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Magnetism in twisted triangular bilayer graphene quantum dots
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Using a tight-binding model along with the mean-field Hubbard method, we investigate the effect
of twisting angle on the magnetic properties of twisted bilayer graphene (tBLG) quantum dots
(QDs) with triangular shape and zigzag edges. We consider such QDs in two configurations: when
their initial untwisted structure is a perfect AA- or AB-stacked BLG, referred to as AA- or AB-like
dots. We find that AA-like dots exhibit an antiferromagnetic spin polarization for small twist angles,
which transits to a ferromagnetic spin polarization beyond a critical twisting angle θc. Our analysis
shows that θc decreases as the dot size increases, obeying a criterion, according to which once the
maximum energy difference between electron and hole edge states (in the single-particle picture) is
less than (U/γ0) t0, the spin-polarized energy levels are aligned ferromagnetically [U is the Hubbard
parameter and γ0 (t0) the graphene intralayer (interlayer) hopping]. Unlike AA-like dots, AB-like
dots exhibit finite magnetization for any twist angle. Furthermore, in the ferromagnetic polarization
state, the ground net spin for both dot configurations agrees with prediction from Lieb’s theorem.

I. INTRODUCTION

Magnetic materials are critical components for a wide
range of technological applications. Due to the outstand-
ing electronic and structural properties of graphene [1–3],
it has also attracted huge amounts of research attention
to the magnetism associated with carbon-based materials
since its first isolation in 2004 [4]. While ideal graphene
itself does not show magnetic properties, several of its
derivative materials and nanostructures, both realized in
practice and studied in theory, exhibit various forms of
magnetism (see, e.g., Refs. [5–10]). For example, both
theoretical [11, 12] and experimental [13, 14] studies re-
veal that a defective graphene with some pz electrons
missing from its crystallographic lattice displays a net
spin. Theoretical studies, on the other hand, predict that
a wide range of finite nanostructured graphene exhibit
magnetic ordering. Triangular graphene quantum dots
(QDs) [the corresponding PAH (polycyclic aromatic hy-
drocarbon) molecule is known as [n]-triangulenes, where
n is the number of hexagons along each molecular edge]
and graphene nanoribbons with zigzag edges are iconic
examples of such structures [5, 6, 8, 10]. The origin
of magnetism in nanostructured graphene (generally in
carbon-based structures) as a light material is mainly re-
lated to the imbalance of sublattice atoms [7, 8], which
is different from other conventional magnetic materials
like Ni, Fe, and Co. Because of this property, graphene
π magnetism is more delocalized and isotropic than con-
ventional magnetic.
The huge progress achieved within the last few years

∗ mirzakhani@ibs.re.kr
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in the fabrication of graphene nanostructures has pro-
vided unprecedented opportunities for the synthesis
and characterization of such type of materials. Many
carbon-based nanostructures, such as triangulene [15–
17], zigzag-edged graphene nanoribbons [19, 20], and
Clar’s goblet [18], whose intrinsic magnetic properties
were theoretically predicted previously [5, 7, 8], have been
synthesized and studied over the last few years. Despite
the lack of conclusive evidence in the first two mentioned
graphene nanostructures, magnetism in Clar’s goblet was
recently demonstrated in Ref. [18]. Ferromagnetism in
twisted bilayer graphene (tBLG) has also been recently
reported [21], which demonstrates the fascinating ad-
vances reached in carbon-based magnetism. Further de-
tails of recent experimental progress in nanostructured
graphene materials that either display or have the po-
tential to trigger its magnetic properties (mostly zigzag-
edged graphene flakes) can be found in recent review-
articles [10, 22, 23]. These new advancements in the syn-
thesis of graphene nanostructures motivated us to study
the magnetic properties of QDs in tBLG.

At this point, it needs to be noticed that stacking two
or more layers of graphene can have a significant im-
pact on its mechanical, electronic, and magnetic prop-
erties, both in bulk and nanostructured forms, see, e.g.,
Refs. [24–36]. In the case of BLG QDs, it has been
demonstrated that the edges and geometries play an es-
sential role in modifying the energy spectrum [37, 38] as
well as its magnetic properties [36], similar to monolayer
graphene (MLG) QDs [39, 40]. During the last decade,
two well-known stacks of BLG QDs, i.e., the AA and AB
types, have been experimentally realized and extensively
studied [41–44]. Besides, the effect of twisting on the
electronic and transport properties of BLG QDs has also
been recently addressed both theoretically [45–51] and
experimentally [52]. These results, for example, suggest
that the twisting axis can be utilized to tune the inter-
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AB-like tBLG QD

(d)

AA-like tBLG QD

(c) AA BLG AB BLG

(b)

A2

B2

B1A1

(a)

FIG. 1. Schematic geometry of the triangular tBLG QDs
with lateral zigzag edges. The layers are depicted in two dif-
ferent colors: blue (bottom) and red (top). Filled (empty)
circles in each layer indicate Ai (Bi) [i = 1, 2] sublattice. (a)
An AA-like dot, whose untwisted arrangement corresponds
to the AA-stacked triangular BLG dot [panel (c)], in which
each carbon atom of the top layer is placed exactly above the
corresponding atom of the bottom layer. (b) An AB-like dot,
whose untwisted arrangement corresponds to the AB-stacked
triangular BLG dot [panel (d)], in which different sublattices
of two layers are directly coupled to each other (A1-B2) so
that the two others are situated above the centers of the op-
posing layer hexagons (B1,A2).

layer conductance [48] or that the twist angle can modify
the energy levels [46, 47] in stacked graphene nanostruc-
tures. Despite several theoretical studies pertinent to the
electronic properties of tBLG QDs, to our knowledge,
there is currently no theoretical study on the magnetic
properties of such QDs.

In this paper, we aim to investigate the effect of twist-
ing angle on the magnetic properties of a triangular QD
in tBLG. As previously demonstrated in Refs. [7, 8],
zigzag edges host low-energy edge states, which causes
magnetism to develop in carbon nanostructures. In this
study too, we only address triangular tBLG QDs with
well-defined zigzag edges as shown in Fig. 1. Combining
the tight-binding model (TBM) and the electron-electron
(e-e) interactions addressed self-consistently at the level
of the mean-field (MF) Hubbard model, we numerically
investigate how twisting angle affects the magnetic or-
dering in (triangular) tBLG QDs. To this end, we study
systematically two configurations of tBLG QDs: AA-like
[Fig. 1(a)] and AB-like QDs [Fig. 1(b)], whose untwisted
arrangements correspond, respectively, to the ideal AA-
and AB-stacked BLG QDs, as depicted in Figs. 1(c) and
1(d).

Interestingly, our numeric calculations predict a mag-
netic quantum phase transition at a critical twisting an-
gle for AA-like dots. We find that the AA-like dots ex-
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N  = 5S N  = 6S N  = 7S
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AB
AB

AA

AB
AB

AA

FIG. 2. Geometries and geometric centers (GC, dashed cir-
cles) of three different dot sizes with the edge atoms of

Ns = 5, 6, and 7 [respectively, representing N
(2),(3),(4)
s -group

dots with n = 1 in Eq. (1)] at a twisting angle of θ = 60◦ for
the AA-like (upper panels) and AB-like (lower panels) dots.
In each case, the GC (as the twisting point, indicated at the
top of each panel) is determined by the lattice sites of the
bottom and top layers where the GC is located. Notice that,
at θ = 60◦, both dots can result in AA or AB arrangements
in the layers’ intersection. The same patterns are repeated
for different dot sizes, characterized by Eq. (1).

hibit an antiferromagnetic phase at small twisting angles,
which beyond a critical angle θc transition to a ferro-
magnetic phase occur for which the total spin S agrees
with Lieb’s theorem [53]. Lieb’s theorem predicts the
total spin of the Hubbard model’s ground state in bi-
partite lattices. Our analysis shows that θc decreases as
the dot size increases. We also find a criterion for the
value of θc, according to which once the maximum en-
ergy difference between electron and hole edge states in
the single-particle (SP) picture is less than (U/γ0) × t0,
the spin-polarized energy levels are aligned ferromagnet-
ically. Here, U is the Hubbard parameter and γ0 (t0)
denotes the graphene intralayer (interlayer) hopping.

Unlike AA-like dots, there is no phase transition from
an antiferromagnetic to a ferromagnetic phase in AB-like
dots, and the spins in such dots are ferromagnetically
polarized all twist angles. Furthermore, in the ferromag-
netic phase, the net spin of the studied tBLG QD con-
figurations scales linearly with dot size by one spin unit;
nevertheless, AA-like dots result in an integer net spin
and AB-like ones in a half-integer.

The paper is organized as follows: In Sec. II, we present
the QD structures in tBLG and the basics of our numer-
ical method. Section III is dedicated to results and dis-
cussions. A summary and concluding remarks follow in
Sec. IV.
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II. THEORY AND MODEL

In this paper, we study the intrinsic magnetism of tri-
angular tBLG QDs for two types of configurations. Fig-
ures 1(a) and 1(b) depict two possibilities for creating
a tBLG QD from two comparable monolayer QDs. A
zigzag triangular tBLG QD [Figs. 1(a)], which is built
from the two perfectly flat triangular MLG QDs with
the same shape, size, and edge boundaries in which the
second MLG QD (top) is rotated by an angle θ around
the geometric center of the dot. In this case, untwisted
arrangement (θ = 0) corresponds to an AA-stacked BLG
QD configuration [Fig. 1(c)]. We will refer to such a
structure as an “AA-like dot”. Another configuration
choice is shown in Fig. 1(b), in which the top layer is
smaller (one atom at the edge) than the bottom layer,
and θ = 0 corresponds to a perfect AB-stacked BLG
QD, see Fig. 1(d). Such a structure is referred here to
as an “AB-like dot”. In both configurations, the inter-
layer spacing is d0 = 0.335 nm. Each dot can be char-
acterized by the number of atoms on one edge of the
(bottom) layer, Ns. The total number of carbon atoms
in a layer of such triangular dots with zigzag edges is
NL = N2

s + 4Ns + 1. Notice that in zigzag triangular
graphene QDs, all edge atoms belong to the same sub-
lattice, which here is B sublattice in both layers.
Depending on the dot size, the geometric center

(through which the twist axis passes) coincides at dif-
ferent positions, and each dot can result in either an AA-
or an AB-BLG configuration when θ = 60◦. This feature
is illustrated in Fig. 2. Accordingly, from a geometri-
cal standpoint, we categorize the dots into three groups,
identifying them by the edge atom numbers as

N (p)
s = p+ 3n (n = 0, 1, . . .), (1)

where, p = 2, 3, and 4. For more details, see Fig. 2 and
the caption therein.
In order to study the magnetic properties of tBLG

QDs, we use the widely applied one-orbital MF Hub-
bard model [7, 8, 10, 54–56]. This model considers only
the unhybridized pz atomic orbital of the carbon atoms.
The pz-electron states govern all low-energy features of
graphene, both electronic and magnetic. The Hubbard
model can be expressed as the sum of two terms [57],

H = H0 +HU. (2)

The first term (H0) is the SP TB Hamiltonian, which in
the second quantization formalism can be written as

H0 =
∑

i,σ

ǫiσc
†
iσciσ −

∑

〈i,j〉,σ

[t(dij)c
†
iσcjσ + h.c.], (3)

where c†iσ and ciσ are, respectively, the creation and an-
nihilation operators for an electron on lattice site i with
on-site energy ǫiσ (we set ǫiσ = 0). dij = ri − rj is
the distance between the lattice points (ri, rj), t(dij) is
the corresponding transfer integral, and 〈i, j〉 indicates a

summation over nearest-neighbor sites. Using the Slater-
Koster form, the transfer integral between the atoms i
and j can be written as [58–62],

− t(dij) = Vppπ

[

1−
(

dij .ez
dij

)2]

+ Vppσ

(

dij .ez
dij

)2

. (4)

Here, Vppπ = γ0 exp[−(dij − acc)/δ0] and Vppσ =
t0 exp[−(dij − d0)/δ0], where acc = 0.142 nm is the
carbon-carbon distance of graphene and δ0 = 0.184 a
(a =

√
3 acc is the graphene lattice constant) is the decay

length. γ0 ≈ −2.7 eV and t0 ≈ 0.48 eV are the intralayer
and interlayer nearest-neighbor hopping parameters, re-
spectively. For the intralayer coupling, we include only
the nearest-neighbor hopping parameter. But for the in-
terlayer coupling, since the layers are rotated and the
neighbors are not on top of each other, we take the inter-
layer coupling terms for atomic distances of dij 6 4acc.
For dij > 4acc, the transfer integral is exponentially small
and can be safely ignored [62]. The electron-hole symme-
try is also broken as a result of the mixing between the
two sublattices.
The second term in Hamiltonian (2) is the Hubbard

term that introduces e-e interactions through the repul-
sive on-site Coulomb interaction,

HU = U
∑

i

ni↑ni↓, (5)

where niσ = c†iσciσ (σ =↑, ↓) is the spin-resolved electron
density at site i. The parameter U > 0 is the Hubbard
parameter and denotes, in the short-range regime, the on-
site Coulomb repulsion energy for each pair of electrons
with opposite spins on the same site i.

In the MF approximation, the Hubbard term (5) at
half-filling can be rewritten as

HU = U
∑

i

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

= U
∑

i

[

〈ni↓〉ni↑+〈ni↑〉ni↓−
1

2
(ni↑+ni↓)−〈ni↑〉〈ni↓〉+

1

4

]

.

(6)

Here, a spin-up electron, ni↑, at site i interacts with
the average density of spin-down electrons 〈ni↓〉 at the
same site and vice versa. Accordingly, the MF Hub-
bard Hamiltonian only contains SP operators. It is also
worth mentioning that such MF approximation shows the
Hartree term, that is, the MF Hubbard term is only writ-
ten for the z component of the spin moment. This is the
most common method for examining a system’s magnetic
properties [7, 8, 10].
To solve the problem for H, we use self-consistent cal-

culations that start with randomly chosen initial values
for the unknown electron densities 〈niσ〉. The Hamilto-
nian (2) is then diagonalized to obtain the new eigenval-
ues and eigenvectors, which are used to compute the new
spin densities 〈ni↑〉 and 〈ni↓〉 on each site. Then, the
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(a) (b)AA-like dot (c)
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Probabaility density Magnetic moments

Single particle

Hubbard model

*

Spin up

Spin down

●A1 B1

●A2 B2

Layer 1
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0.20

0.22

! !
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FIG. 3. (a) Energy levels of an AA-like triangular tBLG QD with Ns = 8 and twisting angle of θ = 7◦ in the frame of SP
(single particle, black stars) and Hubbard model (triangles) around the Fermi energy Ef = 0. Filled blue (empty red) triangles
depict the spin up (down) energy levels. The inset shows a zoom of the LUMO cluster energy levels (encircled by the green
oval in the main figure), indicating two doubly degenerate (red boxes) and three non-degenerate energy levels. (b) Probability
densities corresponding to two clusters of the LUMO (upper panel) and HOMO (lower panel) energy levels around Ef . (c)
Local magnetic moments mi shown by the black and green arrows corresponding to the lower and upper layers, respectively.
The length of the arrows signifies the relative magnitude of the magnetic moments.

obtained new spin densities are fed as the initial values
for the next iteration. The procedure is repeated until
all values of 〈niσ〉 are converged. The convergency crite-
rion is met when 〈niσ〉s+1−〈niσ〉s < δ, where δ is a small
number chosen δ = 10−6 and s is the self-consistent cycle
index. After achieving self-consistency, one can compute
the magnetic moment per atomic site

mi =
〈ni↑〉 − 〈ni↓〉

2
, (7)

and the total spin of system S =
∑

i mi.

From literature (see, e.g., Refs. [8, 36]), there is cur-
rently no consensus on the exact value of U in the case
of graphene-based structures. Such a parameter should
ideally be approximated using experimental data, and
there are currently no standard or direct experiments on
magnetic graphene systems to which we may refer. How-
ever, it has been demonstrated that for specific values of
U/|γ0|, the results of MF Hubbard model calculations are
in good agreement with results from first-principles ap-
proaches based on density functional theory [7, 63, 64]. In
general, the most common range of U parameter values is
U ∼ 3.0−3.5 eV, which corresponds to U/|γ0| ∼ 1.1−1.3
[8].† At U/|γ0| ≈ 2.23, ideal graphene undergoes a Mott-
Hubbard transition into an antiferromagnetically ordered
insulating phase [65, 66]. In our calculations, we use the
value of U = 1.2 |γ0| = 3.24 eV, unless otherwise speci-
fied.

III. NUMERICAL RESULTS

A. AA-like triangular tBLG QDs

First, we consider the AA-like dots as illustrated in
Fig. 1(a). Figure 3(a) shows the energy spectrum of an
AA-like dot with Ns = 8 edge atoms and a twist angle
of θ = 7◦ as a function of the energy index. The re-
sults are presented for the SP (black stars) and the MF
Hubbard models near the Fermi energy Ef = 0. Filled
(empty) triangular symbols correspond to the spin up
(down) energy states. As seen, in the case of SP energy
levels, there are two clusters of nearly-degenerate energy
levels [indicated by yellow and green ovals in Fig. 3(a)]
corresponding to the highest occupied and lowest unoc-
cupied molecular orbitals (HOMOs and LUMOs) around
Ef = 0. Such electronic states originate from sublat-
tice imbalance of each layer of the dot. In a bipartite
structure, one can find NZ “strict” zero-energy states
(according to the “benzenoid graph” theory [67]) equat-
ing to sublattice imbalance |NA−NB |, where NA and NB

are the number of sites in sublattices A and B, respec-
tively [8, 10]. In the case of zigzag triangular MLG QDs,
the sublattice imbalance is proportional to the number of
atoms at one edge, i.e., |NA −NB | = Ns − 1 = NZ [68].
Here, two clusters of NZ = 7 nearly-degenerate energy
states (totally 14 states) appear around Ef , due to the
two triangular MLG QDs, which are gaped as a result of
the interlayer coupling between the edge atoms of the two
dot layers. The SP energy gap is ∆SP ≈ 0.28 eV. Notice
that each cluster of energies consists of two doubly de-
generate and three non-degenerate states as shown in the
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FIG. 4. Energy levels of the AA-like dot as a function of the twist angle θ for different dot sizes as indicated by the Ns value in
each panel. The results are presented for SP (dashed black curves) and Hubbard models [spin up (blue) and spin down (red)]
around the Fermi energy Ef = 0. The solid green lines indicate (q × t0)/2 [q ≡ U/|γ0| = 1/2; explained in Eq. (9)]. As clearly
seen, when ∆HL(θ)/2 falls below the green line, the energy levels become spin polarized in all cases.
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FIG. 5. (a) Total spin S as a function of θ for AA-like dots
whose energy levels are shown in Fig. 4. For certain twisting
angles, S achieves a value that is consistent with Lieb’s the-
orem prediction [Eq. (8)].¬† (b) Local magnetic moments for
a dot with Ns = 5 and θ = 5.5◦, presenting an antiferromag-
netic phase with S = 0, as seen in panel (a).

inset of Fig. 3(a). Probability densities corresponding to
each cluster of electron and hole energy states [Fig. 3(b)]
show that all states are mostly localized at the edges of
the dot and are sublattice polarized as well. Here, be-
cause atoms of the dot edges belong to the B-sublattice,
carriers are only localized at the B atoms [open circles in
Fig. 3(b)]. Furthermore, the probability densities of each
energy cluster are almost evenly distributed between the
two layers.
Including the MF Hubbard model, one can see that

each (spin-degenerate) energy state is now spin polar-
ized. Filled blue (empty red) symbols in Fig. 3(a) show
the spin up (down) energy levels. As seen, each energy
state in the two HOMOs and LUMOs clusters are con-
siderably affected by the e-e interaction. However, the
same type of SP energy degeneracy is still preserved for
each spin-polarized energy levels. The spin-polarized en-
ergy gap is ∆H ≈ 0.15 eV. Local magnetic moments mi,
shown in Fig. 3(c), demonstrate that the two layers are
ferromagnetically coupled to each other, and each layer
shares the same magnetization behavior. However, the

magnetic moments of the two sublattices in each layer are
antiferromagnetic ordered. Further, the moments corre-
sponding to the edges’ atoms are the largest, which decay
to zero in the center of the dot. The same behavior was
also seen in both triangular MLG and AA-stacked BLG
QDs [7, 36]. The total spin of the dot is S = 7, which
agrees with Lieb’s theorem, which states that a bipartite
system described by the Hubbard model at half-filling
displays a ground state with a net spin of magnitude [53]

S =
1

2
|NA −NB |. (8)

This theorem allows us to predict the spin of the
ground state of the bipartite molecular systems, such
as graphene-based nanostructures, only by counting the
sublattice imbalance |NA −NB |.
After investigating the energy states for a particular

AA-like dot, now we examine the effect of twisting an-
gle θ on the variation of the energy levels as a function
of θ for fixed dot sizes. Figure 4 shows the lowest en-
ergy levels around Ef = 0 for different dot sizes with the
number of edge atoms Ns = 2, 3, . . . , and 8. The results
depict the two clusters of the HOMOs and LUMOs of
the SP framework (black dashed) and the corresponding
spin-polarized energy levels [spin up (blue) and spin down
(red)] of the Hubbard model. First, notice that the SP
energy spectrum features an equal opening energy gap
independent of the dot sizes when θ = 0, which corre-
sponds to the AA-stacked configuration of the triangular
tBLG QD. The size of the SP energy gap at θ = 0 is
∆SP = ǫ+ − ǫ− = 0.74 eV, (ǫ± ≈ ±0.37 eV), which is
the largest value for the entire range of twist angle. This
is expected since the untwisted structure (AA stacking)
has the largest interlayer coupling between edge atoms,
see Fig. 1(c). However, as seen in Fig. 4, increasing the
twisting angle leads the energy gap to shrink and close
(or become minimum) at certain values of θ. Notice that
the gap decreases quickly and exhibits an oscillatory be-
havior for large dot sizes as the twist angle increases.
Further, the maximum energy separation between HO-

MOs and LUMOs at θ = 60◦ occurs for N
(2)
s -group QDs,
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FIG. 6. A zoom of the energy levels for an AA-like tBLG dot
with Ns = 4, as a function of θ for three different values of
the Hubbard parameter (U = q |γ0|) (a) q = 0.6, (b) q = 0.8,
and (c) q = 1. As seen, when the maximum energy differ-
ence between two clusters of HOMOs and LUMOs (∆HL(θ);
dashed curves) goes below q × t0 (green lines), the energy
levels become spin polarized.

as seen for Ns = 2, 5 and 8 in Figs. 4(a), 4(d), and 4(g),
respectively. This can be understood by the edge atoms’

coupling, whose N
(2)
s -group dots are greater than those

of the two others. In this case, as seen in Fig. 2(a), the
edge atoms of each layer are directly connected to the
atoms of the adjacent layer that belong to the sublattice
of the edge atoms, i.e. B1-B2. As previously shown, the
HOMOs and LUMOs probability densities are sublattice
polarized and solely localized at the B1 and B2 sublat-
tices, which leads to a strong coupling between the layers

in N
(2)
s -group dots.

The corresponding total spin S for the dots with the
spin-polarized energy levels shown in Fig. 4, is plotted
in Fig. 5(a). All dot sizes for small twist angles (which
decrease as dot size increases) have a total spin of S = 0
and the magnitude of S is consistent with Lieb’s theorem
[Eq. (8)] for large twisting angles. The observed behav-
ior for small twisting angles does not contradict the pre-
diction of Lieb’s theorem, but rather indicates that the
energy levels at these angles are antiferromagnetically po-
larized, as can be seen directly from the energy spectra
shown in Fig. 4. This antiferromagnetic spin alignment
can be highlighted further by plotting the local magnetic
moments for an example of dot size and twist angle, e.g.,
Ns = 5 and θ = 5.5◦ [Fig. 5(b)]. As seen, the spin polar-
ization of each layer is oriented equally in opposite direc-
tions. Accordingly, all dot sizes exhibit a critical value
of twist angle (θc), at which a magnetic phase transition
occurs. As visible in Fig. 5(a), θc decreases as the dot
size increases.
Our numerical calculations demonstrate that the phase

transition occurs when the ratio of the (maximum) en-
ergy difference between the HOMOs and LUMOs (in the
SP frame), ∆HL(θ), to the interlayer coupling t0 be-
comes lesser than the ratio of the Hubbard parameter
U to the intralayer hopping |γ0|, i.e.,

∆HL(θ) / q × t0, (9)

S
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FIG. 7. (Upper panel) A zoom of the lowest spin-polarized
energy levels of AA-like dots with (a) Ns = 5 and (b) Ns = 8
for the twist angle range of [50◦, 60◦]. Dashed black curves
show the energy gap of the two outmost SP HOMOs and
LUMOs, and the horizontal solid green line indicates q × t0
(q = 1.2). (Lower panel) The corresponding total spin S for
each dot.†

where q = U/|γ0|. To highlight this point, we plot, in
Fig. 6, a zoom of the Hubbard spin-polarized energy lev-
els and ∆HL(θ) for a dot with Ns = 4 and different Hub-
bard parameter values (U = q |γ0|), e.g., (a) q = 0.6, (b)
q = 0.8, and (c) q = 1. As seen, the above-mentioned cri-
terion is met in all cases. This behavior is also visible in
the energy levels depicted in Fig. 4 for different dot sizes
but with the constant U = 1.2 γ0 value. Magnetic phase
transition occurs for all dots when ∆HL(θ)/2 falls below
(q× t0)/2 ≈ 0.29 eV (here q = 1.2); notice the horizontal
green lines in all panels of Fig. 4 and the caption therein.

The spin-polarized energy levels exhibit smooth vari-
ation as a function of θ in the ferromagnetic phase for
which the total spin S of the structures agrees with the
prediction of Lieb’s theorem, as shown in Fig. 5(a). No-
tice that the net spin scales linearly with dot size by

one spin unit. While the N
(3),(4)
s -group dots exhibit a

smooth variation of the energy spectra as the twist angle

approaches θ = 60◦, the energy levels of the N
(2)
s -group

dots, i.e., Ns = 2, 5, and 8, undergo an abrupt decline in
this area as seen in Figs. 4(a), 4(d) and 4(g), respectively.
Such abrupt drops in the energy levels are manifested as
a decrease in the total spin of the dot by one or two units
depending on the dot sizes, as shown in Fig. 5(a).† Figure
7 shows a zoomed of the energy levels for two examples
of these types of dots, i.e., Ns = 5 (a) and Ns = 8 (b),
at twist angles between 50◦ ≤ θ ≤ 60◦. As seen, the
abrupt decrease in energy levels around the twist angle
of [54◦- 56◦] results in an antiferromagnetically polar-
ization of the lowest energy level(s). This is a generic

feature for N
(2)
s -group dots which will be discussed lat-
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FIG. 9. Total spin as a function of θ shown for ten different
randomly chosen initial electron densities 〈niσ〉 for two AA-
like dot sizes (a) Ns = 4 and (b) Ns = 8. †

ter in Figs. 8(d) and 8(e). We attribute this behavior to
the criterion mentioned in Eq. (9). As depicted in Fig. 7,
once ∆HL(θ) (dashed black curves shown only for the two
outermost HOMOs and LUMOs) exceeds q × t0 (≈ 0.58
eV, green line), a decline in the energy levels occur. This
criterion is well matched in the case of Ns = 5 [Fig. 7(a)],
but there is some discrepancy for Ns = 8 [Fig. 7(b)].

It is also interesting to discuss the dependence of
magnetization on the dot size. Figures 8(a)-8(f) show
the lowest energy levels as a function of the dot size
(characterized by Ns) for the six different twist angles
θ = 1.1◦, 4◦, 25◦, 54◦, 56◦, and 60◦. The results are
shown up to Ns = 26. As seen, for tiny twist angles,
e.g., θ = 1.1◦, the energy levels show antiferromagnetic
polarization for the entire range of dot sizes. In the case
of θ = 4◦ [Figs. 8(b)], small dots exhibit antiferromag-
netic phase and turn to ferromagnetic phase when dot
size increases, around Ns = 11. This is because of the
fast decline in the SP energy gap for the large dot sizes.
At intermediate twist angles, such as θ = 25◦ [Fig. 8(c)],
the energy levels are perfectly aligned ferromagnetically;
two clusters of spin-polarized HOMOs and LUMOs are
formed around the Fermi energy Ef = 0, where the en-
ergy gap diminishes smoothly as the dot size increases.

This ferromagnetic phase is maintained for all dot sizes
until θ ≈ 55◦, as seen in Fig. 8(d). However, beyond the

angle θ ≈ 55◦ [Figs. 8(e) and 8(f)], the N
(2)
s -group dots

behave differently from the other two groups, with the
lowest one or two energy levels being antiferromagneti-
cally polarized, resulting in a drop in the net spin of the
dots. To highlight this further, total spin as a function
of Ns is shown in Fig. 8(g) for two twist angles θ = 54◦

(green) and θ = 56◦ (orange). As seen, while the net

spin of all dots scales linearly at θ = 54◦, the N
(2)
s -group

dots (marked by dashed gray vertical lines) show a re-
duced net-spin value from Lieb’s theorem prediction for
θ = 56◦. Except for Ns = 2, which displays one unit re-

duction, the remaining N
(2)
s -group dots show a net spin

of two units less than what Lieb’s theory predicts.

At this point it is worth mentioning that all MLG car-
bon nanostructures studied in previous literature feature
zero-energy states for which any repulsive Coulomb inter-
action can cause spin-polarization, a mechanism for es-
caping an instability caused by the presence of low-energy
electrons in the system [8, 10]. As illustrated above, an
AA-like dot no longer features strictly zero-energy states
at small twist angles. However, the same scenario occurs
with such graphene QDs. For small twist angles near the
AA-stacking configuration, it is energetically favorable
for spins in adjacent layers to couple to each other anti-
ferromagnetically. Increasing the twisting angle, HOMO
and LUMO electronic states approach the Fermi level; in
the case when the Coulomb repulsion and energy sepa-
ration between HOMOs and LUMOs meet the criterion
expressed by Eq. (9), the energy levels become spin po-
larized to reduce the density of states around the Fermi
energy. Furthermore, notice that, where the HOMOs
and LUMOs are closer to the Fermi level at Ef = 0,
spin-polarized energy levels are formed farther away, and
vice versa, see Fig. 4.

We also would like to point out an issue in the nu-
merical calculation using the MF Hubbard model for
the studied dots. Our findings show that the results for
the critical values of twist angles at which the magnetic
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length of the arrows is measure of the relative magnitude of the magnetic moments.†

phase transition occurs can be varied depending on the
randomly chosen initial values for the electron densities
〈niσ〉. For example, in Fig. 9, we plot the net spin for
two examples of the AA-like dots with (a) Ns = 4 and
(b) Ns = 8 for ten different randomly chosen electron
densities 〈niσ〉. As seen, the critical twist angles change
slightly for different initial values of 〈niσ〉, and these vari-
ations appear to diminish as the dot size increases, cf.
Figs 9(a) and 9(b). All cases, however, share a similar
thread.

B. AB-like triangular tBLG QDs

Now we investigate the magnetic properties of AB-like
tBLG QD, whose configuration is illustrated in Fig. 1(b).
In this configuration, the top layer is smaller than the
bottom layer by one edge atom, and θ = 0◦ corresponds
to the AB-stacking BLG QD [Fig. 1(d)]. In BLG, the AB
stacking configuration is more natural and stable than
the AA arrangement. As we discuss below, such a BLG
dot features an odd number of degenerate edge states
that can generate a half-integer net spin in contrast to
the AA-like dots with an integer net spin.

Figure 10(a) shows the energy levels for an example of
AB-like tBLG QDs with the same parameters as used for
the AA-like dot of previous section [Fig. 3(a)], i.e., Ns =
8 and θ = 7◦. Here also, the number of SP edge states
is consistent with the benzenoid graph theory. As seen,
there are 13 edge states (black stars): NZ = 7 (encircled
in the yellow oval) from the bottom layer and NZ = 6
(green oval) from the upper layer. Notice that here the
edge states are more dispersed compared to those in the
AA-like configuration [cf. Figs. 3(a) and 10(a)]. The SP

energy gap is ∆SP ≈ 0.08 eV, which is smaller than for
the AA-like dot by a factor of 3.5. This is related to
the coupling between edge atoms, which is weaker in the
AB-like dots.† The probability densities corresponding
to each layer’s edge states are mostly concentrated in the
same layer [Fig. 10(b)], as opposed to the AA-like dot,
whose edge states are almost evenly distributed in both
layers due to layer symmetry [Fig. 3(b)]. However, the
edge-state densities in both types of dots are sublattice
polarized.

Similar to the case of the AA-like dot, including MF
on the level of the Hubbard model, the edge states are
considerably affected by the e-e interaction. Here, the
spin-polarized energy gap is about ∆H ≈ 0.60 eV, which
is four times larger than that in the AA-like dot. The lo-
cal magnetic moments are depicted in Fig. 10(c), demon-
strating that in the bottom layer they are somewhat
larger than that in the top layer. This feature is more
pronounced for small dot sizes as shown in Fig. 10(d) for
a dot with Ns = 4.

In Fig. 11, we show the the lowest energy levels around
Ef = 0 for three dot sizes of the AB-like dots with the
edge atoms of (a) Ns = 5, (b) Ns = 6, and (c) Ns = 7, re-

spectively, representing N
(2),(3),(4)
s -group dots [Eq. (1)].

As seen, all dots exhibit ferromagnetically-polarized en-
ergy levels throughout the whole twist angle range of
[0, 60◦], with the net spin S consistent with Lieb’s the-
orem prediction. The numerically calculated total spins
are shown in each panel. Notice that because of the one
edge atom discrepancy between the bottom and top lay-
ers in the AB-like dots, the total spins come out as half-
integer numbers. However, here too, the Ns = 7 dot (an

example of N
(4)
s -group dots) undergo abrupt drops in the

energy levels when the twist angle approaches θ = 60◦.



9

-1.0

-0.5

0

0.5

1.0
E

 (
e
V

)

0 20 40 60

θ

0 20 40 60

θ

0 20 40 60

θ

S( ) N  = 5a

Single particle

Spin up

Spin down

S( ) N  = 6b S( ) N  =a 7

FIG. 11. Energy levels of the AB-like dots as a function of
twist angle θ for three different dot sizes as indicated by the
number Ns of edge atoms in each panel. Dashed black curves
are for SP model, and blue and red ones show the spin up
and spin down energy levels in the Hubbard model.†

This behavior is analogous to that of the N
(2)
s group of

the AA-like dots, as explained in Fig. 7. This is to be
expected as we can see from the geometries in Figs. 2(a)
and 2(f), which are both similar around θ = 60◦.
Finally, we conclude this section by mentioning a few

words about the magnetism in MLG and BLG nanos-
tructures. In contrast to MLG triangle QDs [8], where
the total spin scales linearly with dot size by half a spin
unit, i.e., S = 1/2, 1, 3/2, . . ., the examples above show
that the S for both tBLG QD configurations in the ferro-
magnetic phase scales linearly with dot size by one spin
unit. However, as discussed above, AA-like and AB-
like dots feature integer (S = 1, 2, 3, . . .) and half-integer
(S = 3/2, 5/2, . . .) total spin, respectively. A striking fea-
ture of a tBLG QD is its capacity to control the position
of its energy levels by tuning the relative twist angle of
the layers while still representing a specific spin. Besides,
the prediction of a magnetic quantum phase transition at
a critical twisting angle would be of interest for under-
standing the fundamental physics of magnetism in tBLG
dots, as well as for potential applications in areas such
as spintronics and quantum computing.

IV. CONCLUSION

In conclusion, using the TBM in combination with
the MF Hubbard model, we studied the magnetic prop-
erties of zigzag-edged triangular QDs in tBLG with a
focus on the effects of variations in the twist angle as
well as dot size. We considered two configurations of
tBLG QDs: AA-like and AB-like QDs, whose untwisted

arrangements correspond, respectively, to the AA- and
AB-stacked BLG QDs. Depending on the dot size, such
QDs would have a different geometries, and we classified
them appropriately into three categories.
Our findings show that the AA-like dots exhibit an an-

tiferromagnetic phase for small twist angles, which tran-
sits to a ferromagnetic phase beyond a critical value of
θc.† Our analysis shows that the size of θc decreases as the
dot size increases. We also found a criteria for such θc,
according to which the dots exhibit ferromagnetic spin
polarization as long as the energy difference between the
electron and hole edge states (in the single particle frame)
is less than (U/γ0) × t0, where U is the Hubbard e-e
interaction and γ0 (t0) denotes the graphene intralayer

(interlayer) hopping. Unlike AA-like dots, spins in the
AB-like dots are ferromagnetically polarized for the en-
tire range of twist angle. The net spin S of both types
of QDs in the ferromagnetic phase is consistent with the
prediction from Lieb’s theorem, where AA-like (AB-like)
dot exhibits an integer (half-integer) total spin value.

Due to the dispersive and oscillatory behavior of the
energy levels as a function of twist angle in such QDs, the
ferromagnetic phase is preserved as long as the energy
gap between the edge states is satisfied by the above-
mentioned criterion. Our analysis showed that depend-
ing on whether the entire or part of such gaps surpass
the amount of (U/γ0)× t0, the spins can be polarized an-
tiferromagnetically with S = 0 or ferromagnetically with
a finite S (an integer multiple of 1/2) less than Lieb’s
theorem prediction. For the applied Hubbard e-e inter-
action here (U = 1/2 γ0), the latter property occurred
for a group of both types of dots at the twist angle range
of [55◦ − 60◦], i.e., when two triangular layers are almost
overlapped in the opposite direction, as in the “David
star” configuration.

Using the twist angle as a knob to tune the energy lev-
els of QDs in tBLG presents an interesting opportunity to
manipulate the charge and spins in such nanostructures,
which are promising candidates for future electronic and
spintronic technologies.
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