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We investigate the electronic and magnetic properties of graphene channels (2-4 nm wide) embedded within

fluorographene, focusing on two distinct interfaces: the fully-fluorinated α interface and the half-fluorinated

β interface. Density Functional Theory (DFT) calculations reveal that αα systems exhibit semiconducting

behavior with antiferromagnetic ordering, closely resembling pristine zigzag graphene nanoribbons. In contrast,

αβ systems display ferromagnetism and a width-dependent semiconductor-to-metal transition. To enable the

study of larger systems, we develop and validate effective Hubbard models for both αα and αβ channels.

Building upon DFT results and a Wannier function analysis, these models accurately reproduce the electronic

structure and magnetic ordering observed in DFT calculations. Crucially, our αβ model successfully captures

the semiconductor-to-metal transition. Application of this model to larger systems reveals the persistence of

a ferromagnetic state with spin polarization localized at the α edge. Our results demonstrate the potential

of fluorination for targeted property engineering and provide a basis for exploring graphene-fluorographene

systems in device applications ranging from microelectronics to spintronics.

I. INTRODUCTION

Graphene nanoribbons (GNRs) hold a significant promise
for semiconductor applications due to their tunable width-
dependent energy band gaps [1–8]. Recent experimental
advances have enabled the fabrication of atomically precise
GNRs [9–11], opening new avenues for device exploration
[12]. Alternatives approaches for creating graphene
nanostructures involve selective hydrogenation or fluorination
of graphene sheets, or carving GNRs within graphane or
fluorographene [13–15], strategies that have been successfully
demonstrated experimentally. For example, reversible local
modification of graphene’s electronic properties was achieved
using controlled hydrogen passivation with a scanning
tunneling microscope tip [13]. This technique enabled the
formation of nanoscale graphene patterns. Furthermore,
patterned absorption of atomic hydrogen onto specific sites
within graphene’s Moiré superlattice has been shown to
induce a band gap, as confirmed by both experiments and ab

initio calculations [14].

Fluorination techniques also offer compelling possibilities.
Electron beam irradiation can selectively transform
insulating fluorinated graphene into conducting or
semiconducting graphene [15]. Additionally, thermo-
chemical nanolithography allows for the fabrication of
chemically isolated GNRs as narrow as 40 nm [16]. Most
recently, a reversible electron beam activation technique
was used to directly “write” semiconducting/insulating
superlattices of fluorographene channels with high resolution
(9-15 nm) [17].

These experimental developments have spurred substantial
theoretical interest in hybrid nanostructures [18–21]. Studies

have demonstrated that the energy band gaps of zigzag
graphane nanoribbons increase with decreasing width [19,
21]. Ab initio calculations have also revealed that the
band gap of free-standing hybrid graphene/graphane and
graphene/fluorographene nanoribbons is primarily determined
by the graphene region [20–22].

In this work, we investigate the interplay of interfacial
fluorination, electronic properties, and magnetic behavior
in zigzag graphene channels carved on fluorographene.
Density functional theory (DFT) calculations and a
complementary Anderson-Hubbard (AH) mean-field model
are employed. We analyze two different fluorination levels at
the graphene/fluorographene interfaces: (i) a fully fluorinated
zigzag chain (α interface) and (ii) a half-fluorinated zigzag
chain (β interface). Our results reveal that the interface
composition strongly influences the electronic and magnetic
properties of the graphene/fluorographene superlattice, even
in the undoped (neutral) state.

The paper is organized as follows: Section II describes
our DFT methodology. Sections III and IV present the
crystalline and electronic structures of the zigzag graphene
channels. In Section V, we use Wannier90 calculations to
derive a tight-binding Hamiltonian, capturing the essential
electronic states near the Fermi level. Section VI builds an
AH model from these insights, reproducing key graphene
nanoribbon properties. Section VII validates the AH model
against DFT results for wider graphene channels, allowing
us to confidently extend our studies to system sizes that are
computationally prohibitive for DFT calculations. Finally,
Section VIII provides a summary and future perspectives.
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FIG. 1. (Color online). Relaxed crystalline structures of the graphene

nanoribbons with fluorographene interfaces. These systems are

graphene channels carved on fluorographene. The graphene-

fluorographene α interfaces are enclosed by dashed lines in panel (a).

Panels (b) and (c) show the 10-αα unit cell along the x longitudinal

(b) and y transversal directions (c). Green balls are F atoms.

II. COMPUTATIONAL APPROACH

We performed density functional theory (DFT) calculations
using the Quantum Espresso (QE) package [23] to investigate
the electronic and magnetic properties of graphene channels.
The Perdew-Burke-Ernzerhoff (PBE) exchange-correlation
functional [24] was employed, along with a plane-wave basis
set for electronic wave functions and charge density. Energy
cutoffs of 70 Ry and 420 Ry were applied, respectively. We
used ultrasoft pseudopotentials [25] to describe ion-electron
interactions. Brillouin zone (BZ) sampling was tailored to
the system’s electronic structure: (i) semiconductors, uniform
24×1×1 k-point mesh; (ii) metals, uniform 36×1×1 k-point
mesh; (iii) near semiconductor-metal transition, finer uniform
54 × 1 × 1 k-point mesh. Gaussian smearing was applied,
with a degauss value of 0.005 Ry for systems away from
the transition and 0.001 Ry near the transition. Crystalline
structures were relaxed until forces and stress on atoms were
below 0.001 eV/Å and 0.5 GPa, respectively.

III. CRYSTALLINE STRUCTURE OF THE GRAPHENE

CHANNELS

We study two types of zigzag graphene channels carved
on fluorographene, denoted as n-αα and n-αβ. Here, n
indicates the number of zigzag chains in the graphene channel,
while α and β represent distinct graphene-fluorographene
interfaces [20, 26]. Figures 1 and 2 illustrate these interfaces
(highlighted by dashed lines and shading). In the α interface,
all carbon atoms of the bordering graphene zigzag chain
are fluorinated, while only alternating carbon atoms are
fluorinated in the β interface. Panels (b) and (c) show top
and side views of the structures. The unit cell repetition,
due to the periodic boundary conditions, generates an array

FIG. 2. (Color online). Relaxed crystalline structures of n-αβ

graphene-fluorographene nanoribbons (n ≙ 10), similar to Fig. 1 but

with αβ interfaces. The graphene channel interfaces are labeled as

α (fully fluorinated, left) and β (half-fluorinated, right). The dashed

lines in (a) highlight these contrasting interfaces.

of alternating graphene channels, which are separated by
fluorographene regions.

The crystalline structures reveal differing hybridizations
within the systems. Carbon atoms in the graphene channels
retain sp2 hybridization, while fluorographene regions exhibit
sp3 hybridization. This difference drives the contrasting
structural features at the interfaces. In the n-αα channels,
interfacial bonds create an alternating up-down distortion: the
bonds along the interfaces push up on one edge and push
down on the other one, resulting in a planar graphene region.
The n-αβ channels, on the other hand, experience downward
forces at both edges due to bonding patterns, leading to a
curved graphene channel. The fluorographene in both cases
remains planar, demonstrating its higher rigidity compared to
graphene.

Fluorographene’s rigidity also influences the longitudinal
lattice parameter (ax), which remains approximately ax ≙
2.52 Å across all studied systems. This value aligns with
experimental findings [27]. The transversal lattice parameter
(ay), however, varies based on the graphene channel
width. All systems feature fluorographene regions with six
fluorinated zigzag chains, providing sufficient separation to
isolate the electronic states of adjacent channels near the
Fermi level. Tables I and II detail the specific ay values for
each system.

IV. ELECTRONIC STRUCTURE OF GRAPHENE

CHANNELS

Figure 3 reveals distinct electronic properties for the 6-
αα and 6-αβ graphene-fluorographene superlattices. A
key finding is that the type of interface between the
graphene channel and fluorographene regions dramatically
impacts the electronic properties. The 6-αα exhibits a
clear semiconducting gap, while the 6-αβ system is near
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a semiconductor-metal transition. This striking difference
demonstrates that the type of interfacial fluorination provides
a powerful mechanism to control the electronic properties of
these superlattices.

The local density of states (LDOS) analysis of Figs. 3(b)-
3(d) and Figs. 3(f)-3(h) confirms that these states are primarily
localized within the graphene channel, with negligible
contributions in the central region of the fluorographene.
This supports our treatment of the channels as electronically
isolated within the fluorographene and validates the observed
ky-independence of the band structure near the Fermi level.
This isolation arises from fluorographene’s large bandgap,
with states residing well above and below the Fermi level.
Therefore, for the purpose of our study, these systems
can be accurately modeled as individual graphene channels
embedded in bulk fluorographene.

These findings underscore the remarkable control
achievable through interfacial fluorination. By selectively
modifying the α and β interfaces, we can precisely tailor
the electronic properties of the graphene channel between
semiconducting and metallic behavior. This opens up
potential avenues for designing graphene-based devices with
tunable electronic properties.

A. αα channels

Figure 4 presents the spin-polarized band structures
of n-αα graphene-fluorographene superlattices for n ≙
6,8 and 10. The presence of an indirect energy gap
(∆) between the valence (bv) and conduction (bc) bands
confirms their semiconducting nature. Crucially, the gap
magnitude decreases with channel width (n), ranging from
approximately 0.47 eV for n ≙ 6 to 0.31 eV for n ≙ 10,
see Table I. This width-dependent band gap highlights the
potential of these systems for tunable electronic properties,
relevant for various semiconductor applications [1–8].

Figures 5(a) and 5(b) reveals the spin density polarization,
m(r) ≙ ρ↑(r) − ρ↓(r), within the graphene channel of
the 10-αα system. This polarization exhibits a globally
antiferromagnetic (AF) order: antiferromagnetic along the
transverse direction to the interface and ferromagnetic along
the longitudinal direction. The system’s net magnetization
(Mt) is zero, resulting in spin-degenerate bands. This
ordering is clearly visualized in the top view [Fig. 5(b)].

To understand the nature of the occupied states near the
Fermi level, we calculated the integrated local density of states

Channel ay [Å] Mabs [µB] Mα [µB] ∆ [eV]

6-αα 25.85 1.10 0.30 0.47

8-αα 30.09 1.16 0.30 0.38

10-αα 34.33 1.23 0.30 0.31

TABLE I. Properties of the n-αα nanoribbons obtained from DFT

calculations. The transversal lattice parameter (ay), the absolute

magnetization (Mabs), and the energy gap (∆) depend on channel

width (n), while the edge magnetization (Mα) stays fixed.

FIG. 3. (color online) Band diagram (Ek) and local density of

states (LDOS) for 6-αα (top panels) and 6-αβ (bottom panels)

graphene nanoribbons. The arrowheads in the LDOS plots indicate

the positions of the α and β interfaces. The 6-αα channel exhibits

a semiconducting band gap (∆ ≙ 0.47 eV), while the 6-αβ channel

is near a semiconductor-metal transition. Near the Fermi level, the

LDOS is mainly concentrated in the graphene (G) regions and has

negligible contribution in the middle of the fluorographene (FG)

regions, highlighting the insulating nature of fluorographene and its

role in suppressing transverse electronic excitations, and leading to

ky-independent band structures in this energy range.

(ILDOS) within the energy window V marked in Fig. 4(c).
This analysis, shown in Figs. 5(c) and 5(d), reveals a dominant
pz orbital character, with higher weight at the channel edges.
This indicates that the observed spin polarization originates
from these pzstates, with spin-up (↑) and spin-down (↓) states
localized on different sublattices. Specifically, sublattice A
(B) at the left (right) edge is preferentially occupied by ↑ (↓)
states.

Channel ay [Å] Mabs [µB] Mt [µB] Mβ [µB] Mα [µB]

4-αβ 21.75 1.60 0.97 0.38 0.34

6-αβ 25.83 1.47 0.84 0.31 0.31

8-αβ 30.06 0.82 0.45 0.08 0.31

10-αβ 34.29 0.71 0.37 0.03 0.31

TABLE II. Properties of n-αβ graphene-fluorographene nanoribbons

from DFT calculations. The transversal lattice parameter (ay)

increases with channel width (n), while the longitudinal lattice

parameter (ax) remains constant at 2.52 Å due to fluorographene’s

rigidity. The total magnetization (Mt) and the absolute

magnetization (Mabs) decrease with increasing channel width.

Notably, the β edge magnetization (Mβ) diminishes towards zero

for wider channels, while the α edge magnetization (Mα) remains

constant at 0.31 µB .
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FIG. 4. Spin-polarized band structure of n-αα graphene-

fluorographene systems for n ≙ 6,8, and 10. Conduction and

valence bands are labeled as bv and bc, respectively. These n-

αα nanoribbons exhibit semiconducting behavior, with the band

gap (∆) decreasing as the number of zigzag chains (n) in the

graphene channel increases. In this case, bands of opposite spin

states coincide.

Table I summarizes key electronic, magnetic, and structural
properties of n-αα systems. The fluorographene regions
enforce a fixed longitudinal lattice parameter ax ≙ 2.52 Å,
while the transversal parameter (ay) increases with channel
width. Despite the presence of spin polarization, all systems
exhibit zero global magnetization (Mt ≙ 0) due to the
antiferromagnetic order. The absolute magnetization (Mabs
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B. αβ channels

The spin-polarized electronic structure of n-αβ
nanoribbons, with n ≙ 4,6,8 and 10, are shown in Fig. 6.
The spin ↑ (↓) band is plotted with red (blue) color. The
distinct spin splitting highlights the ferromagnetic ground
state. As n increases, this splitting decreases at k ∼ 0,
signaling a transition from semiconducting (n <6) to metallic
(n >6) behavior, while the band splitting does not change
significantly for k ∼ π

ax
. This semiconductor to metal

transition is linked to the occupation of the conduction band
(bc) near k ∼ 0 and the consequent partial occupation of the
valence band (bv).

A comparison of the band structures of n-αα (Fig. 4) and
n-αβ (Fig. 6) reveals that the most significant differences,
without considering the spin-splitting, occur at k ∼ 0. This
indicates that the states of the valence and conduction bands
near k ∼ 0 are strongly influenced by the distinct chemical
nature of the β interface, the key structural difference between
the two systems.

Figure 7 illustrates the spin density polarization, m(r),

FIG. 5. (Color online) Spin density polarization, m(r) ≙ ρ↑(r) −
ρ↓(r), of the 10-αα graphene-fluorographene system. (a) Side

view: red and blue lobules represent opposite spin polarizations. (b)

Top view: notice the antiferromagnetic order along the transverse

direction to the interfaces and ferromagnetic order along the

longitudinal direction. The system is globally antiferromagnetic

(AF) with higher spin polarization at the channel edges. (c, d)

Integration of the local density of states (ILDOS) within the energy

window (V) defined in Fig. 4(c). These states, located below the

Fermi energy, exhibit pz character, with higher weight at the channel

edges.

of n-αβ graphene-fluorographene superlattices. Spin
polarization is concentrated within the graphene channels
and exhibits unbalanced antiferromagnetic ordering in the
transverse direction. This results in a global ferromagnetic
(FM) state with finite net magnetization. Interestingly,
spin polarization at the β interface weakens with increasing
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FIG. 6. (Color online) Spin-polarized band structure of n-αβ

graphene-fluorographene systems for n ≙ 4,6,8 and 10. Red and

blue dots represent opposite spin states (↑ and ↓). The ferromagnetic

ground state leads to a spin-split band structure around the Fermi

level. The band structure also reveals a semiconductor-metal

transition with increasing channel width. At k ≙ 0, the energy gap

between the conduction (bc) and valence (bv) bands decreases with

increasing n.
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FIG. 7. (Color online) Three-dimensional plot of the spin density

polarization, m(r), of the n-αβ systems for n ≙ 6,8 and 10. (a) and

(e) show top views and (b)-(d) side views. The spin polarization is

higher at the channel edges and decreases towards the center, with

red and blue lobules representing opposite spin polarizations. The

weight at the α-edge remains constant, while it weakens at the β-

edge with increasing channel width (n ≥ 8) and nearly vanishes for

n ≙ 10 (d, e). Top views (a) and (e) reveal a ferromagnetic order

along the longitudinal direction and an antiferromagnetic order along

the transverse direction. Despite this, the net magnetization is non-

zero, making the n-αβ nanoribbons ferromagnetic.

channel width, nearly vanishing for n ≙ 10 [Figs. 7(d)
and 7(e)]. This behavior correlates with the spin-minority
occupation of the bc band near k ∼ 0, as seen in Fig. 6.
Furthermore, Fig. 6 reveals that the states below the Fermi
level near k ∼ 0 are nearly spin-degenerated for n ≥ 10,
confirming that these states have minimal contributions in the
spin-polarized regions.

Figure 8 shows the ILDOS within the energy window
V marked in Fig. 6. For the 6-αβ nanoribbon (Fig. 8a),
the ILDOS strongly resembles the spatial profile of the
spin density polarization (Fig. 7b), indicating that the states
within the window V are the primary contributors to the
spin-polarized regions. For the wider 8-αβ and 10-αβ
systems, however, a notable difference arises at the β edge
between the ILDOS (Figs. 8b, 8c) and the spin density
polarization (Figs. 7c, 7d) due to the reduced spin polarization
of that edge, in agreement with the evolution of the band
structure near k ∼ 0 (Fig. 6) with increasing channel width.
Table II summarizes the key properties of n-αβ graphene-
fluorographene nanoribbons.

V. TIGHT-BINDING MODEL

To gain deeper insights into the DFT results and
develop a flexible modeling framework, we now construct

FIG. 8. (Color online). Integrated local density of states (ILDOS)

within the energy window (V) defined in Fig. 6 for αβ graphene-

fluorographene systems. Similar to the αα systems (Figs. 5c, 5d),

the αβ states near the Fermi level exhibit pz character, with their

weight concentrated along the graphene channel.

a single-particle tight-binding model. This approach is
particularly valuable as a starting point to later incorporate the
local electron-electron interactions that drives the observed
magnetic ordering. We begin by identifying the orbital
character of the bands near the Fermi energy (EF), as these
states are the most relevant ones.

A. Orbital projected band structure of the αα and αβ

nanoribbons.

To identify the orbital character of the hybridized states in
the nanoribbons, we first analyze the electronic structure of
bulk graphene and fluorographene, along with their projected
densities of states (PDOS), as shown in Fig. 9. Bulk
graphene exhibits characteristic π states near EF with pz
orbital character [28]. Additionally, σ states lie further away
from EF (Figs. 9(a) and 9(b)). In fluorographene (Figs. 9(c)-
9(e)), we identify three key sets of states: (i) the A states,
which are above EF, have a dominant pz character mixed
with s states; (ii) the XY states, which are below EF and
have primarily pxy ≙ px + py character; and (iii) the B states,
found below −4 eV, and having mixed pz and s character. The
n-αα and n-αβ states result from a hybridization between
some of these specific graphene and fluorographene orbitals,
reflecting the superlattice structure of these systems. Figure
10 presents the orbital-projected band structures of 6-αα and
6-αβ nanoribbons. The dot size reflects the weight of the
eigenstates. Building upon our analysis of bulk graphene
and fluorographene (Fig. 9), we identify the following main
features:

(i) dominant π character: Figs. 10(a) and 10(d) highlight
the dominance of π states (pz orbitals from graphene
carbon atoms) near EF, spanning the energy range
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FIG. 9. (Color online). Electronic band structure and projected density of states (PDOS) for bulk graphene and fluorographene. (a) Graphene

band structure with π and σ states labeled. (b) Graphene PDOS. (c) Fluorographene band structure. (d, e) Fluorographene PDOS projected

onto F and C atoms. States labeledA, B, and XY in (c) will be used to describe the electronic structure of n-αα and n-αβ nanoribbons in the

following sections.

∥−8 eV, 12 eV∥. The valence (bv) and conduction (bc)
bands are primarily composed of these π states but
exhibit crossings with bands of other orbital character.

(ii) hybridization with A states: Figs. 10(a)-10(f) reveal
hybridization between π andA states contributing to the
conduction band, with dominant C-pz character. This is
evident from the states within ∥1 eV, 12 eV∥ exhibiting
both π and A orbital character due to their presence
in both the graphene and fluorographene regions. The
spin splitting observed in the n-αβ bands near k = 0

(particularly in the 2-6 eV window) further supports this
π-A hybridization.

(iii) minimal role of XY and B states: the lower panels of
Fig. 10 demonstrate negligible hybridization between
π and XY states (dominant F-pxy character, located
within ∥−1 eV, −8 eV∥). The absence of simultaneous
XY and π character within the bv band, along with the
lack of spin polarization affecting XY states, establishes
their minimal contribution to bv . Similarly, the B states
(dominant F-pz character, within ∥−4 eV, −11 eV∥) lie
well below the valence and conduction bands, making
their contribution negligible.

As a consequence, to construct a simplified electronic model
reproducing the bv and bc bands, the hybridization between π
and A states is the crucial ingredient.

B. Spatial structure of bv and bc states

We now seek for a set of orbitals that will allow us to
reproduce the bv and bc bands. Our analysis showed that

the bv states have a dominant pz character and minimal
hybridization with other orbitals (Fig. 10). Therefore, we
can approximate them using a modulated distribution of pure
pz orbitals. In contrast, the bc states are formed through a
hybridization of pz and A orbitals. As shown in Figs. 9 and
10, the A states have significant contributions from C-pz, F-
pz, C-s, and F-s orbitals within the fluorographene channels.
To understand the nature of these hybridized orbitals, we
examine the charge distribution of A (antibonding) and B
(bonding) states in fluorographene (Fig. 11). Bonding B
states have maximum charge density between atoms, while
antibondingA states exhibit charge density centered on C and
F atoms. The antibonding combination, with more nodes, is
higher in energy, aligning with the relative energetic positions
ofA and B states in Fig. 9(c). The dominant C-pz character in
A and F-pz character inB are also a consequence of the charge
distribution seen in Fig. 11. Figure 12 depicts the minimal
orbital basis for a tight binding description of the bv and bc
bands of αα and αβ systems. It comprises the pz (π) orbitals
of the graphene channels and theA orbitals of fluorographene.

C. Effective tight-binding hamiltonian from Wannier90

Our aim is to demonstrate that the π and A orbitals
(defined above) are sufficient to reproduce the electronic states
around EF in the αα and αβ nanoribbons. To achieve
this, we employ the Wannier90 package. This software
allows us to compute maximally-localized Wannier functions
(MLWFs) from a set of Bloch states. This calculation
yields a transformation matrix that converts our basis set
by combining an algebraic change of basis with an inverse
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FIG. 10. (Color online) Band structure of the 6-αα (a-c,g,h) and 6-αβ (d-f,i,j) systems. The projection (weight) on some relevant orbitals

is highlighted. The size of each (k,E) point reflects the weight of the eigenstates. The bands are classified based on the dominant orbital

character from the reference states in Fig. 9: π states (pz character) from graphene (a, d). A and B states (pz character) mainly located in

the fluorographene zones (b, c, e, f). XY states (px + py character) mainly located in the fluorographene zones (g-j). In the 6-αα system, the

conduction band (bc) near k ∼0 exhibits a hybridization of π and A states, while the valence band (bv) is primarily composed of π states. A

similar behavior is observed for the 6-αβ system, where both bc and bv bands are dominated by π states.

Fourier transform. Furthermore, Wannier90 generates a tight-
binding HamiltonianH

W
in the MLWF basis using the Kohn-

FIG. 11. (Color online) Schematic illustrating the formation of

antibonding A and bonding B orbitals in a fluorographene channel.

By combining (adding, left) and subtracting (right) atomic sp orbitals

at each C and F atoms, the bonding and antibondingA andB orbitals

are formed. Different colors (grayscale) represent the sign of the

phase of the orbital wavefunction.

Sham eigenvalues obtained from DFT. With a successful
Wannierization, the eigenvalues and eigenvectors of H

W

exactly reproduce the DFT band structure and Kohn-Sham
states within our chosen energy window. This process allows
us to obtain an exact tight-binding Hamiltonian for the system.
In our case, a successful W90 calculation requires four key
inputs: (i) number of MLWFs: to reproduce the bc and bv
bands we need 12 π and 12 A orbitals for the 6-αα system,
and 13 π and 11 A for the 6-αβ system (as seen in Fig. 12).
Thus, a total of 24 orbitals for both cases; (ii) energy window
for MLWF generation: based on the orbital analysis in Fig. 10,
we use ∥−7.5 eV, 13.5 eV∥ to encompass all π and A states
contributing to the bv and bc bands; (iii) energy window for the
tight-binding Hamiltonian: to focus on the bv and bc bands,
we select the tighter window ∥−1 eV, 2.2 eV∥. This excludes
XY states and higher-energy states with C − pxy character
(Fig. 10); (iv) initial MLWF conditions: We approximate
the desired structure using appropriate atomic orbitals as
initial seeds for each MLWF. The π orbitals are initiated as
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FIG. 12. (Color online) Orbital basis of the tight-binding

Hamiltonian used to simulate the electronic properties of the

graphene/fluorographene nanoribbon superlattice. The top and

bottom panels show the basis sets for 6-αα and 6-αβ systems,

respectively. Each panel depicts a unit cell containing both graphene

and fluorographene regions. The basis set {π ∶ A} comprises π-

like orbitals (pz character) from graphene channels and A orbitals

(primarily pz character) from fluorographene.

C − pz orbitals centered on each carbon atom in the graphene
regions while A as pz orbitals centered between each C-F
pair in fluorographene. The Wannier calculations yielded
MLWFs that closely resemble the orbitals proposed in Fig. 11,
demonstrating the success of our approach, see (Fig. 13).

Figures 4 and 6 revealed the distinct magnetic properties
of the n-αα and n-αβ nanoribbons. The αα systems
exhibit antiferromagnetic order and are semiconducting.
Conversely, n-αβ systems are ferromagnetic and undergo
a semiconductor-to-metal transition as their size increases.
To model these magnetic properties, we extend the
Wannierization process to obtain a spin-polarized tight-
binding Hamiltonian, Hσ

W , with σ =↑, ↓. Figure 14 confirms
the validity of this approach by demonstrating excellent
agreement between the spin-polarized Hσ

W eigenvalues and
the DFT bands near the Fermi level. Importantly, this
comparison focuses solely on the bands derived from the

FIG. 13. (Color online) Isosurface plots of the maximally localized

Wannier functions (MLWFs) computed using Wannier90. Different

colors (grayscale) represent the sign of the wavefunction. The

obtained MLWFs closely resemble the initial orbitals proposed for

the Wannier calculations (Fig. 12). These results are presented

for 6-αα and 6-αβ nanoribbons, but similar calculations yield the

same MLWF structure for nanoribbons ranging from 4-αβ to 8-αβ,

indicating that the MLWFs are independent of system size within this

range.
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FIG. 14. (Color online) Comparison of electronic bands obtained

from DFT calculations (circles) and the spin-polarized Wannier tight-

binding Hamiltonian (Hσ
W , lines). The Hσ

W eigenvalues accurately

reproduce the DFT bands around the Fermi level for all cases. We

plot only the bands derived from the π and A orbitals (as defined

in Fig. 12). For the n-αβ systems, the red and blue lines represent

the majority and minority spin bands from Hσ
W , respectively. Since

the αα system is non-magnetic, the spin-up and spin-down bands

coincide.

previously selected π and A orbitals.

The Wannier-based tight-binding Hamiltonian, while exact,
contains many parameters. A crucial question for constructing
a simplified Anderson-Hubbard model (see next section) is
to analyse how to reduce the parameter set while retaining
accuracy. Figure 15 addresses this question for the 8-
αβ nanoribbon. We construct various Hjσ Hamiltonians,
progressively including interactions up to the fifth nearest
neighbor, and compare them to the DFT results. We
label these Hamiltonians Hjσ , where j indicates the farthest
neighbor interactions included. It is apparent from the
figure that H5σ provides an excellent overall fit to the DFT
bands. Importantly, Hjσ Hamiltonians with j < 5 fail to
reproduce the semiconductor-to-metal transition observed in
αβ systems (Fig. 6), highlighting the need for up to the
fifth-nearest-neighbor interactions to accurately capture this
behavior. While αα systems can be reasonably modeled with
fewer parameters (second-nearest neighbors), these results
underscore the importance of analyzing a larger number of
nearest-neighbors to ensure our simplified models to capture
the key physics of the αβ systems.

VI. MEAN FIELD ANDERSON-HUBBARD MODEL FROM

WANNIER CALCULATIONS

Our Anderson-Hubbard model (HAH ) is constructed using
a basis of Wannier orbitals {π,A},

HAH = ∑
j,σ

εj c
†
jσ cjσ − ∑

j,l,σ

tjl c
†
jσclσ + ∑

j

Uj n̂j↑ n̂j↓ , (1)
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FIG. 15. (Color online) Comparison of accuracy achieved by

different simplified tight-binding Hamiltonians (Hjσ) in describing

the DFT results for the 8-αβ nanoribbon. Hjσ refers to a

Hamiltonian where matrix elements beyond the j-th nearest neighbor

are excluded. Circles represent the DFT data and lines represent the

Hjσ results. The figure demonstrates that using H5σ is necessary

to achieve excellent agreement with the exact DFT results in the αβ

case. Red and blue represent the majority and minority spin bands.

where the operator c†
jσ (cjσ) creates (annihilates) an electron

with spin σ at site j (in the corresponding orbital) and n̂jσ ≙

c†
jσcjσ is the number operator. Here εj is the local energy of

site j, tjl is the matrix element between j and l sites, and Uj

is the Hubbard constant at site j.
We solve HAH in a mean field description by using

the Hartree-Fock method, so the interacting term n̂j↑ n̂j↓ is
substituted by ⟨n̂j↑⟩ n̂j↓ + n̂j↑ ⟨n̂j↓⟩. Thus

HAH Ð→ H̄AH ≙∑
j,σ

εjσ c
†
jσcjσ − ∑

j,l,σ

tjl c
†
jσclσ , (2)

where εjσ is the local energy of spin σ that depends of the
occupation ⟨n̂jσ̄⟩ of the opposite spin σ̄ at the j site, namely

εj↑ ≙ εj +Uj⟨n̂j↓⟩
εj↓ ≙ εj +Uj⟨n̂j↑⟩ . (3)

Equation (3) can be used to obtain Uj , that is

Uj ≙ −
εj↑ − εj↓
⟨n̂j↑⟩ − ⟨n̂j↓⟩

≙ −
∆εjσ

⟨m̂j⟩
, (4)

with ⟨n̂jσ⟩ ≙ ∑ε(k,σ)≤EF
∣ψ(k,σ) l∣2. Thus, from εjσ, ε(k,σ),

and ψ(k,σ), which are the site energy, eigenvalues, and
eigenvectors of Hσ

W one can get an estimate of Uj for
those sites with non-zero spin polarization. Similarly, the
local energy εj can also be obtained through Eq. (3), after
calculating Uj ,

εj ≙
1

2
(εj↑ + εj↓ − ⟨n̂j⟩Uj) , (5)

where ⟨n̂j ≙ ⟨n̂j↑⟩ + ⟨n̂j↓⟩⟩ is the total electronic occupation
at site j. A detailed procedure to obtain all the necessary
Anderson-Hubbard model parameters is described in the
Appendix.

After obtaining the necessary parameters from the analysis
of the 6-αα and 8-αβ systems, we now investigate the band
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FIG. 16. (Color online) Validation of the mean field AH model for n-

αα systems. Upper panels: Comparison of electronic band structures

obtained from DFT (open circles) and the AH model (lines) using

H̄AH with up to second-nearest neighbor interactions. Results are

shown for (a) 6-αα, (b) 8-αα, and (c) 10-αα systems. Lower

panels: Corresponding spin polarization along the graphene channel,

calculated using DFT projected density of states (PDOS, red and blue

open circles) and H̄AH eigenvectors (black filled circles). Excellent

agreement across all systems validates the AH model.

structure and magnetic properties of other n-αα and n-αβ
nanoribbons using the AH model. We first validate our model
by contrasting its predictions against DFT calculations for
systems up to 10-αα and 10-αβ. After this crucial step
we extrapolate the AH model and explore larger systems
inaccessible to DFT calculations.

Figure 16 demonstrates the AH model’s accuracy for 6-
αα, 8-αα, and 10-αα nanoribbons. The band structures
calculated with the AH model (lines), including up to
second-nearest neighbor hopping terms, fairly reproduce the
main features of those obtained from DFT (open circles).
The AH model reproduces the semiconducting behavior
and the band gaps, thus confirming its validity for these
systems. While agreement near the Fermi level is excellent,
discrepancies arise closer to the Brillouin zone center (k ≙
0). This is to be expected, even for 6-αα, due to
our simplified model including only up to second-nearest
neighbor interactions. The inclusion of hopping terms up to
sixth-nearest neighbors significantly improves the agreement
across the entire Brillouin zone and beyond the Fermi level
(not shown) [29].

We now explore system sizes inaccessible to DFT. Figure
17 analyzes a 40-αα nanoribbon—recall from Fig. 5 that
the n-αα systems exhibit an antiferromagnetic (AF) ground
state, with opposite spin alignment across the nanoribbon.
Figure 17(a) depicts the band structure in the metastable
ferromagnetic (FM) state, a revealing metallic behavior. In
contrast, the AF ground state (Fig. 17(b)) is semiconducting.
Crucially, Fig. 17(c) demonstrates that the AF state is
energetically favorable across the studied system sizes (up to
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FIG. 17. (Color online) Band structure and magnetic properties of the

n-αα systems. (a) Band structure for a 40-αα nanoribbon exhibiting

a metastable ferromagnetic (FM) state. (b) Band structure for the

antiferromagnetic (AF) ground state. (c) Energy difference between

AF and FM states, showing the stability of the AF phase and the

evolution of its energy gap as a function of n.

40-αα), although the energy difference (∣δE∣ = ∣EAF −EFM ∣)
decreases with increasing size. Figure 17(c) further illustrates
how the AF bandgap (∆) also decreases with increasing n.

We now consider the n-αβ nanoribbons. As before, we first
validate the AH model by comparing it to DFT calculations
for 4-αβ through 10-αβ systems (Fig. 18). We include
up to the fifth-nearest neighbors hopping terms based on
the 8-αβ case (see Appendix). Figure 18 demonstrates an
excellent agreement between AH and DFT band structures,
specially for large system sizes. Notably, the AH model
accurately captures the semiconductor-to-metal transition
with increasing system size. The AH model also reproduces
the global ferromagnetic state and local spin behavior (lower
panels of Fig. 18)—spin polarization oscillates along the
channel, as found in DFT calculations. Furthermore,
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FIG. 18. (Color online) Comparison of DFT spin polarized band

structures (red and blue circles) with the mean field AH model

predictions (red and blue lines) for n-αβ systems (n ≙ 4,6,8,10).

The AH model accurately captures the key electronic features

across all system sizes, validating our approach. Lower panels:

corresponding spin polarization along the graphene channel, similar

to Fig. 16.
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FIG. 19. (Color online) Analysis of magnetic states in larger

αβ systems. (a) Band structure for a 40-αβ nanoribbon in the

paramagnetic (PM) state. (b) Band structure in the ferromagnetic

(FM) state. (c) Energy difference per unit cell (δE ≙ EFM −EPM )

as a function of the number of zigzag chains (n), up to n ≙ 40. As

with smaller systems, spin polarization in (b) is localized around the

α interface.

both methods show decreasing spin polarization near the
β interface with increasing size, converging towards zero
magnetic moment at the β edge in 10-αβ. Conversely, the
spin polarization at the α edge remains constant, a trend that
persists in larger systems (we verified it up to n = 40).

Figure 19 compares the paramagnetic (PM) and
ferromagnetic states of the 40-αβ system. In the PM
state, panel (a), electronic states near k = π

a
are fully

occupied. In contrast, the FM state, panel (b), exhibits
spin-splitting, with one spin band filled and the other empty
near k = π

a
. This difference reflects the presence of spin

polarization along the α edge in the latter. Finally, Fig. 19(c)
shows a near-constant energy difference (δE) between FM
and PM states for all system sizes. This is due to the localized
nature of the edge-state interactions responsible for the
magnetic ordering.

VII. SUMMARY

In this work we studied the electronic and magnetic
properties of graphene channels embedded within
fluorographene, focusing on two distinct interfaces: the
fully fluorinated zigzag chain (α) and the half-fluorinated
zigzag chain (β).

In the case of the n-αα channels we found that they exhibit
similarities to pristine zigzag graphene nanoribbons: they
display antiferromagnetic ordering, semiconducting behavior,
and a decreasing energy gap with increasing channel width.
The n-αβ systems, on the other hand, are ferromagnetic and
undergo a semiconductor-to-metal transition with increasing
channel width. In the semiconducting phase, spin polarization
is present at both edges. For wider channels, dominant
spin polarization persists only at the α edge, with vanishing
polarization at the β edge.

Our results demonstrate that selective fluorination of
graphene edges offers an opportunity for tunable electronic
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and magnetic properties of significant interest for spintronic
applications. This strategy provides a pathway for engineering
semiconductor properties without altering the graphene
channel width itself. For example, inducing metallicity in
graphene nanoribbons has been a subject of interest recently
[9], our results show that by tuning the interface and by
fabricating αβ nanoribbons, one can also obtain metallic
nanoribbons. Graphene nanoribbons are promising devices
with potential uses in microelectronics, spintronics, quantum
computing and topological electronics. Our findings highlight
the potential of selective fluorination for tailoring graphene’s
properties, paving the way for such developments.
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Appendix: Parameters used in the Anderson-Hubbard model

We describe here the procedure we use to obtain the
different parameters of the mean field Anderson-Hubbard
model described in the main text and schematically depicted
in Fig. 20. Figs. 20(a) and 20(b) highlight the locations of
the π (black and red dots) and the (A) (gray dots) orbitals,
used for describing the graphene and fluorographene regions,
respectively. Fig. 20(c) shows the underlying hexagonal
lattice containing one Wannier orbital per vertex. The dashed
lines defines the unit cell. Periodic boundary conditions
and translation invariance are assumed along the y and x
axes, respectively. Notice that, although both αα and αβ
systems have 24 sites per unit cell, the distribution of π andA
orbitals at the graphene-fluorographene interface differs. The
graphene region contains 12 sites in the αα case and 13 sites
in the αβ case.

The Hubbard interaction strength Uj is self-consistently
calculated from the local energies, eigenvalues, and
eigenvectors (Eq. (4)) of the spin-resolved Wannier
Hamiltonians (Hσ

W ). Figure 21 shows its spatial variation
along the graphene channels. To simplify our model, we
adopt a representative value of Ug = 3.45 eV for all graphene
sites as this is roughly the value obtained near the highly
spin-polarized edges—except a slight deviation at the β edge
in the smallest (4-αβ) system. In addition, we calculate
Ufg at spin-polarized fluorographene edge sites and their
first-nearest neighbors, differentiating between α and β

interfaces: Uα
fg = 5.2 eV and U

β
fg
= 2.3 eV. The remaining

fluorographene sites can be assigned Ug , as this value is less
critical for our purposes since, in the energy window we want
to model, there is a negligible electronic occupation in the
middle of the fluorographene channels.

FIG. 20. (Color online) Crystal structure and Anderson-Hubbard

model for the 6-αα and the 6-αβ nanoribbons. (a) and (b) illustrate

the key structural difference: the number of graphene sites (black

and red circles) within the unit cell. The 6-αα system has 12

sites, whereas the 6-αβ system has 13. This variation significantly

alters the band structures, as discussed previously. Gray circles

correspond with the fluorographene sites. (c) Depicts a simplified

lattice representation of the Hamiltonian (Eq. 2). The hexagonal

lattice shows the unit cell (enclosed by dashed lines) and numbered

atomic sites. The model considers one orbital per lattice vertex and

periodic boundary conditions in both directions. Additionally, it

includes hopping terms (notated as tn with n ≙ 1,2,3,4,5,6) up

to the sixth-nearest neighbors.

The site energies εj , obtained by fitting Eq. (5), are shown
in Fig. 22. In the graphene channels (upper panels), the
interface effect extends approximately 3 sites away from
α-edges and up to 6 sites from β-edges. The potential
decreases towards the channel center. Conversely, within
fluorographene regions (lower panels), the potential increases
towards the center, with the interface effect extending roughly
3 sites from both α and β edges. Importantly, Fig. 22 reveals
that the behavior of εj near edges is consistent across different
nanoribbon sizes. This allows us to model wider systems
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FIG. 22. Local energy (εj) of the system calculated using Eq. (4).

Upper panels correspond to the graphene channels and the lower

panels show the behavior along the fluorographene region. Grey

circles represent εj values, which exhibits similar behavior near α

and β edges across different nanoribbon sizes. This allows us to

reliably use these values to model wider systems inaccessible to DFT

calculations. For larger systems, εj within the central region can be

described by interpolating the straight lines and employ the values at

the edges (black open circles).

(intractable for DFT) by employing these values. For the
central regions of larger systems, we interpolate εj based on
the linear trends observed in our smaller systems.

Our next step is to calculate the hopping matrix elements.
In Fig. 15, we show the importance of including hopping
terms up to second-nearest neighbors for αα interfaces and
fifth-nearest neighbors for αβ interfaces to achieve DFT-level
accuracy near the Fermi level. This means that in αα systems,
hopping matrix elements will link orbitals in adjacent unit
cells, while in αβ systems they might connect orbitals across
second-nearest neighbor unit cells. To calculate this hopping
matrix elements we used the Wannier Hamiltonians for the
6-αα the 8-αβ nanoribbons.

The hopping matrix elements are determined by

tij ≙
1

2
⟨ζi, i∣H

↑
W +H

↓
W ∣ζj , j⟩ , (A.1)

where ζl represents the π or A orbital depending on the site.
The spin averaging eliminates a weak spin-dependence of
matrix elements. Let us first consider the matrix elements for
sites within the graphene (t) and fluorographene (τ ) channels,
away from interfaces. Since the system is slightly anisotropic,
with the goal of reducing the number of parameters, we define
the average m-th order matrix element at each site, say l, as

⟨mtl⟩ ≙
1

Zml
∑
⟨i,l⟩m

til ,

⟨mτl⟩ ≙
1

Zml
∑
⟨i,l⟩m

τil , (A.2)

GC ⟨1tl⟩ ⟨
2tl⟩ ⟨

3tl⟩ ⟨
4tl⟩ ⟨

5tl⟩ ⟨
6tl⟩

6-αα -2.789 0.237 -0.241 0.022 0.046 -0.020

4-αβ -2.767 0.231 -0.235 0.023 0.046 -0.019

6-αβ -2.777 0.237 -0.245 0.024 0.048 -0.020

8-αβ -2.778 0.238 -0.244 0.025 0.048 -0.020

FG ⟨1τl⟩ ⟨
2τl⟩ ⟨

3τl⟩ ⟨
4τl⟩ ⟨

5τl⟩ ⟨
6τl⟩

6-αα -1.425 0.015 -0.172 -0.075 -0.002 -0.012

4-αβ -1.430 0.013 -0.172 -0.073 -0.002 -0.012

6-αβ -1.440 0.009 -0.168 -0.075 0.001 -0.011

8-αβ -1.431 0.012 -0.176 -0.072 -0.003 -0.013

TABLE III. Average n-th order matrix elements at the center of

graphene (⟨ntl⟩) and fluorographene (⟨nτl⟩ ) channels, calculated

using Eq. (A.2).

where Zml is the number of m-th nearest neighbors of site l
and the sum on i runs on those neighbors.

Table III presents those average values. Variations across
different systems are small (up to 10%), highlighting that
these values are primarily determined by the local structure.
However, sites with neighbors at the interface exhibit
significant changes (up to 50%), demonstrating the presence
of interface effects. As expected, ⟨1tl⟩ and ⟨1τl⟩ have the
largest magnitudes, as they encode the essential information
about the crystal structure. In particular, their values are
significantly altered by the presence of interfaces as discussed
below.

On the other hand, as mentioned in the main text, a
successful model requires including matrix elements beyond
first-nearest neighbors to accurately capture interface effects.
Figure 23 depicts the relevant matrix elements near the α and
β interfaces. Black dots represent graphene π orbitals, while
gray dots represent fluorographene A orbitals. Panels 23(a)
and 23(c) show first- and second-nearest neighbor interactions
for α and β interfaces, respectively, Panels 23(b) and 23(d)
display third- through fifth-nearest neighbor interactions,
while Tables V and IV contain their values.

The spatial dependence of the first-nearest neighbor matrix

1τβ
1β 1tβ1

1tβ2
1tβ3

1tβ4
-1.322 2.174 -2.853 -2.691 -2.894 -2.744

2τ 2τd
2βc

2βf
2td

2t

0.004 0.020 -0.043 0.033 0.439 0.234
3τ 3βf

3βc
3t - -

-0.142 0.322 0.209 -0.157 - -
4τ 4βf

4β1
4β2

4βc
4t

-0.091 -0.020 0.004 -0.109 0.136 0.026
5τ2

5τ1
5βf3

5βf2
5βf1 -

0.012 -0.005 -0.067 -0.025 -0.057 -
5t2

5t1
5βc3

5βc2
5βc1 -

0.056 0.046 -0.017 -0.025 0.010 -

TABLE IV. Matrix elements of Figs. 23(c) and 23(d) near the β

interface, as extracted from Wannier analysis of the 8-αβ system.
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FIG. 23. (Color online) Matrix elements between interface-adjacent orbitals in graphene (black dots) and fluorographene (orange dots). Panels

(a) and (b) depict the α interface; panels (c) and (d) depict the β interface. (a) and (c): first- and second-nearest neighbor interactions. (b) and

(d): third- through fifth-nearest neighbor interactions.

elements, tj+1,j , along the graphene channel is also relevant.
Figures 24(a) and 24(b) show tj+1,j vs. orbital position (j) for
the 6-αα and 8-αβ systems, respectively, as obtained from
Eq. (A.1). A distinct separation emerges between even and
odd j values within the central region. Matrix elements for
even j exhibit a larger magnitude (more negative) than those
for odd j, see Fig. 20(c) for orbital labeling. This behavior
can be understood by the presence of internal stress within
the graphene-fluorographene superlattice: fluorographene’s
larger lattice parameter stretches the graphene along the
longitudinal axis (x̂-direction). In fact, Fig. 20(c) shows that
when j is even the hopping tj+1,j involves orbitals separated

1τα
1α 1tα1

1tα2 - - -

-1.428 2.348 -2.701 -2.741 - - -
2τ 2τd

2αc
2αf

2td
2t -

0.030 -0.030 -0.170 -0.009 0.271 0.198 -
3τ 3α2

3α1
3t - - -

-0.134 0.081 0.205 -0.260 - - -
4τ2

4τ1
4αf

4α 4αc
4t1

4t2
-0.090 -0.051 -0.024 -0.046 0.143 0.006 0.033
5τ2

5τ1
5αf3

5αf2
5αf1 - -

0.003 0.003 -0.054 -0.036 -0.023 - -
5t2

5t1
5αc3

5αc2
5αc1 - -

0.051 0.048 0.007 -0.021 -0.049 - -

TABLE V. Matrix elements corresponding to the hoppings near the α

interface depicted in Figs. 23(a) and 23(b). These elements include

1st through 5th nearest neighbors and were extracted from Wannier

analysis of the 8-αβ system.

along the ŷ direction while when j is odd they are separated

along the
√
3
2
x̂ ± 1

2
ŷ direction. In both cases, the distance

between orbitals should be the same for a system without
internal stress. However, in the superlattice of alternating
graphene-flurographene nanoribbons, the graphene channel is
elongated along the longitudinal x̂ direction, which increases

the distance between orbitals that were initially in the
√
3
2
x̂ ±

1
2
ŷ direction (odd j) if we compare it with the separation

of orbitals along the ŷ direction (even j), leading to weaker
hopping terms. To quantify this effect, Fig. 24(c) plots
tj+1,j against the inter-orbital distance (dj+1,j) obtained from

−2.9

−2.8

−2.7

3 5 7 9 3 5 7 9 11 13 15

−2.9

−2.8

−2.7

1.4 1.42 1.44 1.46

t (
j+

1
,j
)
[e
V
]

j

(a) t(j+1,j)

1tα2
1tα2

6-αα

1tαc

1tc

j

(b) t(j+1,j)

8-αβ

1tα2

1tβ2

1tβ3

1tβ41tc

1tαc

1tβc

t(
d
)
[e
V
]

d(j+1,j)[Å]

(c) t(d) = t0 e
γl(

d

a0
−1)

6-αα

4-αβ

6-αβ

8-αβ

FIG. 24. (Color online) Variation of first-nearest neighbor matrix

elements t(j+1,j) as a function of orbital position j. (a) 6-αα system

and (b) 8-αβ system. (c) t(j+1,j) as a function of the inter-orbital

distance (d(j+1,j)). Lines represent the fitted functional dependence

(indicated in (c)), with data points corresponding to the different

system sizes.
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relaxed DFT geometries. The exponential dependence is
apparent from the figure [30]. We fit this dependence using
t(d) = t0 exp (γl( d

a0

− 1)), obtaining different parameters for
even and odd j, reflecting the stress-induced anisotropy: for j
odd (black symbols) t0 = −2.88 eV and γ = −3.16; for j even
(gray symbols) t0 = −2.82 eV and γ = −2.17. In both cases,
a0 = 1.42Å. Importantly, the value of tj+1,j near the edges
deviate from the fitted trends of the central region. This is due
to the local distortion induced by the interface.

In summary, to model n-αα systems, we use the following
system-size independent scheme for the first-nearest neighbor
hopping terms

tj+1,j =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1tα1 , for j = 1,2n − 1
1tα2 , for j = 2,2n − 2
1tc , for j odd, and 3 ≤ j ≤ 2n − 3
1tαc , for j even, and 4 ≤ j ≤ 2n − 4

(A.3)

where 1tc ≙ −2.774 eV and 1tαc ≙ −2.811 eV, cf. Fig. 24(a).

The corresponding parameter for n-αβ systems are

t(j+1,j) ≙

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1tαj , for j ≙ 1,2
1tβν , for j ≙ 2n + 1 − ν, ν ≙ 1,2,3,4
1tc , for j odd and 3 ≤ j ≤ 2n − 5
1tt(j) , for j even and 4 ≤ j ≤ 2n − 4 .

(A.4)

In this case, the hopping term tj+1,j in the bulk of the channel
has a constant value for j odd, 1tc ≙ −2.753 eV, and a linear

dependence 1tt(j) ≙ 1tαc +
1
tβc−1tαc

2n−8 (j − 4) for even j, with
1tβc ≙ −2.854 eV and 1tαc ≙ −2.804 eV, in accordance with
Fig. 24(b).

[1] K. Kusakabe and M. Maruyama, Magnetic nanographite, Phys.

Rev. B 67, 092406 (2003).

[2] Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in

graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006).

[3] E.-j. Kan, Z. Li, J. Yang, and J. G. Hou, Half-metallicity in

edge-modified zigzag graphene nanoribbons, Journal of the

American Chemical Society 130, 4224 (2008).

[4] Y.-W. Son, M. L. Cohen, and S. G. Louie, Half-metallic

graphene nanoribbons, Nature 444, 347 (2006).

[5] M. Y. Han, J. C. Brant, and P. Kim, Electron transport in

disordered graphene nanoribbons, Phys. Rev. Lett. 104, 056801

(2010).

[6] L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai,

Facile synthesis of high-quality graphene nanoribbons, Nature

Nanotechnology 5, 321 (2010).

[7] C. Tian, W. Miao, L. Zhao, and J. Wang, Graphene

nanoribbons: Current status and challenges as quasi-one-

dimensional nanomaterials, Reviews in Physics 10, 100082

(2023).

[8] H. Wang, H. Wang, C. Ma, L. Chen, C. Jiang, C. Chen,

X. Xie, A. Li, and X. Wang, Graphene nanoribbons for quantum

electronics, Nature Reviews Physics 3, 791–802 (2021).

[9] D. J. Rizzo, G. Veber, J. Jiang, R. McCurdy, T. Cao, C. Bronner,

T. Chen, S. G. Louie, F. R. Fischer, and M. F. Crommie,

Inducing metallicity in graphene nanoribbonsvia zero-mode

superlattices, Science 369, 1597–1603 (2020).

[10] J. Yamaguchi, H. Hayashi, H. Jippo, A. Shiotari, M. Ohtomo,

M. Sakakura, N. Hieda, N. Aratani, M. Ohfuchi, Y. Sugimoto,

H. Yamada, and S. Sato, Small bandgap in atomically

precise 17-atom-wide armchair-edged graphene nanoribbons,

Communications Materials 1, 36 (2020).

[11] A. J. Way, R. M. Jacobberger, N. P. Guisinger, V. Saraswat,

X. Zheng, A. Suresh, J. H. Dwyer, P. Gopalan, and M. S.

Arnold, Graphene nanoribbons initiated from molecularly

derived seeds, Nature Communications 13, 2992 (2022).

[12] S. Jiang, T. Neuman, A. Boeglin, F. Scheurer, and

G. Schull, Topologically localized excitons in single graphene

nanoribbons, Science 379, 1049–1053 (2023).

[13] P. Sessi, J. R. Guest, M. Bode, and N. P. Guisinger, Patterning

graphene at the nanometer scale via hydrogen desorption, Nano

Letters 9, 4343 (2009).

[14] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks,

M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit,

Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen,

P. Hofmann, and L. Hornekær, Bandgap opening in graphene

induced by patterned hydrogen adsorption, Nature Materials 9,

315 (2010).

[15] F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F.

Craciun, Nanopatterning of fluorinated graphene by electron

beam irradiation, Nano Letters 11, 3912 (2011).

[16] W.-K. Lee, M. Haydell, J. T. Robinson, A. R. Laracuente,

E. Cimpoiasu, W. P. King, and P. E. Sheehan, Nanoscale

reduction of graphene fluoride via thermochemical

nanolithography, ACS Nano 7, 6219 (2013).

[17] H. Li, T. Duan, S. Haldar, B. Sanyal, O. Eriksson, H. Jafri,

S. Hajjar-Garreau, L. Simon, and K. Leifer, Direct writing of

lateral fluorographene nanopatterns with tunable bandgaps and

its application in new generation of moiré superlattice, Applied
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