function playedverlook correlations between single-electron orbitals cen-
a central role. A zero in the wave function can also be intertered at different localized electrons. In extended two-
preted as a vortex, i.e., when going around a zero its phaséimensional(2D) systems, it was fourid that inclusion of
changes by 2n, and the winding numbar equals the order such correlations substantially improved the Hartree-Fock
of the zero. The new quasiparticles of the CF theory weraesult and led to the prediction that the Wigner crystal be-
interpreted as electrons with an even number of vortices ocomes the ground state at a filling factor belw% in
magnetic-field fluxes attached to them. When a particleaccordance with the experimeritsAs a matter of fact, the
moves around a closed loop, it encircles the usual Aharonowguestion of the experimental determination of the transition
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between the series of FQHE states and the Wigner crystal depends only on the position of one electron while the coor-
rather complex due to the possibility of multiple intersec-dinates of the remaininijl—1 electrons are set to fixed val-
tions on the nonmonotonoyas a function ofy) ground-state  ues. Due to the Pauli principle, the reduced wave function
energy curve of the FQHE liquid with a smooth dispersion ofhas zeros at the positions of the fixed electrons. There are
the Wigner crystal. A series of FQHE states following the CFadditional zeros which are not fixed at the electrons whose
states emanating from:é and vzé were observed evenin  distribution will be the main object of interest in the present
the realm of Wigner crystallizatiofdown to v=é), however Wwork. In order to locate the positions of the vortices, we first
only at elevated temperatures, which allows for the interprelocate the positions of the minima of the squared absolute
tation of the formation of FQHE states by melting the elec-value of the reduced wave function using a standard proce-
tron crystal. These facts confirm the relevance of the Crlure of steepest descent from a randomly chosen initial
model in the Wigner crystal regime. Yi and Feffigcon-  point. Then, by performing a walk along a small circle
structed crystalline states with Laughlin correlations. Sincearound the located points and inspecting the change of the
incorporation of such correlations transforms electrons int@hase of the wave function, we are able to distinguish actual
CFs, one is led to consider the Wigner crystal of composit&€ros from other minima and determine their order, i.e., the
fermions?® This work has resulted in the prediction of the winding number.
crystal energy gaps, in reasonable agreement with the We complement the results obtained from the exact diago-
experiments’ nalization (ED) by those given by the REM wave
The paper is organized as follows. The model, numericafunctions®!! These functions are available analytically and
procedure, and the REM wave functions are described ifielp to make some exact statements. These functions are
Sec. . The simple case of a two-electron quantum dot igonstructed by placing Gaussians at the classical positions of
described in Sec. Ill. Three- and four-electron dots are th&lectrons in strong magnetic fields and a subsequent restora-
subject of Secs. IV and V, respectively, and our conclusiongion of symmetry. For a small number of electroiié<5),

are given in Sec. VI. the electrons crystallize into a single rfAg@nd the resulting
wave function of the angular momentumreads*
Il. COMPUTATIONAL PROCEDURE I+ In=L N -1
_ _ _ v= X (H ;! )
Let us consider a parabolic quantum dot witk O=ly<ly<---<ly \j=1
=2,...,4 electrons placed into a perpendicular magnetic
field of strengthB. We work with dimensionless oscillator ><< 1T sin[z(r _Ik)D
units® that is, lengths are measured in oscillator lengths 1<j<k=N N

ay=(h/m* wy)'2 and energies ihw,, wherewy is the con- N
finement frequency. Then the relative strength of the inter- xD(I,| wexpl - S zz /2 (4)
electron interaction is given by the dimensionless coupling pia e i1 A

constant\=ay/ a; expressed as a ratio of the oscillator length ]
to the effective Bohr radiusg=e#2/€2m*. Here, ¢ is the  Here,z denote the complex electron coordinates measured

dielectric constant of the medium amd* is the effective N unitslcy2 with I.=7c/eBbeing the magnetic length, and
electron mass. The magnetic-field strength is expresseR is the Slater determinant
as a ratio of the cyclotron and confinement frequencies D1y, ... Iy =defZL,22, ... Z)]. (5)

y=w./ wy. The resulting dimensionless Hamiltonian
The wave function describes spin-polarized states of angular

f= }% [—V2+ (1 +£>r2} R % A 2 momentumL=Ly+NmwhereL,=N(N-1)/2 is the smallest
25 ' 4" 2 Iri—ryl’ possible angular momentum N spin-polarized electrons in
the lowest Landau level, and is a non-negative integer.

Already from the general form of the REM wave function
is solved by direct diagonalization in the subspaces of given4), several conclusions regarding the distribution of zeros of
angular momenturh, which is a good quantum number. The the reduced wave function can be drawn. First, as far as the
results regarding the dependence of the ground-state angulgésitions of zeros are concerned, the exponential factor in
momentum on the confinement and the magnetic-field=q. (4) can be ignored, that is, zeros can be found from the
strength for the case of four electrons in the dot were analinear combination of the Slater determinants which expands
lyzed in Ref. 18. Throughout this paper we take2, which  into a homogeneous polynomi&lP,[z] of order L. There-
is a typical value for experimentally realized quantum d8ts. fore, scaling the coordinates of all fixed electrans- oz,

We found that higher values of require longer calculations j=1,... N-1 results in scaling of the positions of zeros.
times® and did not result in new physics. ~ Moreover, the polynomidP [Z] is translationally invariant?

In the present work, we concentrate on the fully polarizedherefore rigid shifting of the positions of the fixed electrons
ground states and investigate the information encoded in thgy the same amount results in a rigid translation of the dis-
corresponding ground-state many-body wave function,  tripution of zeros in thezy plane. Due to the circular sym-

Wy, ... ) 3) metry pf the quantum dqt, the distribution Qf wave-function
Tr Ry zeros is also invariant with respect to rotation of the system
or, to be more precise, on thmeducedwave function, which as a whole.

i,j=1
i>j
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Regarded as a function af, the order of the polynomial
P.[z] is gy=L-(N-1)(N-2)/2. This follows from the fact
that in order for one electron to occupy the orbital with the
largest possible angular momentumthe remainingN-1
electrons must reside in the lowest possible momentum
states|=0,1,... N-2. Thus, according to a fundamental
theorem of algebra, the total number of zerod ifor two
electrons,L-1 for three electrons, and-3 for a four-
electron system.

The question of the number of zeros obtainable from ex-
act diagonalization is more subtle. If the ED procedure in-
cludes only the single-electron states from the lowest Landau
level, the resulting wave function is a polynomial times a
Gaussian, i.e., it has a similar structure to the REM wave
function but the expansion coefficients are now determined
numerically. Thus, in the case of the lowest-Landau-level .
approximation, we expect to find the same number of vorti- FIG. 1. The phage pf the reduced wave function for two elec-
ces as predicted from the REM wave function. However, ftrons. On_e electron is f|>_<ed at=(1,0). The angular momentum of
higher Landau levels are included, the ED wave functionthe s_tate i1 =7 and we find a seventh-orde_r zerp located exactly at
(with the exponential removedhvolves Laguerre polynomi- "€ fixed electron. Lengths are measured in unitaqf
als of the argumeniz|? and thus becomes nonanalytical.

This fact prevents us from making any exact statements re- Note that this situation is special to the parabolic confine-
garding the total number of zeros. However, in the high-ment case, and deviations from perfect parabolicity lead to
magnetic-field limit, the lowest Landau-level approximation splitting of the multiple vortex to a system of several single
becomes rather accurate and inclusion of higher Landau lewortices. This was found in the reduced wave function of two
els modifies the calculated wave function only at large dis€lectrons in a confined triédwhere the nonparabolicity of
tances from the quantum dot center. Thus one may still exthe potential felt by the electrons was due to the presence of
pect to find the same number of zeros as predicted from th@ nearby hole.

earlier argument.

On the other hand, the nonanalyticity of the ED wave
function makes it possible to observe besides vortices also The locations of the zeros calculated with the ED method
antivortices, i.e., zeros around which the phase winds in théor the N=3 case are shown in Fig. 2 for the spin-polarized
opposite direction. ground states up tb=21. The angular momenta of these
states are multiples of 3 as predicted by the magic number
theory?® The two fixed electrons are located &t,y)

For the sake of completeness, we begin with the simplest(+1,0)a,. We observe that all zeros appear on a straight
case of two electrons in a dot. We evalute the reduced wavine defined by the two pinned electrof@osses in Fig. 2
function in a ground state of angular momentlun7 and  This result persists also when the two pinned electrons are
plot its phase as a function of the coordinates in Fig. 1. Onéocated off they=0 axis.
electron is fixed atx,y)=(1,0)a,. Different shades of gray In the case oL.=3, we find only two vortices located at
correspond to different values of the phase betwegrard  the positions of the fixed electrons. Increasing the angular
7. Zeros of the wave function are located at the points wherenomentum toL=6 results in the addition of three vortices.
the phase is not determined and the winding number indiOne is placed between the fixed electrons and one on each
cates the order of the zero. We see that in the present case wigle. The total number of observed vortices in this case is
have a single zero of seventh order located at the position df-1, as predicted by the simple estimate. Proceeding to
the fixed electron. higher angular momenta, we see that at each step one more

This result can be easily understood by recalling that in avortex is inserted between the fixed electrons. Whether or not
parabolic confinement potential, the center-of-m&S81)  each time one extra vortex is added on each outer side of
motion and the relative motion can be separated. The CMhe electrons is difficult to say. The reason is that at large
motion is not affected by the electron-electron interaction. Indistances from the origiiitypically r >4), the accuracy of
the ground state, the CM motion is in its lowest state and itshe wave function becomes insufficient due to the limited
wave function is just a Gaussian of the CM coordinate,basis set used in the numerical calculation. Inaccuracies may
which does not lead to the appearance of any zeros. Thesult in “ghost” vortices. Therefore, the calculations were
wave function of the relative motion at small values of thelimited to r=3.5 (beyond which the electron density be-
relative coordinate =r,-r, behaves as-r"é™?, where the comes very small, i.e., typicallj¥|>< 1076 and some vor-
relative angular momentumn coincides with the total mo- tices located outside this region may be overlooked. On the
mentum L. Therefore, in the reduced two-electron waveother hand, for the REM method, all vortices can be found,
function, one always finds just a single “giant” vortex of including those outside <4, which are indicated with ar-
vorticity L. rows in Fig. 3.

IV. THREE ELECTRONS IN A DOT

Ill. TWO-ELECTRON QUANTUM DOT
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L= can be seen nicely fdr=9, 12, 15, 18, 21 in Fig. 2, where
x x T the pinned electrongindicated by the crossgsare ap-
. . ; ' ' ——t proached by two vortices, and later by four.
. x . x . With increasingy, higher angular momentum states be-
, come the ground state. Keeping the angular momentum fixed
L=9 and lettingy change shows that the effect of the magnetic
ToxX t X ] field on the positions of the vortices is surprisingly small. For
- - - t y T example, for the.=12 state the position of the vortex around
. eXe & eXe . 0.75 ranged from 0.74 to 0.76 for<Oy<<15. This implies
, that the position of the vortices is mainly determined by the
e e e e e L=15] value of the angular momentum. Since we are not interested
in the exact position of the vortices but rather in their general
=18 behavior and their interactions, from now on we will take
. o e e e X e .o y=2.
: In Fig. 3, we show the distribution of the zeros for the
e e see e e e . T same angular momenta and the same fixed electron positions
. . . . _ . . as in Fig. 2, but now obtained from the REM wave functions.
3 2 A 0 1 2 3 We see that most of the qualitative features are well repro-
X duced, except for their positions in the caselLof 6. Note

that between the fixed electrons, the zeros are more uni-

_ FIG. 2. The location of the zeros of the reduced wave funCtIOnformly distributed and the clustering around the electrons as
in a three-electron quantum dot for different values of the angular

X seen for the ED method is absent.
momentumL, calculated with the ED method. Two electrons are A it f fact. for th f th lect th
fixed atr=(1,0) andr=(-1,0). The zeros located on the pinned S a matter or 1act, for the case o ree electrons, the

electrons are indicated by crosses and the dots mark the free zerc%os't'ons of zeros in the REM theory can be calculated ex-

Note that all zeros fall on a single straight line. Lengths are mea@Ctly: Introducing the center-of-mass coordinate(z,+2,

sured in units ofy, +23)/3 and two relativgJacobf*) coordinates
Addition of the new vortices between or on the outer side 2|z, +z
of the fixed electrons leads to a rearrangement of the vortices Zy= 3l T2 B
which were already present. The vortices are pushed towards
each other and in particular towards the fixed electrons. This
Z -z
T T T T L=I3 == [ 2, (6)
X X ] V2
. y . » '-:=5 ] and dropping the exponential factors in E4), the polyno-
mial part of the REM wave function can be writt€rin a
Lo particularly simple form
' x oo X 476 | _ . .
o PL(Zay2p) = (Za +i2p)" = (Z4— 7). (7)
. . X o o o X . ¢
, 6—'“?» Note that the three-electron problem has been solved almost
Y . L=15, exactly for quantum dofsand extended systeRisy intro-
3.89;8.15 ducing simple orthonormal bases for the relative motion. Al-
=18 though generally additional diagonalization in these bases is
. S XX needeq, it was fourtd that the c_)ff—diagonal matrix elementg
— are typically an order of magnitude smaller and thus the in-
e e e . troduced basis states are rather good approximations of the
. . . _ ~ 3.60;5.62;11.49 eigenstates. We observe that the three-electron REM wave
3 2 4 0 A 2 3 function defined by the polynomial of Eq7) coincides®
X with the lowest basis functiofm, 0) introduced in Ref. 25.

o Equating(7) to zero and taking theth-order root, we find
FIG. 3. The same as in Fig. 2 but now for the REM wave

function. The number of observed zeros is the same, however their
clustering around the fixed electrons is not seen. The arrows indi-

cate vortices which are outside the plotted region. They are only ]
indicated on the right side, but evidently are also present on the leftOte that there aré -1 roots as the meaningless rdot0

side. Note that for the REM result, lengths are originally measured1as to be omitted. Equatio) is readily solved with the
in units ofl;\2, but can be perfectly rescaled to unitssgto match ~ result z,=z,cotar(wk/L), and using the specific values ,
the ED result. =(x1,0) we find the positions of the roots

Z,+izy = (z,—izp)exp2mik/L), k=1,2,...L-1. (8)
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z3=\'§cotar<%k), k=1,2,...L-1. (9) :- L=6 1 L=1o 4
1t
Note that despite using the specific values for the coordinates > of
of the fixed electrons, this result is still general since employ- 1t
ing the above-discussed symmetry properties of the REM 2
wave functions, any randomly fixed two-electron positions 2:
(for N=3) can be mapped oft1,0). .1t
The result given in Eq(9) correctly predicts the appear- of
ance of all zeros on a single straight line and reveals a simple 1t
rule for their distribution. The angular momentum for which S I 0T 25 43201234
the REM function is valid must be a multiple of 3, that is, X X

L=3n, with n being an integer. Therefore, among the roots

(9) there always are twgnamely, k=n and k=2n) whose

positionsz;=+1 coincide with the fixed electrons. Moreover,

these two Sollutlonsk:n and k=2n, divide the Intervall =(0,1) forming a half-square configuration. Lengths are measured

k=1,...,L-1 into three equal parts. Thus, we can confirm;, nits of ap.

the rule which was already apparent in the ED results: every

time the angular momentum is increased by 3, three newriangle defined by the three pinned electrons and the other

vortices enter the quantum dot, and one of them is placethree end up on the rays outside the triangle. In this case, we

between the fixed electrons while the other two are on théooked at points up to~4 from the origin, thus some of the

outer sidegsome of the latter zeros are indicated outside thezeros are located outside this region, whar¢ is negligibly

plottedx region in Fig. 3. This is in agreement with our ED small. One notices again that the free zeros seem to gather

results when we limit ourselves to tid < 3.5 region. around the pinned electrons, which is clearly seen, eg., for
Note that the analytic expressi@@) obtained from the L=18. Note that theL =18 state corresponds to the=3

REM theory fails to predict the clustering of zeros aroundLaughlin state following the formula=[N(N-1)]2L. In Fig.

the fixed electrons. Namely, E(P) suggests that the density 4, One can actually see three vortiqeme attached to the

of vortices is largest around;=0 and monotonically de- pinned electron and two free vortiges the close neighbor-

creases to both sides. This is opposite to the ED result, whichd Of the pinned ele_ctronés. Our results are in agreement

clearly shows that the density of vortices tends to increas/ith those of Saarikosiet al.” who also found the addition

around the fixed electrons and is somewhat lower right in th(%/);ﬁlj g'r}glsei dveo:LeeX V\lljgiltlulr?(rje%ss?jetct)r:tes ;r‘égsgggﬁgé "’glo‘{‘r’]eed
middle between the two electrons. The REM approach i% ’ q Q y

. . ixed electrong
unable to reflect the subtle interaction between the electrons The number of zeros inside the triangle formed by the
and the ZEr0S, but at larger dlstanc_es from the pinned ele_ inned electrons increases by one each time the angular mo-
trons it predicts the zeros at approximately the correct POSithentum increases by four. So, for 14 there are two zeros

FIG. 4. The location of the zeros of the reduced wave function
for four electrons for different angular momertacalculated with
’ the ED method. Three electrons are fixed rat(+1,0) and r

tions, as can be seen fa=6, 12, 18 arounc=3. located inside the triangle, and it is interesting to see how
their arrangement can agree with the external symmetry de-
V. FOUR ELECTRONS fined by the pinned electrons when the half-square triangle is

transformed into an equilateral one. As can be seen from Fig.

In the N=4 case, the three pinned electrons can be places, instead of two zeros inside the triangle, four zeros are
in many different ways. We consider three main configuraformed. One of them is placed into the center and actually is
tions: a half-square trianglecorresponding to the classical an antivortexsee the inset of Fig. 5 for a contour plot of the
positions in a Wigner cryst#l), an equilateral triangle, and a phase of the wave functignwhile the other three vortices
line configuration. are arranged on the vertices of an equilateral triangle, thus

Figure 4 shows the positions of zeros corresponding to thenhe symmetry adapts to the external symmetry and the total
half-square triangle configuration, calculated with the EDvorticity is preserved. Apparently this configuration is pre-
method. The pinned electrons are located at+1,0) and  ferred over the merging of two zeros into a single one with
r=(0,1), i.e., at the three corners of a square, and the convorticity two (which would be sufficient to adapt to the sym-
sidered angular momenta dre6, 10, 14, 18, i.e., the ones metry). This phenomenon shows that the zeros do not like to
corresponding to the full spin polarization in the groundsit on the same spot, and there is a certain repulsion between
state. One immediately notices that the positions of the zerathem, i.e., there is a clear tendency not to form vortices with
of the wave function are arranged on rgghown by the thin  winding numbem> 1. As a rule, we may state that we can
lines in Fig. 4. Again, it is possible to spot a simple rule expect the formation of antivortices whenever the symmetry,
analogous to the one obtained for the preceding threeimplied by the pinned electrons, forces vortices to come too
electron case that explains the location of the zeros. At thelose to each other. This will be the case for26 in this
lowest possible angular momenturs 6, there are three ze- system, but it will also be the case in systems with more
ros whose positions coincide with the pinned electrons. Eacklectrons.
time the ground-state angular momentum is increased by This result is in contrast with the REM result, which pre-
four, four new zeros are added. One is placed inside thédicts that the two zeros inside the triangle join into one giant
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FIG. 7. The location of the zeros of the reduced wave function

2 0 2 for four electrons for different angular momertacalculated with

X the REM method. Three electrons are fixedrat(+1,0) andr

) ~ =(0,0. The zeros located on the pinned electrons are indicated

for four electrons wheri=14 for the equilateral triangle configu-
ration, calculated Witl‘_l the ED method. Three electrons are fixed

=(x1,0) andr=(0,v3). An antivortex appears arourié=(0,0.5
indicated by the open dot. The inset shows a contour plot of th
phase near the positigindicated by the square in the main figure
of the antivortex. Lengths are measured in unitagf

a‘i’he reason is that a single vortex would be located on top of
dhe middle electron. The system tries to prevent having
higher-order zeros and resolves this issue by taking one of
the vortices, which was previouslgee Figs. 4 and)6out-

side the inner electron region, and placing it between the

vortex. as can been seen from Fia. 6 for14. Apparentl electrons, which results in a symmetric distribution of vorti-
! g. - APp Y, ces. In contrast to the two-electron case, there are zeros

the REM is not capable of describing the subtle |nteract|onWhich appear next to the line defined by the three pinned

between the zeros due to its restriction to analytic wave funcélectrons. When we look at the locations, we can derive a

tions. One also notes that againin REM there IS no Congreéimple rule that explains the addition of the vortices: every
gation of zeros around the pinned electrons in Fig. 6, and

. . . me one goes to the next magic angular momentum, four
for N=3 the vortices rather tend to accumulate in the centeEerOS are added. The first time, they are added ory#@
between the electrons.

One mav wonder how stronalv the exact location of the"ne and are equally distributed in between the pinned elec-
Y gl trons. In the next step, they are added symmetrically above

fixed electrons influences the positions of the vort|ces.and below they=0 line. These two rules alternate each time

Therefore, we consider the case of a line arrangement of tht%e angular momentum is increased by four
electrons. In Fig. 7, we show the location of the zeros for a In the case of four electrons in the dot, it is not possible to

line configuration calculated with the REM method. The derive and solve a general compact expression for the poly-

:Erﬁ ell_ef'[lrzn; are f|xetd atz(it_l,O) k?ntd ' :(Ot’hO). ll\lottlce . nomial describing the distribution of zeros in the REM wave
atforl.=14, there are iwo vortices DEWEEN IN€ €1eCTons Iy, +tion - as was done for the three-electron dot. For the

co?trast to ﬂ:e p_rev!tous; cglge?hshown 'S ';'\?S' 4tﬁnd |6 \{vher esent configuration featuring the arrangement of three
only one vortex s situated in the area between the eleclrony;naq electrons into one line, such a polynomial has the

form z(Z2-1)Q,(2), where the first two factors represent the
zeros located on the fixed electrons, and the polynomial
Q. (2) describes the distribution of the vortices. In Table |, we
give this polynomial for the considered values6, 10, 14,
] 18. Note that thanks to the symmetry of the configuration,

/P &\\ ] only evenz powers appear iQ,(z).

Next, we compare the previous REM results with our ex-
——— act calculation. Therefore, we show in Fig. 8 the same con-
L=18 figuration as in Fig. 7 but now the results are obtained with
] the ED method. The location of the zeros is qualitatively

L=10

: : i ] similar to those for the REM functions, but again we see that
0 /Pﬁ\ there is a much stronger clustering around the fixed electrons
2 B ]
SR TABLE I. The polynomialsQ,(z) for the case when three
B 642 ;’( 2468642 ;’( 2468 pinned electrons are situated on a single line.
FIG. 6. The location of the zeros of the reduced wave function L QL2
for four electrons for different angular momeritacalculated with 6 1
the REM method. Three electrons are fixedrat(+1,0) andr 5
=(0,v3). The zeros located on the pinned electrons are indicated 10 ¥'-182+10
with a cross and the free zeros are indicated with a dot. Note that 14 3P-528+212/4- 4482 +80
the zero in the middle fok =14 is in fact a giant vortex of vorticity 18 312-102710+9908- 61605+ 14 003
2 as is apparent from the inset, which shows a contour plot of the —78372+291

central region.
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L=6 | L=10 |

XXX T XXX

L=14 1 L=18 A

o XeXeX » T eI -4

-4t T 1 FIG. 10. Same as in Fig. 9 but now calculated with the REM
i l ] method. Notice that there is no antivortex present.

"6 4 20 2 4 6420 2 46
X X

when the two inner vortices come close to each ottiiy,
how the antivortex exists over a certain range before merging
FIG. 8. The same as in Fig. 7 but calculated with the EDwith a vortex and being annihilated, afid) how the posi-
method. Three electrons are fixed m&(x1,0) and r=(0,0).  tions of the two vortices are rotated over 90° with respect to
Lengths are measured in units af. the position of the electrons when one electron moves away
from the two others, i.e., with increasing This rotation
and the vortices above and below te0 line are much occurs through the intermediate creation of an antivortex.
farther away. Similar results for the REM reduced wave function are
To summarize the dependence of the location of the vorshown in Fig. 10. One observes that also here the relative
tices on the positions of the fixed electrons, we show in Figposition of the vortices is rotated over 90° but that in this
9 a 3D plot forL=14 in which we fix two electrons at ~ case no antivortex is formed to make this happen, i.e., the
=(+1,0) and move the third electron along the vertical axistwo vortices join in one giant vortex of vorticity two and
fromr=(0,0) to r=(0,2). Notice that we can clearly s¢gg  then they separate again into two distinct vortices.
how the vortices move with changing symmetry of the fixed ~Another interesting thing to investigate is the evolution
electron distribution (i) the appearance of an antivortex from a triangle configuration towards a line configuration. As

35
3.0f AR
\
201 /
s 15¢
1.0t
0.5} 1
0.0 -/)(/’(\\X\_
FIG. 9. The p(_)sition of the inner vortices as a result pf the O 0 05 o0 05 10 15
movement of the fixed electrons for=14. Two electrons are fixed X
atr=(x1,0) and the third one is fixed at=(0,z). The projections
of the vortex positions on thg=0 andy=0 planes are given by FIG. 11. Vortex positions calculated with the ED method for

dashed lines for clarity. The triangle itself is indicated by dotted=14. Three electrons are fixed &t (+1,0) andr=(0,0.273. The
lines. The open dots indicate the region of existence of the antivorzeros located on the pinned electrons are indicated with a cross and
tex. Only the three fixed electrons forming the triangle and thethe free zeros are indicated by a dot. An antivortepen dof
vortices inside the triangle are shown. Lengths are measured iappears at=(0,3). The inset shows the phase of the reduced wave
units of ay. function around the antivortex. Lengths are measured in unig. of
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Fig. 8 shows, forL=14 two vortices are located above the the electrons are situated on rays pointing away from the
y=0 line atr=(+2.6,1.8 and two below at =(+2.6,-1.9. electron cluster. There is clear evidence of repulsion between
When we start moving the fixed electron &t (0,0) up-  the zeros and their attraction to the pinned electrons, leading
wards, the two vortices located above the0 line willmove  to a strong correlation between the vortices and between the
closer to each other and finally a vortex-antivortex pair willelectrons and the individual vortices. Additional vortex-
be created as soon as they are close enough, as shown in Figptivortex pairs can be formed for certain symmetries of the
11. Going further, a vortex and an antivortex will meet andfixed electron distribution. Qualitatively, several of the re-
annihilate, changing the configuration to one with two vorti- sults on the distribution of the zeros can be obtained from an
ces located on th&=0 line. The mechanism behind this is analytically available rotating-electron-molecule wave func-
the same as that shown in Fig. 9. tion. However, the REM theory is not able to describe the
condensation of zeros around fixed electrons and the forma-

tion of an antivortex.
VI. CONCLUSIONS
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