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Excitonic trions in vertically coupled quantum dots

Egidijus Anisimovas and F. M. Peeters
Departement Natuurkunde, Universiteit Antwerpen (UIA), B-2610 Antwerpen, Belgium
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A theoretical investigation, based on an exact numerical diagonalization, is presented for negatively charged
excitonic trions in vertically coupled parabolic quantum dots in the presence of an external magnetic field. The
hole and electrons reside in separate dots. We investigate the properties of the system as a function of the
interdot separation and an externally applied magnetic field, and observe a number of ground-state angular
momentum transitions. At the angular momentum transitions the charge distribution in the dots undergoes a
sudden redistribution, leading to jumps in the average electron and hole radii. The interparticle correlations and
magnetophotoluminescence oscillator strengths are also discussed.

DOI: 10.1103/PhysRevB.68.115310 PACS number~s!: 73.21.La, 78.67.Hc
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I. INTRODUCTION

The quantum-mechanical description of three-parti
complexes has a long history dating back to the early day
quantum theory. In atomic physics the paradigm and ba
objects of interest were the atomic and molecular hydroge
ions H2 and H2

1 , while the analogous systems in co
densed matter are the negative (X2) and positive (X2

1) ex-
citonic trions1 composed, respectively, of two electro
bound to a hole or vice versa. In bulk crystals, the existe
and stability of such and other charged complexes was
dicted by Lampert1 and confirmed by numerou
observations.2–5 However, their binding energies~with re-
spect to dissociation to an exciton and a free electron or h!
turned out to be very small, thus making the experimen
observation of charged excitons a challenging task.

In artificially structured low-dimensional structures th
charge carriers are confined in one or more spatial directi
Thereby the balance of different contributions to the syst
energy is changed, and as a result, the binding energie
excitonic trions may increase quite substantially.6,7 Charged
excitons were observed in semiconductor quantum wells8–11

and quantum dots.12 Also, higher complexes with more tha
one excess charge can be formed.13–15

The increased binding energies in low-dimensional s
tems is supplemented by a number of additional advanta
Recent progress in measurement techniques allows on
perform photoluminescence measurements on a single q
tum dot.15–17 In this way, one gets rid of the inhomogeneo
broadening and it becomes possible to directly probe
energy states of neutral and charged excitons in a quan
dot. Also, novel approaches based on significantly differ
diffusion constants of photogenerated electrons and h
make it possible to charge quantum dots by a different nu
ber of electrons and holes in a controllable manner.15

The excitonic trions in quantum wells were extensive
studied by a number of authors.18–20One of the most intrigu-
ing issues in quasi-two-dimensional systems in magn
fields is the fact that the lowest-energy spin-triplet state
optically inactive.21,22 The puzzle of the ‘‘dark’’ triplet was
solved by discovering a novel exact selection rule22 govern-
ing the optical transitions of charged excitons which is
manifestation of magnetotranslational symmetry.23
0163-1829/2003/68~11!/115310~9!/$20.00 68 1153
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Charged excitons in quantum dots were addressed t
retically by Szafran and co-workers.24,25 These authors em
ployed a variational trial wave function to study trion bin
ing energies in single and coupled quantum dots in
absence of a magnetic field. Earlier, the interaction of
exciton confined in a quantum dot with an additional electr
was studied.26

In the present paper, we present a study of negativ
charged excitons confined in a two-quantum-dot molecule
the presence of a perpendicular magnetic field. We ass
that the electrons and hole are spatially separated. This
be realized by applying a perpendicular electric field to
two-dot layer. Recently it was shown27 that the localization
of electrons and holes in different dots also occurs due to
very different environment felt by the two kinds of particle
Earlier calculations on trions in quantum well systems20 in-
dicated that the trion binding energy was a very sensit
function of the vertical separation between the electrons
hole. Our work will shed new light on this issue in the co
fined case. We base our approach on exact diagonaliza
in the Hilbert space of three-particle configurations. Th
work is an extension of our earlier investigations of neut
electron-hole complexes in double quantum dots28 ~see also
Ref. 29! to charged systems.

The structure of the paper is as follows. In Sec. II, w
formulate the theoretical approach, present our results in
III, and conclude with the summarizing Sec. IV. The Appe
dix discusses the calculation of the Coulomb matrix e
ments.

II. THEORY

In our model, the two electrons~massm* , charge2e)
and hole ~mass M* , charge1e) move in parallel two-
dimensional layers separated by a vertical distanced and are
laterally confined by circularly symmetric confining pote
tials whose strengths we denote byv0 andV0, respectively,
for the electrons and hole. Figure 1 shows the geometry
the dots. The magnetic field is included in terms of
symmetric-gauge vector potentialA5@B3r #/2. The com-
plete Hamiltonian reads
©2003 The American Physical Society10-1
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H5(
i 51

2

Tei1Th1Vee1(
i 51

2

Vei,h1HZ . ~1!

The first two terms denote the single-particle parts, resp
tively, of the two electrons and hole; the following two term
stand for the electron-electron and electron-hole Coulo
interactions, while the last one is the Zeeman contributi
Both the electrons and hole are treated in the effective m
approximation; thus the single-particle terms are expres
as

Tei5
\2

2m*
Fpei1

e

c
A~rei!G2

1
1

2
m* v0

2r ei
2 ,

Th5
\2

2M*
Fph2

e

c
A~rh!G2

1
1

2
M* V0

2r h
2 . ~2!

The interaction terms are given by

Vee5
e2

e

1

ure12re2u
,

Vei,h52
e2

e

1

urei2rh1du
. ~3!

In the present calculation we include only the electronic s
degree of freedom and assume the hole to be in the spi
state withSh

z53/2. This does not compromise the general
since the two distinct subspaces of trion states—the o
defined by the hole being polarized spin up (Sh

z53/2) and
spin down (Sh

z523/2)—are not connected by the Coulom
interaction. Therefore, the diagonalizations may be car
out separately and produce identical sets of states whose
ergies differ by 3gh* , with gh* being the hole effective gyro
magnetic factor. Moreover, these two sets of states will
optically active in the channels of opposite light polarizati
~see, e.g., the trion energy level diagram in Fig. 4 of Ref. 3!.
In view of these considerations we will restrict ourselves
the treatment of one of these sets and disregard the
Zeeman energy. Thus the Zeeman term in Eq.~1! is the Zee-
man energy of the electronic subsystem and is given by

HZ5mBge* BSe
z , ~4!

whereSe
z is thez component of the total electron spin.

We choose to work in dimensionless ‘‘atomic’’ units s
by the electronmaterial parameters in GaAs. Thus we u
m* 50.067me , «512.4, andge* 520.44 and find that the

FIG. 1. The geometry of the coupled dots.
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effective Bohr radius ~the length unit! becomes aB*
5\2«/m* e259.8 nm and the effective Hartree energy~the
energy unit! is EH* 5e2/«aB* 511.86 meV. We take the effec
tive hole massM* 50.45me .

As already discussed above, we solve Eq.~1! by perform-
ing exact diagonalizations. We will use a basis of many-bo
configurations which is built of single-electron and sing
hole states corresponding to the case when the Coulomb
teraction is absent: i.e., the Fock-Darwin states in a magn
field. For electrons these read

ce~nmuru!5
eimu

Ap
A n!

~n1umu!!
e2r 2/2l 2

r umu

l umu11
Ln

umuS r 2

l 2 D .

~5!

Here l is the magnetic-field-renormalized extension of t
electron wave function in the dot; it is computed from t
zero-field extensionl 05(\/m* v0)1/2 and the magnetic
length l c5(\c/eB)1/2 according to l 245 l 0

241 l c
24/4. The

expression of the hole states is obtained from Eq.~5! upon
replacement of the radiusl→L with L245L0

241 l c
24/4.

Note that the conditionl 05L0 at B50 also implies the
equality of wave function sizes at arbitrary magnetic fie
since the magnetic lengthl c does not depend on materia
parameters. Moreover, even if the zero-field dot sizes are
precisely equal, the presence of a finite magnetic field w
reduce their disparity; i.e., the magnetic-field-renormaliz
dot sizes will differ less. Thus, for the sake of convenien
we assume the two dots to be equal sized. The use of
above-introduced basis is convenient in that the sing
particle part of the Hamiltonian, Eq.~1!, is immediately di-
agonal and the remaining task is the computation of the C
lomb matrix elements and numerical diagonalization of
matrix. The Coulomb matrix elements are calculable anal
cally to a large extent, and the Appendix gives further deta
on this matter. We typically include six lowest degenera
shells of single-electron and single-hole states in the ca
lation and obtain an absolute accuracy on the order
1023EH* . The errors of our method tend to increase seve
times towards thed→0 limit, as the interaction between th
hole and electrons increases and thus the basis functions
become less suitable. The total three-particle angular
mentum is a good quantum number; therefore, the diago
izations can be carried out separately in subspaces of di
ent angular momenta, thus considerably reducing
numerical effort.

The single-electron and hole energies in the states~5! are
given by

Ee~n,m!5\Av0
21

vc
2

4
~2n1umu11!1

1

2
\vcm,

Eh~n,m!5\AV0
21

Vc
2

4
~2n1umu11!2

1

2
\Vcm, ~6!

with vc5eB/m* c andVc5eB/M* c being the electron and
hole cyclotron frequencies. Thus, at nonzero magnetic fie
0-2
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FIG. 2. Correlation energy of a
negatively charged trion in
coupled quantum dots for two val
ues of interdot distanced50.25
~a! and d51.0 ~b!. The thick
dashed line denotes the correlatio
energy of an exciton; solid~dot-
ted! lines correspond toS ~P!
states of a trion. The lowest sin
glet and triplet states are shown.
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the electrons will prefer negative angular momenta o
positive and vice versa for the holes.

We define the trion~exciton! correlation energy as th
difference of the trion~exciton! energy and the ground-sta
energies of its constituent particles:

EC~X2!5E~X2!22E~e!2E~h!,

EC~X!5E~X!2E~e!2E~h!. ~7!

The trion binding energy is the difference between the
ergy of an exciton plus a free electron~in a quantum dot! and
the trion energy. This quantity can be interpreted as the
ergy needed to transfer one electron from the quantum
molecule confining the trion to another identical emp
quantum-dot molecule located at a distance large enoug
eliminate Coulomb coupling between the molecules. T
binding energy can alternatively be expressed as the di
ence of the exciton and trion correlation energies:

EB~X2!5E~X!1E~e!2E~X2!5EC~X!2EC~X2!.
~8!

Positive ~negative! binding energies correspond to boun
~unbound! trions.

III. RESULTS

A. Energy spectra

We numerically calculated the energies and states of
electron-hole system defined by Eq.~1!. One of the most
conspicuous results is the switching of the ground-state
gular momentum and spin multiplicity as a function of t
vertical separation between the dotsd and the magnetic field
strengthB.

In Fig. 2, we display the magnetic field dependence of
trion correlation energies and compare them to the corr
tion energy of the exciton ground state. We include the lo
est singlet and triplet states of angular momenta 0
21—i.e., the ones that are competing for the status of
ground state. As explained previously, the trion states that
found below the exciton line are bound. In Fig. 2~a! the
results for two closely spaced dots withd50.25 are shown,
and we observe that at intermediate magnetic fields up
three subspaces (1S, 1P, and 3P) become bound, while the
state3S is never bound. The same behavior persists when
11531
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interdot distance is further reduced down tod50. The
ground state of the trion switches from1S to 3P at a mag-
netic field value close to 9 T.

The corresponding spectra for more distant dots
shown in Fig. 2~b!. Here the interdot separation is set tod
51.0 which is close to the trion binding edge~see Fig. 3!,
and we find only one (3P) state that is weakly bound a
intermediate magnetic fields. Quite interestingly, there i
crossing between excitedSstates, and atB.3.8 T the triplet
state becomes lower in energy than the singlet state.

In Fig. 3, we depict theB-d phase diagram of the system
composed of two equal-sized dots withl 05L052.5aB* . The
interdot distance is varied between 0 and 5aB* —that is, twice
the dot radius—and the magnetic field ranges from 0 to 14
We use the common spectroscopic notation (S, P, D, F, . . . !
to denote the values of the angular momentum and indic
the spin states by a left superscript 1 and 3 for singlet
triplet, respectively.

The hatched area at lowd values denotes the domai
where the particles form a bound trion; i.e., its ground st
is stable with respect to dissociation into an exciton and

FIG. 3. The phase diagram of a trion confined in a quantum-
molecule of confinement radiil 05L052.5aB* . The thick lines sepa-
rate areas of different ground-state angular momenta and spin
tiplicities. The angular momenta are denoted by a capital letter
its numerical value is also shown in the parentheses. The su
scripts 1 and 3 stand for, respectively, singlet and triplet states.
hatched area indicates the range of parameter values at which t
are bound.
0-3
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electron. In Fig. 4 we plot the binding energies of t
lowest 1S and 3P states versus the interdot separation.
observe that binding persists only up to interdot distan
aroundaB* which is considerably less than the radii of th
quantum dots (2.5aB* ). Nevertheless, in our case the sen
tivity of the trion binding energies on the interdot distance
not as dramatic as that predicted for asymmetric quan
wells.20

We see that with increasing magnetic field and inter
separation the angular momentum of the ground state
lows a sequence of negative numbers growing in abso
value ~given in parentheses in Fig. 3!. The angular momen
tum switchings are accompanied by singlet-triplet tran
tions; thus all ground states of even angular momentum
spin singlets, while odd angular momenta correspond to t
let states. This kind of behavior is typical of interacting tw
electron systems; thus we may conclude that in our sys
the angular momentum transitions are induced by the str
Coulomb repulsion between the two electrons. The role
the hole is to screen the interelectron interaction. Thus, as
quantum dots are brought closer to each other, the ang
momentum transitions are shifted towards higher values
the magnetic field or are even quenched. We find no tra
tions atd50 for magnetic fields up to 30 T.

One also observes that the area corresponding to the
glet 1D state in Fig. 3 is very narrow and is terminated a
magnetic field of about 9 T. Furthermore, the following e
pected singlet state1G is missing altogether. This effect i
brought about by the inclusion of the Zeeman energy wh
linearly lowers the energy of the lowest component of
triplet states with increasing magnetic field. This is illu
trated by Fig. 5 where we show theB-d phase diagram in the
absence of the Zeeman energy~i.e., ge* 50).

B. Oscillator strengths

Although in our model the electrons and the hole a
treated as strictly two dimensional and moving in spatia
separated layers, we can, nevertheless, obtain estimate
the photoluminescence oscillator strengths. To this end,
assume that the total wave function of the electron-hole s
tem is a product of the computed in-plane part and an

FIG. 4. The binding energies of1S ~a! and 3P ~b! states as a
function of interdot distance for three different values of magne
field.
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known function of the perpendicular coordinate which d
scribes the penetration of the particles into the barrier reg
between the dots. Then the overlap between the electron
hole wave functions will be expressed as an integral over
lateral coordinates times an unknown factor which is
same for all states. This allows us to compute the rela
oscillator strengths of various transitions.

The lowest-energy component of the trion triplet sta
with Se

z1Sh
z55/2 is optically inactive30 since no transition

can take it to a final state of a single electron withSe
z

561/2, thus lowering the total spin projection by at least
Therefore, we will consider the transitions from the midd
component of triplet states as well as transitions from sing
states. In both cases, the total spin projection in the ini
state isSe

z1Sh
z53/2—i.e., one electron is in the spin-up sta

while the other is polarized spin down—and in the final sta
we always have a single electron withSe

z51/2.
In our further treatment of the calculation of the oscillat

strengths we follow Ref. 31 and write the initial and fin
states as

uF i&5 (
l1l2lh

Cl1l2lh
al1↑

† al2↓
† dlh↑

† u0&,

uF f&5al↑
† u0&, ~9!

where al i

† and dl i

† are, respectively, the electron and ho

creation operators in stateul i&, the arrows↑, ↓ denote spin
polarizations, and the expansion coefficientsCl1l2lh

are ob-
tained from the diagonalization of the Hamiltonian. For t
sake of brevity we omit the specification of photon stat
Since in the present calculation we assume the two quan
dots to have equal sizes, the lateral overlap of the elec
and hole wave functions,

c

FIG. 5. The same as in Fig. 3 but now in the absence of
Zeeman interaction: i.e.,ge* 50. In contrast to Fig. 3 we find the
singlet ground state with angular momentum24. Also, the area
belonging to the state1D is no longer terminated at high magnet
fields.
0-4
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E d2rce~leur !ch~lhur !, ~10!

equals unity when the electron and hole are in ‘‘complem
tary’’ statesl and l̄ with the same radial quantum numb
and angular quantum number differing in sign and is z
otherwise. Thus the interaction Hamiltonian describing op
cal emission attains the form

H int}(
l

al↓dl̄↑b†, ~11!

hereby describing the annihilation of an electron and a h
in ‘‘complementary’’ states and creating a photon in a cor
sponding state. A straightforward calculation leads to the
lowing expression for the oscillator strength of the transit
to the final state with an electron in a given orbitall0:

f 5U(
l

Cl0ll̄U2

. ~12!

The initial trion state is usually a superposition of ma
three-particle configurations. Therefore, after annihilat
one electron with a hole the remaining electron may
found in any of a number of different final states with fini
probabilities. However, since the two annihilating partic
have zero total angular momentum, the angular momen
of eligible final states must equal the angular momentum
the trion. Moreover, in all cases considered below after
transition the remaining electron ends up in its lowest p
sible state with much higher probability than in any oth
state. Therefore, we compute the oscillator strengths only
this dominant transition.

In Fig. 6, we plot the oscillator strengths~in arbitrary
units! for the optical transitions from the four lowest-ener
states considered in the previous subsection as a functio
magnetic field for two interdot distancesd50.25 andd
51.0. One observes that the transitions from the trionS
states are as a rule stronger than those from theP states.
Since the electron-electron and electron-hole interactions
quite strong, in most cases there are many terms contribu
to the sum in Eq.~12! and thus it is not always easy t
interpret the strengths of different transitions microscopica
by identifying a dominant initial-state configuration that se
the transition rate. However, in certain cases such an ana
becomes manageable.

For example, one may infer that the state1S is always
rather bright because in this state the most important sin
particle configuration is the one having both electrons a
the hole in the lowest states with angular momentum 0. H
and further in the text we will use the compact notati
(0,0;0) listing the angular momenta of electrons first a
then, separated by a semicolon, the one of the hole. It is e
to see that in such a state there is a large overlap betw
electron and hole wave functions. On the other hand,
trion state 1P is very dark at low magnetic fields. This fac
can be traced back to the predominant configuration (0
21) where the hole~due to the closer energy level spacin
of the holes! is promoted to a higher orbital with angula
11531
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momentum21 so that there is no overlap with the electro
in their ground state. With increasing magnetic field the e
ergies of single-particle states are altered and this config
tion is replaced by (0,21;0), andconsequently, the oscilla
tor strength starts growing rapidly.

Taking a look at the triplet states we observe that the3P
state has a rather low oscillator strength and thus may
called a ‘‘dark’’ triplet state. This state is always lower
energy than the ‘‘bright’’ triplet state3S; i.e., the present
situation resembles that encountered in the investigation
charged excitons in a two-dimensional electron gas.19

C. Charge distribution in the dots

As a next step, we look at the electron and hole cha
distributions in the dots and their redistribution during t
ground-state angular momentum transitions. Such charge
distributions result in abrupt changes of the spatial exten
the electron and hole subsystems and consequently in
capacitance. Recent vertical transport experiments perfor
on single quantum dots32 were able to detect such are
changes of about 10%.

We define the effective radius of the electron~hole!
charge distribution by taking the square root of the expec
tion value of its squared radial coordinate: i.e.,Re(h)

5^r e(h)
2 &1/2. The results obtained in this way do not differ

FIG. 6. The oscillator strengths for optical transitions from t
four lowest trion energy levels atd50.25 ~a! andd51.0 ~b!. The
lower-energy triplet 3P is consistently darker than the highe
energy3S.
0-5
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essence from those obtained using an alternative defin
for the radius33 formulated as a requirement that the circle
this radius should contain 95% of the total charge.

In Fig. 7, we show the dependences of the radius of
electron,Re , and hole,Rh , distribution in the ground state
( 1S) as a function of interdot distanced at B50 T. Natu-
rally, one observes that the radius of the electron distribu
is decreasing monotonically when the two dots are brou
closer to each other. This is easily explained by the fact
a nearby hole creates an additional centrally attractive po
tial in the dot with electrons, thereby compressing their
dial distribution. The behavior of the hole dot is quite diffe
ent. At large distancesd the dot is contracting as expecte
however, when the interdot separation becomes smaller
approximately 1.8aB* ~this number is just slightly less tha
the confinement radii in the dots: i.e., 2.5aB* ) the radius of
the hole dot starts growing again. The hole feels the att
tive potential of the electronic dot which is larger in size an
therefore, at close distances creates a net force directe
wards the edge rather than the center.

With this result in mind, let us proceed to the magne
field dependence of the charge distribution radii. The t
panels of Fig. 8 show, respectively, the evolution ofRe and
Rh versus the magnetic field at three fixed values of inter
distanced50.4,1.0, and 2.0. We see that the electron rad
increases with increasing interdot distanced. At the magnetic
field values corresponding to angular momentum transiti
~see Fig. 3! these curves exhibit quite substantial abru
jumps on the order of 10% of their value, these jumps be
comparable in magnitude for both closely spaced and m
distant dots.

The behavior of the hole subsystem, shown in Fig. 8~b!, is
quite different. The curves appear in the same order as th
pertaining to electrons at high magnetic fields, but we fi
the opposite arrangement at the lower end of theB value
range, and they intersect in the middle. The abrupt jumps
also notable but much smaller in magnitude if compared
the ones in Fig. 8~a!. The radius of the hole distribution

FIG. 7. The radii of the distribution of electrons~upper curve!
and holes~lower curve! as a function of interdot distanced at zero
magnetic field. Note that the hole radius attains a minimum a
finite interdot distance.
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typically changes by no more than 1% or 2%, and moreo
this change may take place ineither direction; i.e., the size of
the hole dot may increase as well as decrease at the trans
to a higher total angular momentum state.

D. Correlation between the particles

The angular momentum transitions also influence the r
tive arrangement of electrons and hole with respect to e
other. In Fig. 9 we plot the average electron-electron a
electron-hole separations defined as the square root of
ground-state expectation value of theradial distance be-
tween the two respective particles—i.e.,ree5^(re1
2re2)2&1/2 andreh5^(re12rh)2&1/2. We see that the genera
trend of both the electron-electron and electron-hole sep
tion is very similar. Both distancesree and reh tend to de-

a

FIG. 8. The electron~a! and hole~b! distribution radii as a
function of the magnetic field strength for three values of the int
dot distanced. The abrupt jumps accompanying angular moment
transitions are apparent and are considerably stronger in the
tronic subsystem.

FIG. 9. The average electron-electron~a! and electron-hole~b!
separation in the ground state. As in Fig. 8, abrupt increases in
interparticle distances at the angular momentum transitions
clearly visible.
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FIG. 10. The phase@~a! and ~b!# and the
squared absolute value@~c! and ~d!# of the re-
duced wave function of the trion calculated fo
fixed position of one of the electrons~at x50,
y51.5) and hole~at x5y50). The interdot
separation is set tod51.5. Panels~a! and ~c!
correspond to the magnetic fieldB52 T and
ground-state angular momentum21, and panels
~b! and ~d! are drawn forB510 T and angular
momentum23. The norm of the reduced wav
function signifies the conditional probability to
find the second electron. One and three vortic
are seen in the panels~a! and ~b! at and close to
the position of the fixed electron.
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crease with growing magnetic field due to its localizing
fect. This monotonous decrease is interrupted by ab
jumps upwards in both curves at the angular momen
transition points.

In order to obtain a more detailed picture we also cal
late the reduced electron wave function in the dot by eva
ating the total three-particle wave functionC(r1 ,r2 ,rh), at
fixed positions of one electron and the hole. Figure 10 sho
the result obtained for interdot distanced51.5 and two mag-
netic field values ofB52 T in the two left panels~a! and~c!
andB510 T in the right panels~b! and~d!. The hole is fixed
at the center of the quantum dot (x5y50) and marked by
an encircled ‘‘1 ’’ sign while one of the electrons is fixed a
a point with coordinatesx50 andy51.5 and indicated by
an encircled ‘‘2 ’’ sign.

In the panels~c! and ~d! we plot the squared absolut
value of the reduced ground-state wave function which
scribes the conditional probability to find the remaining ele
tron at a given position. One observes that in both case
high and low magnetic field this probability is highest on t
opposite side of the hole from the fixed electron. The el
tron tends to be more strongly localized at higher magn
fields. The upper panels~a! and~b! show the behavior of the
phase of the reduced wave function close to the position
the fixed electron. Notice that points are found where
which the conditional probability is zero—e.g., at the po
tion of the fixed electron—and where there is a circulation
the phase by 2p. Such a point is called a vortex. At low
magnetic fields@panel~a!# we observe a single vortex, ind
cating that the wave function has a simple zero at this p
tion. The ground-state angular momentum in this case
21. At higher magnetic fields we observe three vortic
One is attached to the position of the fixed electron while
other two are approaching it from the sides. Because of
presence of the hole, the latter two vortices are not p
tioned diagonally opposite with respect to the position of
electron. The appearance of three zeros of the reduced w
function indicates a much lower probability to find an ele
tron in the vicinity of the fixed one. In this case, the grou
state has angular momentum23.
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E. Dependence on the confining radius

Up to now we considered coupled quantum dots in wh
the electrons and hole have lateral confinement lengthl 0

5L052.5aB* . It is also interesting to look at the dependen
of the trion binding energy on the confinement strength in
dots. In Fig. 11 we plot the binding energies at zero magn
field and various fixed interdot distances betweend50 and
d51.25aB* as a function of the confining lengthsl 05L0. All
curves, except for the one corresponding tod50, tend to
decrease rapidly towards large negative values~that is, the
trion is unbound! at small values of the confinement lengt
~The dashed line corresponding tod50.25aB* also follows
the suit at very short confinement lengths.! This behavior can
be understood by realizing that the strong in-plane confi
ment results in an increase of the effective interd
separation—i.e., its ratio to the lateral extent of the wa
function. On the other hand, for the case of closely spa
dots ~i.e., d,0.25aB* ) the strong lateral confinement~with
the values ofl 0 andL0 close toaB* ) allows us to obtain more
tightly bound trions. Similar results were recently obtain
for three-dimensional~finite thickness! quantum dots.25

FIG. 11. The trion binding energy at zero magnetic field vs
confinement lengthsl 05L0. Different curves correspond to differ
ent interdot distances.
0-7
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IV. SUMMARY

In conclusion we performed a study of interacting co
plexes of two electrons and one hole confined in coup
quantum dots. We obtained theB-d ~i.e., magnetic field ver-
sus interdot distance! phase diagram of the system and ide
tified angular momentum and spin multiplicity transitio
with increasing magnetic field and/or increasing separa
between the two dots. Such transitions are accompanie
abrupt increases in the radius of the electron charge distr
tion and the electron-electron and electron-hole separa
The radius of the hole distribution is, on the other hand, qu
inert. At small distances between the dots the trions
bound while they become unbound ford*aB* . The triplet
state 3P has a substantially lower oscillator strength th
the 1S and 3S states.
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APPENDIX: COULOMB MATRIX ELEMENT

We briefly discuss the evaluation of electron-hole Co
lomb matrix elements

^12uVu34&5E d2r 1E d2r 2ce* ~n1m1ur1!ch* ~n2m2ur2!

3
1

ur12r21du
ce~n3m3ur1!ch~n4m4ur2!

~A1!

between the states defined in Eq.~5!. To tackle Eq.~A1! we
generalize the result derived previously34 for a single-
component system moving in a single layer. In the case
equal lateral extensions of the electron and hole wave fu
tions (l 5L) we may closely follow the procedure of Ref. 3
based on switching to the midpoint and relative coordina
according tor1(2)5R6rW /2. All the resulting integrals are
m

I.
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calculable analytically except for the radial integral overr
which reduces to a numerical evaluation of the function

Fa~x!5
1

GS a11

2 D E0

`

dte2tta/221/2A t

t1x
, ~A2!

normalized so thatFa(0)[1 which is obtained in the limit
d→0. The final result reads

^12uVu34&5dm11m2 ,m31m4F)i 51

4
ni !

~ni1umi u!!
G1/2

3 (
(4) j 50

n
~21! j 11 j 21 j 31 j 4

j 1! j 2! j 3! j 4! F)
i 51

4 S ni1umi u

opni2 j i
D G

3 (
(4)s50

g

ds11s2 ,s31s4
~21!g21g42s22s4

3F)
i 51

4 S g i

si
D GGSS12

2 DGSG2S11

2 DFG2SS d2

2l 2D ,

with

G5(
i 51

4

g i ,S5(
i 51

4

si , (
(4) j 50

n

[ (
j 150

n1

(
j 250

n2

(
j 350

n3

(
j 450

n4

,

g15~ um1u1m1!/21~ um3u2m3!/21 j 11 j 3 ,

g25~ um2u1m2!/21~ um4u2m4!/21 j 21 j 4 ,

g35~ um1u2m1!/21~ um3u1m3!/21 j 11 j 3 ,

g45~ um2u2m2!/21~ um4u1m4!/21 j 21 j 4 .

If the electron and hole have different lateral extensions
the wave function, the above approach is still usable; ho
ever, one has to introduce ‘‘weighted’’ midpoint and relati
coordinates according to

r15R1qrW , r25R2prW , ~A3!

with p5L2/( l 21L2) and q5 l 2/( l 21L2). In the case of
equal confinement frequencies in the two dots and no m
netic field the weighting factorsp andq are proportional to
the masses of the respective particles.
t,

a-
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