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Excitonic trions in vertically coupled quantum dots
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A theoretical investigation, based on an exact numerical diagonalization, is presented for negatively charged
excitonic trions in vertically coupled parabolic quantum dots in the presence of an external magnetic field. The
hole and electrons reside in separate dots. We investigate the properties of the system as a function of the
interdot separation and an externally applied magnetic field, and observe a number of ground-state angular
momentum transitions. At the angular momentum transitions the charge distribution in the dots undergoes a
sudden redistribution, leading to jumps in the average electron and hole radii. The interparticle correlations and
magnetophotoluminescence oscillator strengths are also discussed.
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[. INTRODUCTION Charged excitons in quantum dots were addressed theo-
retically by Szafran and co-worke?$?° These authors em-
The quantum-mechanical description of three-particleployed a variational trial wave function to study trion bind-
complexes has a long history dating back to the early days dhg energies in single and coupled quantum dots in the
quantum theory. In atomic physics the paradigm and basigbsence of a magnetic field. Earlier, the interaction of an
objects of interest were the atomic and molecular hydrogenigxciton confined in a quantum dot with an additional electron
ions H and H,", while the analogous systems in con- was studied®
densed matter are the negative () and positive K,") ex- In the present paper, we present a study of negatively
citonic trions composed, respectively, of two electrons charged excitons confined in a two-quantum-dot molecule in
bound to a hole or vice versa. In bulk crystals, the existencéhe presence of a perpendicular magnetic field. We assume
and stability of such and other charged complexes was prehat the electrons and hole are spatially separated. This can
dicted by Igampeﬂt and confirmed by numerous pe realized by applying a perpendicular electric field to the
observationd=® However, their binding energie@with re-  yyo_dot layer. Recently it was shoRhthat the localization
spect to dissociation to an exciton and a free electron on hol&y gjectrons and holes in different dots also occurs due to the
turned out to be very smal_l, thus making t_he experlmenta{,ery different environment felt by the two kinds of particles.
observat.|c_)n_ of charged excitons a chal.lengmg task. Earlier calculations on trions in quantum well systé%is-
In artlflc[ally structur_ed Iqw-dlmensmnal strgcturgs t.he dicated that the trion binding energy was a very sensitive
%erge%;?&eﬁ% rrfcgogfﬁgﬁfi:grinfoﬂ;rzgaiﬁ)ﬁgigﬂhﬂrg;:gtoe r;Eimction of the ve'rtical separatipn betwe'en. the e!ectrons and
le. Our work will shed new light on this issue in the con-

energy is changed, and as a result, the binding energies d We b h di lizati
excitonic trions may increase quite substanti&fyCharged 'ned case. We base our approach on exact diagonalizations
in the Hilbert space of three-particle configurations. This

excitons were observed in semiconductor quantum #efls . . N L2
and quantum dot¥ Also higher complexes with more than work is an extension of our earlier investigations of neutral

one excess charge can be form&d=> electron-hole complexes in double quantum &btsee also
The increased binding energies in low-dimensional sysRef. 29 to charged systems.

tems is supplemented by a number of additional advantages. The structure of the paper is as follows. In Sec. II, we

Recent progress in measurement techniques allows one fermulate the theoretical approach, present our results in Sec.

perform photoluminescence measurements on a single quahk, and conclude with the summarizing Sec. IV. The Appen-

tum dot'®>~7In this way, one gets rid of the inhomogeneousdix discusses the calculation of the Coulomb matrix ele-

broadening and it becomes possible to directly probe thenents.

energy states of neutral and charged excitons in a quantum

dot. Also, novel approaches based on significantly different

diffusion constants of photogenerated electrons and holes Il. THEORY
make it possible to charge quantum dots by a different num-
ber of electrons and holes in a controllable marirer. In our model, the two electrongnassm*, charge—e)

The excitonic trions in quantum wells were extensivelyand hole (massM*, charge +e) move in parallel two-
studied by a number of authot$:2°One of the most intrigu-  dimensional layers separated by a vertical distahaed are
ing issues in quasi-two-dimensional systems in magnetitaterally confined by circularly symmetric confining poten-
fields is the fact that the lowest-energy spin-triplet state idials whose strengths we denote by and(},, respectively,
optically inactive??? The puzzle of the “dark” triplet was for the electrons and hole. Figure 1 shows the geometry of
solved by discovering a novel exact selection fufgovern-  the dots. The magnetic field is included in terms of its
ing the optical transitions of charged excitons which is asymmetric-gauge vector potentidl=[BXr]/2. The com-
manifestation of magnetotranslational symméfry. plete Hamiltonian reads
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effective Bohr radius (the length unit becomes a}

O> 1 =#2e/m*e?=9.8 nm and the effective Hartree energfye
energy unitis Ef,=e?/sa}=11.86 meV. We take the effec-
S e E’ tive hole massvi* =0.45m,.
As already discussed above, we solve @9 by perform-
h L ing exact diagonalizations. We will use a basis of many-body
— configurations which is built of single-electron and single-

hole states corresponding to the case when the Coulomb in-
teraction is absent: i.e., the Fock-Darwin states in a magnetic
field. For electrons these read
2
r2
o)

2
imé [m|
H=3, Tert TotVeet 2, VeintHz. D nmre = ez T m
Jar ¥ (n+[m])! lmi+270

The first two terms denote the single-particle parts, respec- 5)

tively, of the two electrons and hole; the following two terms _ o ) )

stand for the electron-electron and electron-hole Coulomtsiere | is the magnetic-field-renormalized extension of the

interactions, while the last one is the Zeeman contribution€lectron wave function in the dot; it is computed from the

Both the electrons and hole are treated in the effective magero-field extensionlg=(%/m* wg)"? and the magnetic

approximation: thus the single-particle terms are expressel@ngth .= (fc/eB)"? according tol ~*=15*+1;%4. The

as expression of the hole states is obtained from &{.upon
replacement of the radius—L with L™*=Ly*+1_%4.

FIG. 1. The geometry of the coupled dots.

2 2

e 1 .5, Note that the conditiony=L, at B=0 also implies the
Tei:2m* Peit EA(rei) T oM wglei, equality of wave function sizes at arbitrary magnetic fields
since the magnetic length, does not depend on material
2 e 2 4 parameters. Moreover, even if the zero-field dot sizes are not
T,= [ph_ “A(ry) | + =M Q22 (2)  Pprecisely equal, the presence of a finite magnetic field will
2M* c 2 reduce their disparity; i.e., the magnetic-field-renormalized

dot sizes will differ less. Thus, for the sake of convenience,

The interaction terms are given by we assume the two dots to be equal sized. The use of the

e? 1 above-introduced basis is convenient in that the single-
ee:_ﬁa particle part of the Hamiltonian, Edql), is immediately di-
€ Ifex™Te2 agonal and the remaining task is the computation of the Cou-

2 lomb matrix elements and numerical diagonalization of the
e 1 : : .

- - (3y  matrix. The Coulomb matrix elements are calculable analyti-
€ [rei—rptd| cally to a large extent, and the Appendix gives further details

In the present calculation we include only the electronic spirP" this matter. We typically include six lowest degenerate
degree of freedom and assume the hole to be in the Spin—LFbe”S of single-electron and single-hole states in the calcu-
state withS;;=3/2. This does not compromise the generality atpsn *and hobtaln an absoluteh a:jccur?jcy on the order 0];
since the two distinct subspaces of trion states—the onel:a0 Ey . The errors of our metho _ten tq Increase severa
defined by the hole being polarized spin W €3/2) and times towards thel— 0 limit, as the interaction between the
spin down = — 3/2)—are not connected by the Coulomb hole and electrons increases and thus the basis functions used

interaction. Therefore, the diagonalizations may be carrieé’ecome less suitable. The total three-particle angular mo-

out separately and produce identical sets of states whose e_rrr]1_entum Is a good quantum number, therefore, the diagonal-

ergies differ by @* , with g* being the hole effective gyro- izations can be carried out separately in subspaces of differ-

. - ent angular momenta, thus considerably reducing the
magnetic factor. Moreover, these two sets of states will behumerical effort

optically active in the channels of opposite light polarization " 114 single-electron and hole eneraies in the stéeare
(see, e.g., the trion energy level diagram in Fig. 4 of Ref. 30 given by g g i

In view of these considerations we will restrict ourselves to
the treatment of one of these sets and disregard the hole >

Zeeman energy. Thus the Zeeman term in @yis the Zee- E.(n,m)="7 1 /w2+ &(2n+ Im|+1)+ Ehw m
man energy of the electronic subsystem and is given by e 0" 4 27

Vei,h: -

H;=pugde BSE, (4) 02 1
— 2 c
where S is the z component of the total electron spin. En(n,m)=7\/ Qg+ —=(2n+[m|+1)— 5AQm, (6)

We choose to work in dimensionless “atomic” units set
by the electron material parameters in GaAs. Thus we usewith w.=eB/m*c and{.=eB/M*c being the electron and
m* =0.067Tn,, £=12.4, andg; = —0.44 and find that the hole cyclotron frequencies. Thus, at nonzero magnetic fields

115310-2



EXCITONIC TRIONS IN VERTICALLY COUPLED. .. PHYSICAL REVIEW B68, 115310(2003

-0.6 T T T T T T -0.35 T T T T T T
(a) -0.40

FIG. 2. Correlation energy of a

0.8
: negatively charged trion in

-0.45 B\

-1.0 -0.50 coupled quantum dots for two val-
uF 12 W 055 ues of interdot distancel=0._25
o = 080 (@ and d=1.0 (b). The thick
- 1.4 w 0.65 dashed line denotes the correlation
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the electrons will prefer negative angular momenta oveinterdot distance is further reduced down de=0. The

positive and vice versa for the holes. ground state of the trion switches fron® to 3P at a mag-
We define the trion(exciton correlation energy as the netic field value close to 9 T.

difference of the trior(exciton energy and the ground-state  The corresponding spectra for more distant dots are

energies of its constituent particles: shown in Fig. 2b). Here the interdot separation is setdo
=1.0 which is close to the trion binding edgsee Fig. 3,
Ec(X7)=E(X")—2E(e)—E(h), and we find only one {P) state that is weakly bound at
intermediate magnetic fields. Quite interestingly, there is a
Ec(X)=E(X)—E(e)—E(h). (7)  crossing between excitedistates, and @>3.8 T the triplet

state becomes lower in energy than the singlet state.
The trion binding energy is the difference between the en- |n Fig. 3, we depict thé-d phase diagram of the system
ergy of an exciton plus a free electrGn a quantum dotand  composed of two equal-sized dots with=L,=2.5a% . The
the trion energy. This quantity can be interpreted as the ennterdot distance is varied between 0 araf;5-that is, twice
ergy needed to transfer one electron from the quantum-dghe (ot radius—and the magnetic field ranges from 0 to 14 T.
molecule confining the trion to another identical empty\ye yse the common spectroscopic notatisnk, D, F, . . .)
quantum-dot molecule located at a distance large enough {8 genote the values of the angular momentum and indicate
eliminate Coulomb coupling between the molecules. Thenhe gpin states by a left superscript 1 and 3 for singlet and
binding energy can alternatively be expressed as the d'ﬁe'i'riplet respectively.
ence of the exciton and trion correlation energies: The hatched area at low values denotes the domain
B B _ where the particles form a bound trion; i.e., its ground state
Eg(X7)=E(X)+E(e)—E(X")=Ec(X) —Ec(X"). ® is stable with respect to dissociation into an exciton and an

14

Positive (negative binding energies correspond to bound é/
(unbound trions. 12
10
Il. RESULTS %
A. Energy spectra - 8
We numerically calculated the energies and states of the @ g J
electron-hole system defined by E@). One of the most 'D(-2) )
conspicuous results is the switching of the ground-state an- 4 ]
gular momentum and spin multiplicity as a function of the P (1) c
vertical separation between the ddtand the magnetic field 2 .
strengthB. s (0)
In Fig. 2, we display the magnetic field dependence of the 00 1 5 3 "1 g
trion correlation energies and compare them to the correla- dia.”
tion energy of the exciton ground state. We include the low- B

est singlet and triplet states of angular momenta O and g 3 The phase diagram of a trion confined in a quantum-dot
—1—i.e., the ones that are competing for the status of the,,jecule of confinement radij=Lo=2.5a% . The thick lines sepa-
ground state. As explained previously, the trion states that argye areas of different ground-state angular momenta and spin mul-

found below the exciton line are bqund. In FiglaRthe  ipjicities. The angular momenta are denoted by a capital letter and
results for two closely spaced dots witl=0.25 are shown, ts numerical value is also shown in the parentheses. The super-

and we observe that at intermediate magnetic fields up tecripts 1 and 3 stand for, respectively, singlet and triplet states. The
three subspaces's, 1P, and *P) become bound, while the hatched area indicates the range of parameter values at which trions
state®S is never bound. The same behavior persists when thare bound.
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FIG. 4. The binding energies dfS (a) and 3P (b) states as a

function of interdot distance for three different values of magnetic
field.

electron. In Fig. 4 we plot the binding energies of the FIG. 5. The same as in Fig. 3 but now in the absence of the
lowest 'S and 3P states versus the interdot separation. WeZeeman interaction: i.eg¢=0. In contrast to Fig. 3 we find the
observe that binding persists only up to interdot distance§inglet ground state with angular momentum#. Also, the area
arounda’g which is considerably less than the radii of the belonging to the stat® is no longer terminated at high magnetic

. . fields.
quantum dots (2&%). Nevertheless, in our case the sensi-

tivity of the trion binding energies on the interdot distance is

not as dramatic as that predicted for asymmetric quanturnoWn function of the perpendicular coordinate which de-
wells 20 scribes the penetration of the particles into the barrier region

We see that with increasing magnetic field and interdofetween the dot_s. The_n the overlap between_ the electron and
separation the angular momentum of the ground state foole wave functions will be expressed as an integral over the

lows a sequence of negative numbers growing in absolut@teral coordinates times an unknown factor which is the

value (given in parentheses in Fig).3The angular momen- same for all states. This allows us to compute the relative

tum switchings are accompanied by singlet-triplet transi-2Scillator strengths of various transitions. _
The lowest-energy component of the trion triplet state

tions; thus all ground states of even angular momentum are o ; X s 20 -

spin singlets, while odd angular momenta correspond to tripWith Se+S,=5/2 is optically inactivé” since no transition

let states. This kind of behavior is typical of interacting two- can take it to a final state of a single electron wih

electron systems; thus we may conclude that in our systerft = 1/2, thus lowering the total spin projection by at least 2.

the angular momentum transitions are induced by the stron@herefore, we will consider the transitions from the middle

Coulomb repulsion between the two electrons. The role ofomponent of triplet states as well as transitions from singlet

the hole is to screen the interelectron interaction. Thus, as thgates. In both cases, the total spin projection in the initial

quantum dots are brought closer to each other, the angul&tate isS;+ S;=3/2—i.e., one electron is in the spin-up state

momentum transitions are shifted towards higher values ofvhile the other is polarized spin down—and in the final state,

the magnetic field or are even quenched. We find no transiwe always have a single electron wij=1/2.

tions atd=0 for magnetic fields up to 30 T. In our further treatment of the calculation of the oscillator
One also observes that the area corresponding to the sistrengths we follow Ref. 31 and write the initial and final

glet 1D state in Fig. 3 is very narrow and is terminated at astates as

magnetic field of about 9 T. Furthermore, the following ex-

pected singlet statéG is missing altogether. This effect is

brought about by the inclusion of the Zeeman energy which D)= 2 Ciapagan,dll0),

linearly lowers the energy of the lowest component of the MA2hn

triplet states with increasing magnetic field. This is illus-

trated by Fig. 5 where we show tiBed phase diagram in the |<I>f)=a;[T|0>, 9)

absence of the Zeeman enei@g., gs =0).

where a;[i and d{i are, respectively, the electron and hole

B. Oscillator strengths creation operators in stafg;), the arrowsf, | denote spin

Although in our model the electrons and the hole arePolarizations, and the expansion coefficie@fs, ,, are ob-
treated as strictly two dimensional and moving in spatiallytained from the diagonalization of the Hamiltonian. For the
separated layers, we can, nevertheless, obtain estimates fake of brevity we omit the specification of photon states.
the photoluminescence oscillator strengths. To this end, w8ince in the present calculation we assume the two quantum
assume that the total wave function of the electron-hole sysdots to have equal sizes, the lateral overlap of the electron
tem is a product of the computed in-plane part and an unand hole wave functions,
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f d2r re(Ne| 1) Ph(NRI1), (10

equals unity when the electron and hole are in “complemen-

tary” statesh and\ with the same radial quantum number

and angular quantum number differing in sign and is zero
otherwise. Thus the interaction Hamiltonian describing opti-
cal emission attains the form

f (arb. units)

Hine* ; a, dy;b", (11

hereby describing the annihilation of an electron and a hole
in “complementary” states and creating a photon in a corre-
sponding state. A straightforward calculation leads to the fol-
lowing expression for the oscillator strength of the transition
to the final state with an electron in a given orbiat

2
f= ‘ 2;, CW# : (12)

f (arb. units)

The initial trion state is usually a superposition of many
three-particle configurations. Therefore, after annihilating
one electron with a hole the remaining electron may be
found in any of a number of different final states with finite
probabilities. However, since the two annihilating particles =% s 10 12 u
have zero total angular momentum, the angular momentum B

- . (M
of eligible final states must equal the angular momentum of
the trion. Moreover, in all cases considered below after the F|G. 6. The oscillator strengths for optical transitions from the
transition the remaining electron ends up in its lowest posfour lowest trion energy levels at=0.25 (a) andd= 1.0 (b). The
sible state with much higher probability than in any otherlower-energy triplet®P is consistently darker than the higher-
state. Therefore, we compute the oscillator strengths only fognergy3s.
this dominant transition.

In Fig. 6, we plot the oscillator strength arbitrary ~ momentum— 1 so that there is no overlap with the electrons
units) for the optical transitions from the four lowest-energy in their ground state. With increasing magnetic field the en-
states considered in the previous subsection as a function efgies of single-particle states are altered and this configura-
magnetic field for two interdot distance$=0.25 andd tion is replaced by (6;1;0), andconsequently, the oscilla-
=1.0. One observes that the transitions from the tr®n tor strength starts growing rapidly.
states are as a rule stronger than those fromRfstates. Taking a look at the triplet states we observe that 1Re
Since the electron-electron and electron-hole interactions argiate has a rather low oscillator strength and thus may be
quite strong, in most cases there are many terms contributingalled a “dark” triplet state. This state is always lower in
to the sum in Eq(12) and thus it is not always easy to energy than the “bright” triplet state’S; i.e., the present
interpret the strengths of different transitions microscopicallysituation resembles that encountered in the investigation of
by identifying a dominant initial-state configuration that setscharged excitons in a two-dimensional electron Yas.
the transition rate. However, in certain cases such an analysis
becomes manageable.

For example, one may infer that the stdt is always
rather bright because in this state the most important single- As a next step, we look at the electron and hole charge
particle configuration is the one having both electrons andlistributions in the dots and their redistribution during the
the hole in the lowest states with angular momentum 0. Herground-state angular momentum transitions. Such charge re-
and further in the text we will use the compact notationdistributions result in abrupt changes of the spatial extent of
(0,0;0) listing the angular momenta of electrons first andthe electron and hole subsystems and consequently in its
then, separated by a semicolon, the one of the hole. It is easapacitance. Recent vertical transport experiments performed
to see that in such a state there is a large overlap betweem single quantum dot$ were able to detect such area
electron and hole wave functions. On the other hand, thehanges of about 10%.
trion state P is very dark at low magnetic fields. This fact ~ We define the effective radius of the electréhole)
can be traced back to the predominant configuration (0,0¢harge distribution by taking the square root of the expecta-
—1) where the holddue to the closer energy level spacing tion value of its squared radial coordinate: i.€Rgn)
of the holeg is promoted to a higher orbital with angular =<r§(h)>1’2. The results obtained in this way do not differ in

C. Charge distribution in the dots
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FIG. 7. The radii of the distribution of electrorfapper curve FIG. 8. The electron@ and hole(b) distribution radii as a

and holeglower curve as a function of interdot distanakat zero  function of the magnetic field strength for three values of the inter-

magnetic field. Note that the hole radius attains a minimum at alot distancel. The abrupt jumps accompanying angular momentum

finite interdot distance. transitions are apparent and are considerably stronger in the elec-
tronic subsystem.

essence from those obtained using an alternative definition

this radius should contain 95% of the total charge. this change may take placeéither direction i.e., the size of

In Fig. 7, we show the dependences of the radius of thene hole dot may increase as well as decrease at the transition
electron,R,, and hole Ry, distribution in the ground state tg g higher total angular momentum state.

('S) as a function of interdot distanakat B=0 T. Natu-
rally, one observes that the radius of the electron distribution ) '
is decreasing monotonically when the two dots are brought D. Correlation between the particles

closer to each other. This is easily explained by the fact that The angular momentum transitions also influence the rela-
a nearby hole creates an additional centrally attractive poterive arrangement of electrons and hole with respect to each
tial in the dot with electrons, thereby compressing their rapther. In Fig. 9 we plot the average electron-electron and
dial distribution. The behavior of the hole dot is quite differ- electron-hole Separations defined as the square root of the
ent. At large distanced the dot is contracting as expected, ground-state expectation value of thadial distance be-
however, when the interdot separation becomes smaller thafyeen the two respective particles—i.e pee=((I'e1
approximately 1.85 (this number is just slightly less than _re2)2>l/2 andpeh:<(rel_rh)2>1/2_ We see that the general
the confinement radii in the dots: i.e., 8 the radius of trend of both the electron-electron and electron-hole separa-
the hole dot starts growing again. The hole feels the attraction is very similar. Both distances,. and pep, tend to de-

tive potential of the electronic dot which is larger in size and,
therefore, at close distances creates a net force directed tc
wards the edge rather than the center.

With this result in mind, let us proceed to the magnetic
field dependence of the charge distribution radii. The two
panels of Fig. 8 show, respectively, the evolutionRafand
Ry, versus the magnetic field at three fixed values of interdot, _
distanced=0.4,1.0, and 2.0. We see that the electron radius ®
increases with increasing interdot distaicét the magnetic R
field values corresponding to angular momentum transitions
(see Fig. 3 these curves exhibit quite substantial abrupt
jumps on the order of 10% of their value, these jumps being
comparable in magnitude for both closely spaced and more
distant dots.

The behavior of the hole subsystem, shown in Fiy),ds
quite different. The curves appear in the same order as thos B (T) B (T)
pertaining to electrons at high magnetic fields, but we find
the opposite arrangement at the lower end of Bhealue FIG. 9. The average electron-electr@ and electron-holéb)
range, and they intersect in the middle. The abrupt jumps arseparation in the ground state. As in Fig. 8, abrupt increases in the
also notable but much smaller in magnitude if compared tdnterparticle distances at the angular momentum transitions are
the ones in Fig. &). The radius of the hole distribution clearly visible.
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") FIG. 10. The phasd(a) and (b)] and the

13 squared absolute valuéc) and (d)] of the re-
duced wave function of the trion calculated for

> fixed position of one of the electroriat x=0,

11 y=1.5) and hole(at x=y=0). The interdot

o separation is set tal=1.5. Panels(a) and (c)

i 2 correspond to the magnetic fielB=2 T and

@1, ground-state angular momentuml, and panels
(b) and (d) are drawn forB=10 T and angular
momentum— 3. The norm of the reduced wave

> function signifies the conditional probability to

2 find the second electron. One and three vortices

1-3 are seen in the panelg) and(b) at and close to

4 the position of the fixed electron.

crease with growing magnetic field due to its localizing ef- E. Dependence on the confining radius

fect. This monoFonous decrease is interrupted by abrupt Up to now we considered coupled quantum dots in which
jumps upwards in both curves at the angular momentumie electrons and hole have lateral confinement lenkghs
transition points. . _ =L,=2.5a§ . Itis also interesting to look at the dependence
In order to obtain a more detailed picture we also calcuf the trion binding energy on the confinement strength in the
late the reduced electron wave function in the dot by evaluggts. In Fig. 11 we plot the binding energies at zero magnetic
ating the total three-particle wave functidn(ry.r2,r), at  field and various fixed interdot distances betwelen0 and
fixed posmons.of one glectron ahd the hole. Figure 10 showg = 1.2%% as a function of the confining lengthg=L. All
the result obtained for interdot distande 1.5 and two mag- curves, except for the one Correspondingdt:QO, tend to
netic field values 0B=2 T in the two left paneléa) and(c)  decrease rapidly towards large negative val(ibat is, the
andB=10 T in the right panel¢b) and(d). The hole is fixed  trion is unboungl at small values of the confinement length.
at the center of the quantum doty=0) and marked by (The dashed line corresponding do=0.25% also follows
an encircled “+” sign while one of the electrons is fixed at the suit at very short confinement leng)hBhis behavior can
a point with coordinatex=0 andy=1.5 and indicated by be understood by realizing that the strong in-plane confine-
an encircled " sign. ment results in an increase of the effective interdot
In the panels(c) and (d) we plot the squared absolute separation—i.e., its ratio to the lateral extent of the wave
value of the reduced ground-state wave function which defunction. On the other hand, for the case of closely spaced
scribes the conditional probability to find the remaining elec-dots (i.e., d<0.2%g) the strong lateral confinemefith
tron at a given position. One observes that in both cases dhe values of, andL, close toag) allows us to obtain more
high and low magnetic field this probability is highest on thetightly bound trions. Similar results were recently obtained
opposite side of the hole from the fixed electron. The elecfor three-dimensionafinite thicknes$ quantum dots?
tron tends to be more strongly localized at higher magnetic
fields. The upper panels) and(b) show the behavior of the I ]
phase of the reduced wave function close to the position of 021 .
the fixed electron. Notice that points are found where at [ T
which the conditional probability is zero—e.g., at the posi- |
tion of the fixed electron—and where there is a circulation of 0.0

03 T T T

0.1

the phase by Z. Such a point is called a vortex. At low w” .

magnetic field§panel(a)] we observe a single vortex, indi- ;cn 0.1

cating that the wave function has a simple zero at this posi- 02 [

tion. The ground-state angular momentum in this case is L -

—1. At higher magnetic fields we observe three vortices. o3f 7

One is attached to the position of the fixed electron while the 7

other two are approaching it from the sides. Because of the D4rs _ . . . _ . — ]
presence of the hole, the latter two vortices are not posi- 10 15 20 25 3.0

tioned diagonally opposite with respect to the position of the
electron. The appearance of three zeros of the reduced wave
function indicates a much lower probability to find an elec-  FIG. 11. The trion binding energy at zero magnetic field vs the
tron in the vicinity of the fixed one. In this case, the groundconfinement lengthk,=L,. Different curves correspond to differ-
state has angular momentun3. ent interdot distances.

I,/a,,L,/a,
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IV. SUMMARY calculable analytically except for the radial integral oyer

. . . which reduces to a numerical evaluation of the function
In conclusion we performed a study of interacting com-

plexes of two electrons and one hole confined in coupled 1 o t

quantum dots. We obtained tiBed (i.e., magnetic field ver- F(x)= —1f dte 't¥? 2/ — (A2)
sus interdot distangghase diagram of the system and iden- r(i 0 tx

tified angular momentum and spin multiplicity transitions 2

with increasing magnetic field and/or increasing separation, rmalized so thaf (0)=1 which is obtained in the limit
between the two dots. Such transitions are accompanied By .5 The final result reads

abrupt increases in the radius of the electron charge distribu-
tion and the electron-electron and electron-hole separation.
The radius of the hole distribution is, on the other hand, quite(12|V|34) = &y, +m, my+m,

oo

A - . )
inert. At small distances between the dots the trions are =1 (ni+ |mi])!
bound while they become unbound fdeag . The triplet N (—1)iitiatiatia n,+|mi|
state 3P has a substantially lower oscillator strength than X — T .
the S and 3S states. @r=0 J1'2'sa [i=1 \opn—j;
Y
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APPENDIX: COULOMB MATRIX ELEMENT
; . . =(|mq|+my)/2+ (M| —mz)/2+ ]+ 3,
We briefly discuss the evaluation of electron-hole Cou- 72=(1myl ) (Jms| ) J1%ls

lomb matrix elements y2= (Imal + mg)/2:+ (| my| = M) 12+ o+ o,

<12|V|34>:f d2rlf d2r % (namy|r 1) 4 (Nomy 1) ya3=(|my| —my)/2+ (|mg|+m3)/2+j,+ 3,
¥a=(|My| —my) 12+ (|my|+my)/2+ 4] 4.

X [ri—r,+d]| Ye(NaMa|r1) Yin(namy|r) If the electron and hole have different lateral extensions of

the wave function, the above approach is still usable; how-
(A1) ever, one has to introduce “weighted” midpoint and relative

between the states defined in Ef). To tackle Eq(Al) we  coordinates according to

generalize the result derived previou$lyfor a single- . .

component system moving in a single layer. In the case of ri=R+qp, r,=R—pp, (A3)

equal lateral extensions of the electron and hole wave funGyith p=12/(12+L2) and q=1%(12+L?). In the case of

tions (I=L) we may closely follow the procedure of Ref. 34 equal confinement frequencies in the two dots and no mag-

based on switching to Ehe midpoint and relative coordinategetic field the weighting factorp andq are proportional to

according tor;=R=*p/2. All the resulting integrals are the masses of the respective particles.
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