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The electronic structure of a diluted magnetic semiconductor(DMS) quantum dot(QD) is studied within the
framework of the effective-mass theory. We find that the energies of the electron with different spin orientation
exhibit different behavior as a function of magnetic field at small magnetic fields. The energies of the hole
decreases rapidly at low magnetic fields and saturate at higher magnetic field due to thesp–d exchange
interaction between the carriers and the magnetic ions. The mixing effect of the hole states in the DMS QD can
be tuned by changing the external magnetic field. An interesting crossing behavior of the hole ground state
between the heavy-hole state and the light-hole state is found with variation of the QD radius. The strength of
the interband optical transition for different circular polarization exhibts quite different behavior with increas-
ing magnetic field and QD radius.
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I. INTRODUCTION

The interest in the spin dynamics of carriers in semicon-
ductor structures has increased remarkably because of its im-
portance for basic physics as well as for its potential appli-
cation in spintronic devices. Several proposals1,2 for quantum
information storage and processing using(electron or
nuclear) spins in semiconductor quantum dots(QD) have
been put forward due to the long spin-coherence time in
semiconductors. Quantum information processing should
preserve the entanglement while the quantum information is
transferred from the photon system to the spin of the electron
in the semiconductor. This process is closely related to the
spin splitting of carriers in semiconductors, i.e., the effective
g factor of the carrier or the exciton. Due to the strongsp–d
interaction between the carriers and the magnetic ions, di-
luted magnetic semiconductor(DMS) structures3,4 provides
us with a unique flexibility to tailor the spin splitting of
carriers in DMS systems via the external magnetic field.5 The
external magnetic field induces a magnetization of the mag-
netic ions in the DMS which gives rise to a giant spin split-
ting of the electron and hole band structure via the exchange
interaction. Very recently, incorporation of Mn ions into the
crystal matrix of different II-VI semiconductors, successful
approaches to fabricate DMS quantum dot and magnet/DMS
hybrid structures has been reported.6–8 Photoluminescence
(PL) signals clearly demonstrated the transition of quasi-
zero-dimensional electron-hole pairs bound to these nanos-
tuctures. Due to the requirement of a quantitative under-
standing of the optical properties of DMS QD, there arises a
fundamental interest in the electronic structure of DMS
quantum dots.

In the case of semiconductor nanostructures, the elec-
tronic structure varies significantly with decreasing size of
the semiconductor nanostructures, especially for the hole
states. In the zinc-blende bulk material, the heavy- and light-
hole are degenerate with vanishing momentum since the Lut-
tinger Hamiltonian describing the hole states becomes diag-

onal with vanishing momentum. In the quantum well case,
the heavy- and light-hole are nondegenerate due to the con-
finement along the growth direction. But the projection of
the angular momentum of the band-edge Bloch state on the
growth directionJz is still a constant of motion. In quantum
dot structures, the situation is very different due to the three-
dimensional quantum confinement.Jz is no longer a good
quantum number due to the band mixing effect: the hole
eigenstates become mixtures of the heavy- and light- hole
states. In a DMS QD, an external magnetic field induces a
magnetization of the magnetic ions, and the strong exchange
interaction between carriers and the magnetic ions provides
us with a unique and interesting flexibility to tailor the elec-
tronic structure of the DMS QD, consequently changing the
optical property of the DMS QD, i.e., the polarization and
energy position of the PL signals. In this paper, we investi-
gate theoretically the electronic structure of a DMS
Cd1−xMnxTe/Cd1−yMgyTe QD. We show the energies of the
lowest hole states as function of the magnetic field and the
confinement. The energy of the hole decreases rapidly at low
magnetic fields and saturates at high magnetic field. An in-
teresting crossing behavior between the heavy-hole and
light-hole is found with variation of the in-plane confine-
ment. The strength of the interband optical transition for dif-
ferent circular polarization exhibits quite different behavior
with increasing magnetic field.

The paper is organized as follows: the model and formal-
ism are presented in Sec. II, in Sec. III we show the numeri-
cal results along with the discussions. A brief conclusion is
given in Sec. IV.

II. MODEL AND FORMALISM

The DMS quantum dot is constructed from a DMS
Cd1−xMnxTe/Cd1−yMgyTe quantum well with a lateral con-
finement of the carriers through a parabolic well where thez
axis will be taken along the growth direction. The electron
Hamiltonian is
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He =
sp + eAd2

2me
* + Vesr,zd + Js−dS · se ± ge

*mBB/2, s1d

whereme
* is the effective mass of the electron in units of the

free electron massm0, A =s−y,x,0dB/2 is the vector poten-
tial in the symmetric gauge.Ve=Vi

e+V'
e is the confining po-

tential of the electron which will be given explicitly, the third
term describes the exchange interaction between electron and
the magnetic ions in the DMS QD, the last term of the above
equation gives the intrinsic Zeeman splitting.

Within the axial approximation, the hole Hamiltonian in
the DMS QD can be written as9–13

Hh =
"2

2m01
Hhh R S 0

R* Hlh 0 S

S* 0 Hlh − R

0 S* − R* Hhh

2 + Vhsr,zd + Jp−dS · sh,

s2d

where

Hhh = sg1 + g2dskx
2 + ky

2d + sg1 − 2g2dkz
2 + EZ,

Hlh = sg1 − g2dskx
2 + ky

2d + sg1 + 2g2dkz
2 + EZ,

R= 2Î3g3ik−kz,

S= Î3gk−
2.

Here k =−i ¹−eA /", andk±=kx± iky, g1, g2, andg3 are the
Luttinger parameters,g=sg2+g3d /2. EZ=−s"e/m0dkBjz de-
scribes the Zeeman splitting of the hole,k is another Lut-
tinger parameter, the confining potentialVh=Vi

h+V'
h , Vi

e,h is
the lateral confining potential of electron or hole in the DMS
QD,

Vi
e,hsre,h,ze,hd = 1

2me,hve,h
2 re,h

2 , s3d

and a quantum well potential confinement is assumed in the
z direction,

V'
e,hsze,hd = HDVe,h, uzu ù w/2,

0, uzu , w/2,
s4d

where ri and zi denote the cylinderical coordinates of the
electron or hole.w is the height of the DMS QD.DVi is the
band offset of electron or hole. Notice that the zero energy
for the electron and hole are at the bottom of the conduction
band and the top of the valence band of Cd1−xMnxTe, respec-
tively. The exchange interaction term describes thesp–d ex-
change interaction between the carriers and the magnetic ion
Mn2+ and can be expressed as within the mean-field approxi-
mation,

Vexch
e,h = Jsp–d

e,h kSzlJz, s5d

where Js–d=N0axeff /2, Jp–d=−N0bxeff /3, and kSzl
=5/2BJsSgMnmBB/kBsT+T0dd, S=5/2 corresponds to the
spins of the localized 3d5 electrons of the Mn2+ ions.BJsxd is
the Brillouin function,N0 is the number of cations per unit
volume, the phenomenological parametersxeff (reduced ef-

fective concentration of Mn) andT0 accounts for the reduced
single-ion contribution due to the antiferromagnetic Mn–Mn
coupling,kB is the Boltzmann constant,mB the Bohr magne-
ton, gMn=2 is the effectiveg factor of Mn2+ ion and Jz
= ±1/2, ±3/2 is thehole spin.B is the external magnetic
field.

In the axial approximation the hole Hamiltonian is rota-
tionally invariant around thez axis, therefore the projection
fz of the total angular momentumF=L +J on thez axis is a
good quantum number, whereJ is the angular momentum of
the band-edge Bloch function andL is the envelope angular
momentum. The single-particle eigenstates of the electron
and hole with, respectively, the angular quantum numberl
and fz are expanded in the basis of the two-dimensional har-
monic oscillator function

c l
e = o

n,s
cnlCn,lsr,fdfsszdu1/2,szl s6ad

and

c fZ
h = o

jz,n,s
cnsjZ

Cn,fZ−jZ
sr,fdfsszdu3/2,jzl s6bd

where fsszd, s=1,2. . . is aconvenient basis for the subband
part,

fsszd =Î2

L
sinFsp

L
Sx +

L

2
DG, uzu ø L/2, s6cd

and zero otherwise.L is allowed to be larger than the height
w of the DMS QD. The number of terms in the summations
is determined by the convergence of the subband energy.
u1/2,szl and u3/2,jzl are the band-edge Bloch functions of
electron and hole, the oscillator functionCn,lsr ,fd is

Cn,lsr,fd = Cnlsirdul ue−r2/2a2
eilfLn

ul usr2/a2d, s7d

whereCnl is the normalization constant andLn
ul u is the gener-

alized Laguerre polynomial,ae,h is the length related to the
magnetic lengthac=s" /eBd1/2 and the confinement length
le,h=s" /me,h

* v0d1/2 by ae,h=Î2le,hac/ sle,h
4 +4ac

4d1/4.
The dipole optical transition probability for photoemis-

sion is proportional to the optical transition matrix element

G =
2

m0
ue · kc l

euPuc fZ
h lu2,

wheree is the unit vector along the direction of the electric
field component andc l

esc fZ
h d is the electron(hole) wave

fucntion. When the light propagates in the direction of the
magnetic field, i.e.,z axis, thes ± polarizations[electric field
polarizatione±=s1/Î2dsex± i«yd] is of interest. Therefore the
corresponding matrix elements between the spin-down elec-
tron state and the hole states withJz=1/2,−3/2components
are

G+ =
2P2

m0
ukc −1/2

e uc −3/2
h lu2, s8ad
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G− =
2P2

3m0
ukc −1/2

e uc 1/2
h lu2, s8bd

and the matrix elements between the spin-up electron and the
hole states withJz=−1/2,3/2components are

G+ =
2P2

m0
ukc 1/2

e uc 3/2
h lu2, s9ad

G− =
2P2

3m0
ukc 1/2

e uc −1/2
h lu2, s9bd

P=ksupxuXl, s andX are the Bloch functions at the bottom of
the conduction band and the top of the valence band, respec-
tively.

The parameters used in our calculation areme
* =0.13m0,

g1=4.02, g2=1.37, g3=1.64, k=0.617,xeff=0.045,gMn=2,
N0a=0.27 eV,N0b=−1.31 eV, andT0=3.6 K.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present our numerical results on the
electron and hole states in Cd1−xMnxTe/Cd1−yMgyTe DMS
QDs. The magnetic field is applied perpendicular to thex–y
plane. The energies of the lowest eight electron and hole
states in the DMS QD are plotted in Figs. 1 and 2(a)–2(d) as
a function of magnetic field. From Fig. 1, it is apparent that
at small magnetic field the energies of spin-down(spin-up)
electron states decrease(increase) with increasing magnetic
fields. But at high magnetic fields they all increase. At small
magnetic field the energies are determined by the exchange
interaction term[Eq. (5)] for spin-up and spin-down states.
At large magnetic field the exchange term approaches to a
constant and the energies are determined mainly by the mag-
netic confinement term. Due to the rotational symmetry
around thez axis, the projection of the total angular momen-
tum fz is a constant of motion, the hole eigenstateSfz

is
labeled by its total angular momentumfz and the dominant
term in Eq.(6b) is usually the term with the smallestul u. The
behavior of the energies of the hole states[see Figs.

FIG. 1. The energy of the lowest eight electron states in a DMS
QD versus magnetic field. The QD radius is 10 nm and the thick-
ness of the QD is 10 nm. The solid lines and the dashed lines
denote the energies of the spin-down and the spin-up states,
respectively.

FIG. 2. The same as Fig. 1 but
now for the different hole states
Sfz

.
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2(a)–2(d)] is much more complicated, they decrease rapidly
with increasing magnetic field at small magnetic field, and
saturate at high magnetic fields. The hole states are more
complicated than the electron states, this is because the wave
function of the hole state consists of four components, each
component has a differentJz and l, and they mix with each
other due to the contribution of the off-diagonal terms in the
hole Hamiltonian[Eq. (2)]. The exchange interaction term
and the Zeeman term cause splitting of the energies of the
four components at small magnetic field. At large magnetic
field the hole energies increase slightly due to the magnetic
confinement, but is different for different statesSfz

, i.e., dif-
ferent orbital momentuml. Since the spacing of the bound
states is comparable with that of the magnetic energy level in
the x–y plane and the heavy- and light-hole mix with each
other which is induced by the contribution of the off-
diagonal terms in the hole Hamiltonian[Eq. (2)], therefore
there appear many crossings and anticrossings between en-
ergy levels as shown in Figs. 3(c) and 3(d). Notice that the
S3/2 and S−3/2 (S1/2 and S−1/2) states are degenerate atB=0
and the energy of theS3/2 and S1/2 ground state exhibits a

local maximum at small magnetic fields. This arises from a
crossover from the heavy-hole componentu3/2,3/2l with l
=0 to u3/2,−3/2l with l =3, the latter becomes dominant
with increasing magnetic fields due to the off-diagonal terms
in the hole Hamiltonian(see Fig. 2). The slight increase of
the energies of the lowest states with different angular mo-
mentum (S3/2, S−3/2, S1/2, S−1/2) at high magnetic fields is
caused by the magneto-confinement effect and the intrinsic
Zeeman effect.

Figures 3(a)–3(e) show the weight factors of the wave
functions of hole ground states withfz=−3/2,3/2,1/2,
−1/2, i.e., the relative contribution of the hole components
with angular momentumJz, and the average value of the
angular momentumkJzl in the DMS QD as a function of the
magnetic field. Notice that the magnetic-field dependence of
the weight factor of the hole components with different an-
gular momentumfz exhibit very different behavior. For the
S−3/2 state, the weight factor of the heavy-hole component
u3/2,−3/2l is dominant and stays almost constant with in-
creasing magnetic field, but for theS3/2 state, the dominant
component is the heavy-hole componentu3/2,3/2l at small

FIG. 3. The weight factor(a)–(d) and the ex-
pected value of the angular momentumkJzl (e) of
the hole ground state for different angular mo-
mentum F in a DMS QD versus the magnetic
field. The solid, dashed, dotted, and dashed-
dotted curves in(a)–(d) correspond to the hole
componentsu3/2,−3/2l, u3/2,−1/2l, u3/2,1/2l,
u3/2,3/2l, respectively. The QD structure is the
same as in Fig. 1.
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magnetic fields but change rapidly to the componentu3/2,
−3/2l at higher magnetic fields. The main relative contribu-
tions of theS1/2 andS−1/2 states come from the components
u3/2,1/2l and u3/2,−3/2l, and the latter becomes dominant
with increasing magnetic field. The expected value of the
angular momentumkJzl is plotted in Fig. 3(e) as a function
of magnetic field. In QD structures,Jz is no longer a good
quantum number due to the band mixing effect that exists
even at vanishing momentum. For these four hole ground
states,kJzl decreases with increasing magnetic fields and
keep constant −3/2 at high magnetic fields. This phenom-
enon can be understood from the weight factors of the dif-
ferent hole components in the hole eigenstates[see Figs.
2(a)–2(d)]. Since the dominant component of the hole eigen-
states at high magnetic field is the spin-down heavy holes
u3/2,−3/2l, thereforekJzl of these four hole eigenstates is
equal to −3/2. It is interesting to find thatkJzl of the hole
eigenstateS−3/2 experiences a sharp change from 3/2 to

−3/2 with increasing magnetic field due to the crossover of
the hole componentsu3/2,3/2l and u3/2,−3/2l, and a simi-
lar behavior can also be found for theS1/2 state.

In Fig. 4 we plot the overlap factorukc s
e uc fz

h lu, i.e., the
interband transition strength for different circular polariza-
tion of the light[see Eqs.(8) and(9)] as a function of mag-
netic field. The overlap factors for different transitions be-
tween the electron states and the hole states exhibit different
behavior as a function of magnetic field. The biggest differ-
ence can be found at small magnetic fields. This difference is
easily understood from the wave functions of the electron
and hole eigenstates. The wave functions of hole ground
states are shown in Figs. 5(a)–5(d) for different magnetic
fields. The wave functions of theS−3/2 andS−1/2 states change
slightly for different magnetic fields, but the wave functions
of the S3/2 andS1/2 states varies significantly with changing
magnetic field. Since the electron always localizes at the cen-
ter of the DMS QD for different magnetic fields, and the hole

FIG. 6. The energies of the electron and the hole ground states
in DMS QD versus QD radius. The thickness of the QD is 10 nm
andB=1 T.

FIG. 4. The overlap factor of the electron and hole in the DMS
QD versus the magnetic field. The QD structure is the same as in
Fig. 1.

FIG. 5. The wavefunction of
the hole ground states forB=0 T
(the solid curves) and 10 T (the
dotted curves). The dashed curves
correspond to the wave function
of the hole ground states atB
=1 T for S−3/2 and S−1/2, but B
=0.5 T forS1/2, and 1.2 T forS3/2.
The QD structure is the same as in
Fig. 1.
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stateS−3/2 also localizes at the center[see Fig. 5(a)], there-
fore the overlap factor for the transitionS−1/2→S−3/2 varies
slightly with increasing magnetic field. But the wave func-
tion of the hole statesS3/2 and S1/2 change significantly for
different magnetic fields. ForS3/2 ground state at zero and
small magnetic field, the main componentl =0 of the wave
function is the angular momentum of the envelope function,
so it is located at the center of the DMS QD. At large mag-
netic field B=10 T, the main componentl =3 of the wave
function of S3/2 is the angular momentum of the envelope
function, the wave function becomes ring-like shape as
shown in Fig. 5(b). A similar situation can also be found for
S1/2. From this figure we observe that the wave functions of
S3/2 andS1/2 change rapidly at the crossing point due to the
band mixing effect.

Figure 6 shows how the energies of the electron and hole
ground states vary with the QD radius, i.e., the in-plane con-
finementÎk0ur2u0l, for hole states with different angular mo-
mentum kfzl. Notice how the energies of the electron and
hole decrease as the QD radius increases. The energy spec-
trum exhibits an interesting anticrossing behavior due to the

contribution of the off-diagonal terms in the Luttinger
Hamiltonian[see Eq.(2)]. Notice that the ground state of the
hole in the DMS QD is changed fromS−3/2 to S−1/2 when the
QD radius decreases, and the first excited state becomesS1/2
(see the inset). This transition is driven by the quantum con-
finement effect. The heavy-hole state along thez axis, i.e.,
the strong confinement direction, has a light-hole character in
the x–y plane[see the diagonal terms in Eq.(2)]. With de-
creasing the QD radiusÎk0ur2u0l, the energy of the heavy-
hole state increases faster than that of the light-hole due to
the higher in-plane kinetic energy[the first term ofHhh in
Eq. (2)], and consequently results in the change of the
ground state of the hole in the DMS QD.

Figures 7(a)–7(d) show the weight factors(relative con-
tribution) and the expected value of the angular momentum
kJzl in the DMS QD as a function of the QD radius. For the
S−3/2 state, the dominant heavy-hole components is always
u3/2,−3/2l, but for theS3/2 state, the dominant component
of the heavy-hole stateS3/2 changes from the components
u3/2,3/2l to the componentu3/2,−3/2l with increasing QD
radius. The main components in theS1/2 andS−1/2 states are,

FIG. 7. The weight factor(a)–(d) and the av-
erage value(e) of the angular momentumkJzl of
the hole ground state for different angular mo-
mentumfz versus the QD radius. The QD struc-
ture is the same as in Fig. 5.
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respectively, the componentu3/2,1/2l and u3/2,−3/2l, and
the latter becomes dominant for larger QD radius. The aver-
age value of the angular momentumkJzl is plotted in Fig.
7(e) as a function of QD radius. For these four hole eigen-
states,kJzl decreases with increasing QD radius and ap-
proaches a constant −3/2 for large QD radius. Since the
dominant component of the hole eigenstates at large QD ra-
dius is the spin-down heavy holeu3/2,−3/2l, thereforekJzl
of these four hole eigenstates is equal to −3/2. Note thatkJzl
of the hole eigenstatesu3/2,3/2l experience a sharp change
from 3/2 to −3/2 with increasing magnetic field due to the
crossover of the hole componentsu3/2,3/2l and u3/2,
−3/2l.

In Fig. 8 we plot the overlap factorukc s
e uc fz

h lu as a func-
tion of QD radius. The transitions between the different
states display very different features with increasing QD ra-
dius, especially at small radius. The transition strength be-
tweens−1/2 and S−3/2 increases slightly at small QD radius

and saturates at large QD radius, but the strength of the tran-
sitions s−1/2→S1/2, s1/2→S3/2, ands1/2→S−1/2 exhibit a dip
with increasing QD radius. These features can be understood
from the variation of the wave functions of the electron and
the hole states when the QD radius changes. The wave func-
tions of hole eigenstates are shown in Figs. 9(a)–9(d) for
different QD radius. The wave functions of theS−3/2 state
changes slightly for different QD radius, but the wave func-
tions of theS3/2, S−1/2, andS1/2 states varies significantly with
increasing QD radius due to the change of the dominant
component. The main difference can be found in the inter-
band transition strengths for different circular polarization as
a function of QD radius arises from the wave functions of the
hole eigenstates(see Fig. 7).

IV. CONCLUSIONS

In summary, we investigated the electronic structure of
the DMS QD under a perpendicular magnetic field. Our the-
oretical calculation shows that the hole energy decreases rap-
idly for weak magnetic field, and saturates for high magnetic
fields, slightly increases again for very strong magnetic field
due to the intrinsic Zeeman effect and the magnetic field-
induced confinement. The ground state of the hole in the
DMS QD changes fromS−3/2 to S−1/2 with decreasing QD
radius. It is interesting to note that the mixing of different
hole components in the hole states can be tuned significantly
by changing the external magnetic field and the in-plane con-
finement, and consequently influences the strength of the in-
terband transitions. The external magnetic field provides us
with a powerful tool to tailor the electronic structure of a
DMS QD via thesp–d exchange interaction. Here we con-
centrate on the magnetic field dependence of the single elec-
tron and hole states. The Coulomb interaction between elec-
tron and hole was neglected in our calculation which is
important for the optical property of DMS QD,5 especially in

FIG. 8. The overlap factor of the electron and the hole in the
DMS QD versus the QD radius. The QD structure is the same as in
Fig. 5.

FIG. 9. The wave function of
the hole ground states for different
SfZ

for two values of QD radius
R=2 nm and 12 nm.
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the case of weak confinement. The Coulomb interaction can
lower the transition energy and enhance the transition
strength. Nevertheless, our numerical results about the tran-
sition energy and strength are qualitatively correct especially
in the strong confinement regime. However, the electronic
structure and the optical property of the DMS QD under an
external magnetic field are expected to play an important role
in the physics of spintronic nanodevice.
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