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Abstract

High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members

of the bilayer (BL) van der Waals material family. Here we present a systematic study of the

electronic band structure in low-energy regime in homo-BL TMD structures by using the standard

k · p method. Six types of BL TMD stacking configurations, which satisfy the C3 symmetry are

considered and they are HM
M, HM

X , HX
X, R

M
M, RM

X , and RX
M. The intrinsic spin-orbit coupling (SOC) in

the conduction and valence bands and the phase of interlayer hopping matrix elements are included

in our investigation. Taking BL MoS2 as an example, we examine the electronic energy spectra,

the electron density of states, and the Fermi energies in these BL structures. We find that the

electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band

parameters (such as the energy gap, the effective electron band mass and the fourth-order correction

coefficient in different subbands) depend markedly on the stacking configurations. Interestingly,

the spin splitting in H-stacked BL TMDs is suppressed because of center-inversion symmetry and

time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects

significantly the electronic properties of HX
X and RM

M stacked BL TMDs. The methodology and the

results presented in this study can foster further exploration of the basic physical properties of BL

TMDs for potential applications in electronics and optoelectronics.

PACS numbers:

∗Electronic address: wenxu issp@aliyun.com
†Electronic address: milorad.milosevic@uantwerpen.be
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I. INTRODUCTION

Since the discovery of graphene [1], the fabrication and investigation of atomically thin

two-dimensional (2D) electronic systems (2DESs) have quickly become the main focusing

point in scientific research due to their potential applications in next-generation nanoelec-

tronic and optoelectronic devices [2–4]. In particular, monolayer (ML) transition metal

dichalcogenides (TMDs) have attracted immense attention for both experimental and the-

oretical investigations because of their novel electronic and optical properties [5–10], which

can be utilized for the realization of the spintronic and valleytronic devices to be applied in,

e.g., information technology [7, 11]. Moreover, since the discovery of superconductivity in

twisted bilayer (BL) graphene [12], the investigation of BL-based 2DESs has become a hot

and fast-growing field of research in condensed matter physics, electronics and optoelectron-

ics [11, 13, 14]. In a BL 2DES, the interactions between two layers with specific stacking

order can significantly modify the physical properties of the electronic system [6, 7, 15, 16]

and, thus, provide one more freedom for the modification and control of the corresponding

electronic devices.

In recent years, BL TMD systems have been realized via, e.g, fabricating two ML TMDs

bonded by the van der Waals (vdW) force [6, 17]. Therefore, the twistronic features of the BL

systems can be observed by tuning the vdW heterostructure from normal to the inverted

type-II regime through, e.g., taking different stacking orders (i.e., tuning the interlayer

coupling) and/or applying an interlayer bias voltage [18]. The BL TMD structures have

demonstrated a lot of interesting and important physical properties such as spin, valley, and

orbital Hall effects [19–21], Nernst effect [22], magneto electric effect [23], spin-layer locking

effect [24], etc. They have been considered as advanced materials not only in spintronics

and valleytronics but also in twistronics. It is known that both translation and twisting of

two TMD MLs are practical and feasible approaches to prepare and define the microscopic

structure of a BL 2DES [25]. To date, the major research attention has been focused on

the physical properties of BL TMDs as a consequence of sliding or twist of two TMD MLs

in order to achieve the topological mosaics in moiré superlattices [13]. From a viewpoint

of condensed matter physics, the translation of two TMD layers can also result in high-

symmetric BL electronic configurations. For example, two same or homogenous TMD MLs

can form the basic 2H or 3R stacking order, which can be exfoliated from the bulk phases of

3



TMD materials [26, 27]. By translating a ML with 2H or 3R stacking order, one can achieve

the other high-symmetric stacking configurations in homo-BL TMDs. Up to now, most of

the research has been focused on the 2H and 3R stacking BL TMD structures [6, 26–28].

For the application of BL TMDs as advanced electronic and optoelectronic materials, it

is of great significance to examine the basic electronic properties of BL TMDs with other

high-symmetric lattice structures. This becomes the prime motivation of this study.

Electronic band structure is the central feature of physics to describe an electronic mate-

rial. At present, the theoretical studies of the electronic band structure of BL TMD systems

have been mainly conducted using ab initio calculations [6], which is a numerical and CPU

consuming approach. The tight-binding (TB) model has also been applied to calculate the

electronic band structures of ML and BL TMD structures [10, 29, 30], which, however, is

also nontrivial to obtain the analytical solutions when dealing with the BL TMD systems.

It is known that k ·p method can provide simple, transparent, and insightful solutions to the

band structure of an electronic material in low electronic energy regime [31]. This can bene-

fit greatly the further calculations of, e.g., the electronic transport and optical coefficients of

the material. Normally, the electron Hamiltonian of a high-symmetric BL TMD system can

be simplified as a 4×4 matrix using the k ·p approach [32], which is easy to solve and to get

the general analytical solutions of the electronic energy spectrum and wavefunctions. This

approach has been successfully applied to study the electronic transport coefficients [33],

orbital Hall effect [21], and magneto-optical properties [34] of 2H BL TMDs. The basic k · p
Hamiltonian for high-symmetric BL TMDs has been proposed and examined by Tong et al.

[32] in 2017 through introducing the interlayer hopping matrix elements. The theoretical

principle and approach to derive the hopping matrix elements according to the symmetry

of the stacking configuration in homogenous BL (or homo-BL) TMDs have also been devel-

oped [35, 36]. These published studies have established the basis for studying the electronic

band structures in BL TMD systems. However, there is a lack in studying the electronic

band structure in all six types of high symmetric homo-BL TMDs more systematically and

comprehensively. In this study, we attempt to fill in this gap so that one can compare the

features of these band structures not only qualitatively but also quantitatively. It should

be pointed out that in previous studies, the elements of the interlayer hopping matrix in

high-symmetric BL TMDs were taken as the real values in the k ·p calculations. The effect of
the phase angle during the interlayer hopping has often been ignored. The phase and phase
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change during the electronic transition and interaction are important characteristics for a

quantum system. For example, the discovery of the Ising superconductivity in gated MoS2

in 2015 [37] indicates that the in-plane mirror symmetry can be broken in both ML and BL

TMDs. Thus, the phase angles in the allowed hopping matrix elements in high-symmetric

BL TMDs may not be zero. It is therefore necessary to examine the influence of the phase

angle of the interlayer hopping matrix elements on the electronic band structure of high-

symmetric BL TMDs, which is another important aspect of our present study. Furthermore,

it would be significant and important to evaluate the band parameters of high-symmetric

homo-BL TMDs, such as the energy gap in the BL system, the effective electron mass and

the nonparabolicity in different subbands. These parameters are normally experimentally

measurable and have not yet been examined specifically.

In this paper, we conduct a detailed theoretical investigation of the electronic band struc-

ture in six types of high-symmetric homo-BL TMD systems. The paper is organized as

follows. The theoretical approaches for the calculations of the electronic energy spectra and

wavefunctions, the BL band gap, the effective band masses, the high-order correction pa-

rameters of the energy spectra, the electronic density-of-states (DoS), and the Fermi energy

for BL TMDs are developed in Sec. II. The numerical results of these properties for six

types of high-symmetric BL MoS2 are presented and discussed in Sec. III. The concluding

remarks stemming from this study are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Bi-layer stacking configurations

The k · p Hamiltonian used in this study for BL TMDs is constructed on the basis of the

Hamiltonian for ML TMDs. It is known that the ML TMDs, such as MX2 with M = Mo

or W and X = S or Se, is a hexagonal crystal in which the metal atom (M) is sandwiched

between the chalcogen atoms (X) on both sides. In this study, we consider that the homo-

BL TMD structures with six types of high-symmetric stacking orders are realized by two

ML TMDs. They are HM
M, H

M
X , or 2H, HX

X, R
M
M, R

M
X , and RX

M structures. These stacking

configurations satisfy the C3 symmetry and their crystal structures are shown in Fig. 1.
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B. Electron Hamiltonian

It is known from the results obtained from, e.g., the ab initio calculations [6] that the

conduction and valence band edges nearK andK
′

points in ML TMDs are attributed mainly

to dz2 , dxy, and dx2−y2 orbits of the metal atoms. Namely, the electron wave functions are

mainly based on ψc = |dz2⟩ and ψτ
v = (|dx2−y2⟩ + iτ |dxy⟩)/

√
2, with τ = ± denoting the K

or K
′

valley. Thus, we can utilize the electron Hamiltonian for ML TMDs to construct that

for the BL TMD systems [23, 32–34, 38]. In this study, we consider a two-layer system with

the same TMD material, i.e., the homo-BL TMD system. A minimal band model for this

kind of BL structure in the neighborhood of the K/K
′

points in the band structure can be

constructed by adding the interlayer hopping to the k · p model of the ML TMDs [5]. As

a result, the single electron Hamiltonian for a homo-BL TMD system is composed of three

basic parts, i.e.,

H = H0 +HSOC +Hhopping, (1)

where H0 stems from orbital interaction, HSOC is induced by intrinsic spin-orbit coupling

(SOC), andHhopping is attributed from interlayer hopping. Here we have neglected the effects

RXM RMM

a1
a2

h

RMX

HM
M HM

X HX
X

FIG. 1: Diagrammatic crystal structures of six types of high-symmetric homo-BL TMDs. Here,

the big green/blue dots denote the metal atom (M) in upper/lower layer, the small orange/red

dots denote the chalcogen atom (X) in upper/lower layer, and h marks the hexagon center. The

dashed lines between atoms are perpendicular to the plane. a1 and a2 are the basic vectors of ML

TMDs with |a1| = |a2|.
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of the Rashba SOC and the proximity-induced exchange interaction in ML TMDs [39]. The

electron Hamiltonian for a homo-BL TMD structure can be written as a 4× 4 matrix

H(k) =















∆/2 + ϵτsλc Ak−ϵτ tcc tcv

Ak+ϵτ −∆/2 + ϵτsλv tvc tvv

t∗cc t∗vc ∆/2 + τsλc Ak−τ

t∗cv t∗vv Ak+τ −∆/2 + τsλv















. (2)

Here, k = (kx, ky) is the relative electron wavevector with respect to the K/K
′

points, ∆ is

the band gap of ML TMDs, A = at with a being the lattice constant of the ML TMD crystal

and t the nearest-neighbor intralayer hopping coefficient, λc (λv) is the strength of intrinsic

SOC in conduction (valence) band in ML TMDs, s = ± denotes to spin-up or down state

(which is a good quantum number), k±τ = τkx ± iky with τ = ±1 being the valley index,

k±ϵτ = τkx ± iϵky with ϵ = −1 for H-stacking orders (HM
M, H

M
X , and HX

X) and ϵ = +1 for

R-stacking orders (RM
M, R

M
X , and RX

M) [32], tµµ′ = |tµµ′ |eiτϕµµ
′ is the element of the interlayer

hopping matrix with µ = (c, v) being an index regarding conduction or valence band, and

ϕµµ
′ is the phase angle of the interlayer hopping matrix element.

C. Electronic band structure

The Schrödinger equation for an electron with the Hamiltonian given by Eq. (2) can

be solved analytically. At the fixed ϵ, τ , and s, the four eigenvalues in six types of high-

symmetric BL TMD are the solutions of the equation

E4 + b3E
3 + b2E

2 + b1E + b0 = 0, (3)

where E = Eγ
µν(k) with γ = τs = ±. Four different solutions of Eq. (3) with the same ϵ and

γ correspond to four eigenenergies, two of them belong to the conduction band (µ = c) and

the other two belong to the valence band (µ = v). We find that it is convenient to intro-

duce an index ν = (1, 2) to distinguish the higher/lower eigenenergy in conduction/valence

band, i.e. Eγ
µ1(k) > Eγ

µ2(k). This band splitting is induced by the presence of interlayer

hopping (i.e., tµµ′ ) and the intrinsic SOC (i.e., λµ). After considering the C3 symmetry for

high-symmetric stacking orders in homo-BL TMDs, only the products |tcc||tvv| and |tcv||tvc|
are possible and the other terms regarding |tµµ||tµµ′ |, |tµµ||tµ′µ|, and |tcc||tcv||tvc||tvv| are
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forbidden [32]. Thus, we have

b3 =− (1 + ϵ)τs(λc + λv), (3a)

b2 =− 2A2k2 −∆2/2− (1 + ϵ)τs∆(λc − λv)/2 + 2(1 + ϵ)λcλv + ϵ(λ2c + λ2v)

− |tcc|2 − |tcv|2 − |tvc|2 − |tvv|2, (3b)

b1 =A
2k2(1 + ϵ)τs(λc + λv) + (1 + ϵ)τs∆2(λc + λv)/4 + ϵ∆(λ2c − λ2v)

− (1 + ϵ)τs(λ2cλv + λcλ
2
v)− [∆− (1 + ϵ)τsλv]|tcc|2

+ τs(λc + ϵλv)(|tcv|2 + ϵ|tvc|2) + [∆ + (1 + ϵ)τsλc]|tvv|2, (3c)

b0 =A
4k4 + A2k2∆2/2 + A2k2(1 + ϵ)τs∆(λc − λv)/2− 2A2k2λcλv

− 2A2k2(|tcc||tvv| cosϕ1 + |tcv||tvc| cosϕ2) + ∆4/16 + (1 + ϵ)τs∆3(λc − λv)/8

− (1 + ϵ)∆2λcλv/2 + ϵ∆2(λ2c + λ2v)/4− (1 + ϵ)τs∆(λ2cλv − λcλ
2
v)/2 + λ2cλ

2
v

+ (1 + ϵ)τs∆(λv|tcc|2 − λc|tvv|2)/2 + τs∆(λc − ϵλv)(|tcv|2 + ϵ|tvc|2)/2

− (∆2/4 + ϵλ2v)|tcc|2 + (∆2/4− ϵλcλv)(|tcv|2 + |tvc|2)− (∆2/4 + ϵλ2c)|tvv|2

+ |tcc|2|tvv|2 + |tcv|2|tvc|2. (3d)

Here we define ϕ1 = ϕcc − ϕvv and ϕ2 = ϕcv − ϕvc. From Eq. (3), we notice the following

features. (i) The electron energy spectrum depends only on k, namely Eγ
µν(k) = Eγ

µν(k),

suggesting that it is symmetric along the k plane; (ii) τ and s appear always in the form

of τs so that Eγ
µν(k) does not depend on τ , implying that the electron energies in K and

K
′

valleys are degenerate but the electronic spins in two valleys are just opposite due to

time-reversal symmetry; and (iii) the eigenenergies at the K/K
′

points (i.e., at k = 0) do

not depend on the phase angles of the interlayer hopping matrix element. For a specific

stacking configuration, the parameters bj, with j = 0, 1, 2, and 3, can be further simplified

(see Appendix).

The corresponding eigenfunction for an electron at a state (k,B) with B = (µ, ν, τ, s) in

six types of high-symmetric BL TMDs is

|k,B⟩ = A















c1

c2

c3

c4















eik·r, (4)
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where

c1 =− A3k2k−τ tcc + A2k2h+c tcv + A2k−ϵτk
−
τ h

ϵ
ctvc + Ak−τ (A

2k2 − hϵch
ϵ
v)tcc (4a)

− Ak−ϵτh
+
c h

ϵ
ctvv − hϵctcv|tvc|2 − (A2k2 − hϵch

ϵ
v)h

+
c tcv,

c2 =A
2k+ϵτk

−
τ h

ϵ
ctcc − Ak+ϵτh

+
c h

ϵ
ctcv − Ak−τ h

ϵ
ch

ϵ
ctvc + (h+c h

ϵ
c − |tcc|2)hϵctvv, (4b)

c3 =Ak
−
τ (−A2k2 + hϵch

ϵ
v + t∗cctvv + tcvt

∗
vc)h

ϵ
c, (4c)

c4 =(A2k2 − hϵch
ϵ
v)h

+
c h

ϵ
c + hϵch

ϵ
v|tcc|2 + hϵch

ϵ
c|tvc|2, (4d)

and

A = (|c1|2 + |c2|2 + |c3|2 + |c4|2)−1/2 (4e)

is the normalization coefficient. Here, hϵc = ∆/2 + ϵτsλc −E, hϵv = −∆/2 + ϵτsλv −E, and

h+c = ∆/2 + τsλc − E. The specific forms of the eigenfunctions for the studied six types of

high-symmetric BL TMDs can be further simplified and the results are shown in Appendix.

We note that: (i) the C3 symmetry for high-symmetric stacking orders in homo-BL TMDs

has also been considered here; (ii) although Eγ
µν(k) depends only on k, |k,B⟩ depends on

kx and ky generally, indicating that the electron wavefunction is not symmetric along the k

plane; and (iii) |k,B⟩ depends generally on the phase angle of the hopping matrix element.

D. Band parameters

In order to obtain the basic band parameters of BL TMD systems, we examine the

electronic energy spectrum near each band edge, i.e., k → qγµν the minima/maxima for each

conduction/valence subband. From Eq. (3), the electron energy can be expanded as

Eγ
µν(k) = Eγ

µν(q
γ
µν)+g

γ
µν(k−qγµν)+

ℏ
2

2mγ
µν
(k−qγµν)2+αγ

µν(k−qγµν)3+βγ
µν(k−qγµν)4+ · · · , (5)

and

gγµν = lim
k→qγµν

dEγ
µν(k)

dk
= lim

k→qγµν
k
Qγ

µν(E, k)

Lγ
µν(E, k)

,

ℏ
2

2mγ
µν

=
1

2!
lim

k→qγµν

d2Eγ
µν(k)

dk2
=

1

2!
lim

k→qγµν

Jγ
µν(E, k)

Lγ
µν(E, k)

,

αγ
µν =

1

3!
lim

k→qγµν

d3Eγ
µν(k)

dk3
=

1

3!
lim

k→qγµν

Sγ
µν(E, k)

Lγ
µν(E, k)

,

βγ
µν =

1

4!
lim

k→qγµν

d4Eγ
µν(k)

dk4
=

1

4!
lim

k→qγµν

Y γ
µν(E, k)

Lγ
µν(E, k)

, (6)
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with

Lγ
µν(E, k) =4E3 + 3b3E

2 + 2b2E + b1, (6a)

Qγ
µν(E, k) =4A2E2 − 2A2(1 + ϵ)γ(λc + λv)E − 4A4k2

− A2∆2 − A2(1 + ϵ)γ∆(λc − λv) + 4A2λcλv

+ 4A2(|tcc||tvv| cosϕ1 + |tcv||tvc| cosϕ2), (6b)

Jγ
µν(E, k) =− 2(6E2 + 3b3E + b2)(

dE

dk
)2 − 2[2b

(1)
2 E + b

(1)
1 ]

dE

dk

− b
(2)
2 E2 − b

(2)
1 E − b

(2)
0 , (6c)

Sγ
µν(E, k) =− 6(6E2 + 3b3E + b2)

dE

dk

d2E

dk2
− 3[2b

(1)
2 E + b

(1)
1 ]

d2E

dk2

− 6(4E + b3)(
dE

dk
)3 − 6b

(1)
2 (

dE

dk
)2 − 3[2b

(2)
2 E + b

(2)
1 ]

dE

dk

− b
(3)
0 , (6d)

Y γ
µν(E, k) =− 8(6E2 + 3b3E + b2)

dE

dk

d3E

dk3
− 4[2b

(1)
2 E + b

(1)
1 ]

d3E

dk3

− 6(6E2 + 3b3E + b2)(
d2E

dk2
)2 − 36(4E + b3)(

dE

dk
)2
d2E

dk2

− 24b
(1)
2

dE

dk

d2E

dk2
− 6[2b

(2)
2 E + b

(2)
1 ]

d2E

dk2
− 24(

dE

dk
)4

− 12b
(2)
2 (

dE

dk
)2 − b

(4)
0 , (6e)

where Eγ
µν(q

γ
µν) is the band edge, mγ

µν is the effective band quality or mass, αγ
µν is the third-

order correction, βγ
µν is the fourth-order correction, dnE/dkn represents dnEγ

µν(k)/dk
n, and

b
(n)
j = dnbj/dk

n with j = 0, 1, 2, and 3.

E. Electron density-of-states

From electronic energy spectrum of a BL TMD, we can calculate the Green’s function

for a free electron in the system through [40]

G(E) = P
( 1

E − E(k)

)

− iπδ[E − E(k)], (7)

with P being the principal value and E the electron energy. Thus, we can determine the

electron density-of-states (DoS) for BL TMD system from the imaginary part of the Green’s
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function, which reads

Dc(E) =
∑

γ,ν

Dγ
cν(E) =

gγ
2π

∑

γ,ν

∑

i

Θ[E − Eγ
cν(q

γ
cν)]

ki
|dEγ

cν(k)/dk|k=ki

,

Dv(E) =
∑

γ,ν

Dγ
vν(E) =

gγ
2π

∑

γ,ν

∑

i

Θ[Eγ
vν(q

γ
vν)− E ] ki

|dEγ
vν(k)/dk|k=ki

, (8)

for conduction and valence band respectively, where gγ = 2 because γ = + for (τ, s) = (±,±)

and γ = − for (τ, s) = (±,∓), Θ(x) is a unit step function, and ki is the ith solution for k

from the equation E − Eγ
µν(k) = 0.

Through Eqs. (6) and (8), it can be written as

Dc(E) = D0
ℏ
2

m0

∑

γ,ν

∑

i

Θ[E − Eγ
cν(q

γ
µν)]

∣

∣

∣

Lγ
µν(E , ki)

Qγ
µν(E , ki)

∣

∣

∣
,

Dv(E) = D0
ℏ
2

m0

∑

γ,ν

∑

i

Θ[Eγ
vν(q

γ
µν)− E ]

∣

∣

∣

Lγ
µν(E , ki)

Qγ
vν(E , ki)

∣

∣

∣
, (9)

where D0 = gγm0/(2πℏ
2) and m0 is the rest electron mass.

F. The Fermi energy

From electron DoS, we can determine the Fermi energy (EF ) or chemical potential in a

BL TMD structure. For n-type BL TMDs, after applying the condition of electron number

conservation, we have

ne =

∫ ∞

Eb

dEDc(E)f(E) = gγ
∑

γ,ν,k

f [Eγ
cν(k)], (10)

with ne being the electron density, f(E) = [e(E−EF )/kBT + 1]−1 the Fermi-Dirac function,

and Eb the bottom of the conduction band. At low-temperature limit (i.e., T → 0), we have

f(E) → Θ(EF − E) and, thus,

ne = gγ
∑

γ,ν,k

f [Eγ
cν(k)] = 2

∑

γ,ν

k2F (γ, ν)

4π
, (10a)

where kF (γ, ν) is the Fermi wavevector, which is the solution for k from EF − Eγ
cν(k) = 0.

III. RESULTS AND DISCUSSIONS

In this study, we take BL MoS2 as an example to discuss the electronic band structure

in six types of high-symmetric homo-BL TMD systems. The material parameters for MoS2

11



TABLE I: |tµµ′ | (in meV) in six types of high-symmetric BL MoS2.

HM
M HM

X HX
X RM

M RM
X RX

M

|tcc| 25 0 0 25 0 0

|tcv| 0 0 30 0 0 30

|tvc| 0 0 30 0 30 0

|tvv| 0 43 0 35 0 0

used in the numerical calculation are [5, 6, 29, 41]: a = 3.193 Å, t = 1.10 eV, ∆ = 1.66

eV, λc = −1.5 meV, and λv = 75 meV. To conduct the numerical calculations, we also

need to know the values of the hopping matrix elements tµµ′ . We note the following points.

(i) As been pointed out [6, 35], in order to satisfy the C3 symmetry some of the interlayer

hopping transitions are forbidden so that the corresponding tµµ′ = 0 (see Appendix G).

(ii) It is known that the center-inversion symmetry can lead to Eγ
µν(k) = Eγ′

µν(k) with

γ = τs, and γ′ = (−τ)s and the time-reversal symmetry can result in Eγ
µν(k) = Eγ′

µν(k)

with γ′ = (−τ)(−s). For the case where both of them are satisfied, Eγ
µν(k) = Eγ′

µν(k) with

γ′ = τ(−s). Therefore, E+
µν(k) = E−

µν(k) in H-stacked BL TMDs, which means γ does not

affect Eγ
µν(k) and τs disappears in Eq. (3). Thereby, |tcv| = |tvc| in HX

X (see Appendix C).

(iii) RM
X is the case of operating the out-of-plane mirror symmetry on RX

M, which means

their band structures should be the same. As a result, |tvc| for RM
X is equal to |tcv| RX

M (see

Appendix F). And (iv) the values of |tµµ′ | for HM
X [23] and RM

M [35] were already obtained

by the DFT calculations. It should be noted that the actual values of |tµµ′ | are not easy to

evaluate quantitatively because they are affected by both the in-plane transitions [35] and

the out-of-plane interlayer hopping. Through referring to the known |tµµ′ |, we take |tcc| = 25

meV for HM
M and |tcv| = |tvc| = 30 meV for HX

X, R
M
X and RX

M in the calculations. The values

of |tµµ′ | used in our calculations are shown in Table I. The zero values of |tµµ′ | shown in

Table I are the consequence of the C3 symmetry. From this Table and the first term in the

second line of Eq. (3d), we find ϕ1 only affects RM
M and ϕ2 only affects HX

X. At present, we

do not know the values of ϕ1 and ϕ2 for BL MoS2 and we take them as input parameters.

12
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FIG. 2: The electron energy spectra in four types of high-symmetric BL MoS2, as indicated. Here

(µ, ν, γ) denotes Eγ
µν(k).

A. Electronic band structure

In Fig. 2, we show the electronic energy dispersion in HM
M, H

M
X , R

M
X , and RX

M stacking

structures of BL MoS2, where E
γ
µν(k) is independent upon the phase angle of the hopping

matrix elements and Eγ
µν(k) for R

M
X and RX

M stacking orders are the same. In Figs. 3 and

4, we show respectively the electron energy spectra in HX
X and RM

M stacking BL MoS2 for

different phase angles ϕ2 and ϕ1 induced by the phases of interlayer hopping matrix elements.

In the presence of intrinsic SOC in ML TMD and of the interlayer hopping in BL TMD,

one would think that the band splitting can be observed in BL TMD structures. However,

because a homo-BL structure should satisfy the lattice symmetry, the band splitting in some

stacking structures can be suppressed. In Figs. 2 and 3, each curve of energy spectrum for

H-stacking BL is fourfold degeneracy because of center-inversion symmetry and time-reversal

symmetry so that Eγ
µν(k) = E−γ

µν (k) with γ = sτ , whereas the subbands with different colors

(or ν) are not degenerate. For the case of R stacking, each curve in Figs. 2 and 4 is twofold

degeneracy because of time-reversal symmetry only so that Esτ
µν(k) = E

(−s)(−τ)
µν (k), whereas

the subbands with different colors (γ) or curve styles (ν) are not degenerate. For the case

13
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FIG. 3: The electron energy spectra in HX
X stacked BL MoS2, as indicated. Here (µ, ν, γ) denotes

Eγ
µν(k).

of tµµ′ = 0, the intrinsic SOC causes Eγ
µ1(0) − Eγ

µ2(0) = 2|λµ| and E+
µν(0) − E−

µν(0) = 0 in

H-stacked BL, whereas Eγ
µ1(0) − Eγ

µ2(0) = 0 and |E+
µν(0) − E−

µν(0)| = 2|λµ| in R-stacked

BL. Therefore, the intrinsic SOC can cause the band splitting. For the case of λµ = 0, the

intraband interlayer hopping causes Eτ
µ1(0) − Eτ

µ2(0) = 2|tµµ| and the interband interlayer

hopping causes Eτ
c1(0) − Eτ

v2(0) − ∆ ≈ 2|tµµ′ |2/∆. Thus, the interlayer hopping can also

induce the band splitting. Because |tµµ′ | ≪ ∆, the band splitting induced by interband

interlayer hopping is much weaker than that induced by intraband interlayer hopping. For

HX
X stacking in Fig. 3, ϕ2 affects Eγ

µν(k) rather markedly in the conduction band and a

very weak effect of ϕ2 can be seen in the valence band. For RM
M stacking in Fig. 4, ϕ1

affects Eγ
µν(k) rather weakly. Furthermore, we find that for RM

X and RX
M stacking orders,

E−
v2(0) < E−

v1(0) < E+
v2(0) < E+

v1(0) < E+
c2(0) < E+

c1(0) < E−
c2(0) < E−

c1(0).

To see more clearly the influence of phase angle of the hopping matrix elements on Eγ
µν(k),

in Figs. 5 and 6 we show respectively the energy differences ∆γ
µ(k) = Eγ

µ1(k) − Eγ
µ2(k) in

HX
X and RM

M stacked BL MoS2 for different ϕ2 and ϕ1 phase angles. For HM
X and for HX

X

with ϕ2 larger than ≈155o, ∆γ
c (k) are not monotonic, which decreases first then increases

with increasing k. When ϕ2 ≈ 155◦, ∆γ
c (k) is almost unchanged (≈ 3 meV) as k < 0.5

14
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FIG. 4: The electron energy spectra in RM
M stacked BL MoS2, as indicated. Here (µ, ν, γ) denotes

Eγ
µν(k).

Å−1, implying that the optoelectronic properties of this structure near the K/K
′

valley are

sensitive to terahertz (THz) radiation (f = 1 THz ⇔ 4.13 meV). We see that ϕ2 affects

∆γ
c (k) more strongly than ∆γ

v(k) as shown in Fig. 5. For RM
M stacking, due to the presence

of spin-split subbands (see Fig. 4), ∆+
µ (k) differs from ∆−

µ (k) and, as a result, there are two

curves with the same color in both conduction and valence bands in Fig. 6. The same figure

further shows that ∂[∆+
µ (k)−∆−

µ (k)]/∂ϕ1 < 0.

It should be noticed that ML TMD was often considered to satisfy the in-plane mirror

symmetry so that the six types of high-symmetric homo-BL TMDs were thought to satisfy

this symmetry as well. Thus, ϕ1 and ϕ2 could be taken as zero [36]. However, the discovery

of the Ising superconductivity in gated MoS2 in 2015 [37] suggests that the in-plane mirror

symmetry can be broken in both ML and BL TMDs. Therefore, ϕ1 and ϕ2 may not be zero

in some high symmetric homo-BL TMDs. We find that the phase angles in the hopping

matrix elements can only affect the electronic band structures in RM
M and HX

X stacked BL

MoS2 due to the satisfaction of the structure symmetry.
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c (k) for HM

X stacking for comparison. The curves in the upper (lower)

part of the panel are the results for the valence (conduction) band.

TABLE II: ∆g (in meV) in six types of high-symmetric BL MoS2.

HM
M HM

X HX
X RM

M RM
X /RX

M

∆g 23.6 11.5 -1.1 60 0

B. Band parameters

Our numerical results shown in Figs. 2 - 4 indicate that the band edges in six types of

high-symmetric stacking BL MoS2 are all located at k = 0, i.e. qγµν = 0 in Eq. (5). This can

also be proven by gγµν = limk→0 dE
γ
µν/dk = 0. We define ∆SOC = ∆ + λc − λv as the band

gap in ML MoS2 with SOC. In the presence of interlayer hopping, the band gap for BL MoS2

with SOC becomes ∆BL, which is the difference between the lowest conduction subband and

the highest valence subband at k = 0. The band gap difference is ∆g = ∆SOC −∆BL. From

our numerical results for BL MoS2, we find: (i) ∆SOC > ∆BL in HM
M, H

M
X , and RM

M stacking

orders, which means the red shift of the main exciton peaks at the K/K
′

valley in the three

BL stacking orders [15, 16]; (ii) ∆SOC = ∆BL in RM
X and RX

M stacking orders, which means
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The solid/dashed curves denote the spin-up/down states.

the positions of the main exciton peaks at the K/K
′

valley are almost unchanged in the

two BL stacking orders [16, 26]; and (iii) ∆SOC < ∆BL in HX
X stacking order because of

the efforts of the interlayer hopping matrix elements tcv and tvc. The values of ∆g for six

types of high-symmetric BL MoS2 are summoned in Table II, for facilitated visualization

that different stacking configurations have different BL band gaps.

From Eqs. (6d) and (3a) - (3d), we see that limk→0 S
γ
µν(E, k) = 0. Thus, αγ

µν = 0 so

that there is no third-order correction in Eq. (5) for BL MoS2. Using Table I, we have

Jγ
v1[E

γ
v1(0), 0] = Jγ

c2[E
γ
c2(0), 0] = 0 for RM

X and RX
M stacking structures and

Lγ
v1[E

γ
v1(0), 0] = −Lγ

c2[E
γ
c2(0), 0] =|tvc|2(∆ + γλc − γλv), for R

M
X ,

Lγ
v1[E

γ
v1(0), 0] = −Lγ

c2[E
γ
c2(0), 0] =|tcv|2(∆ + γλc − γλv), for R

X
M, (11)

in Eq. (6). The values of mγ
µν/m0, with m0 being the rest electron mass, and βγ

µν in

Eq. (5) are shown respectively in Tables III and IV. On the basis of Eqs. (5) and (6),

we note the following points: (i) Because Jγ
v1[E

γ
v1(0), 0] = Jγ

c2[E
γ
c2(0), 0] = 0 for RM

X and

RX
M stacking structures, ℏ2/(2mγ

c2) → 0 and ℏ
2/(2mγ

v1) → 0, implying that mγ
c2 → ∞ and
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TABLE III: The effective band mass mγ
µν/m0 at the band edge in six types of high-symmetric BL

MoS2. Here, (µ, ν, γ) represents E
γ
µν(k) and the effect of (φ1, φ2) on mγ

µν for (RM
M,HX

X) structure is

indicated.

HX
X (φ2) RM

M (φ1)

HM
M HM

X 0 π/2 π 0 π/2 π RM
X /RX

M

(c, 1,+) 0.521 0.536 0.307 0.391 0.536 0.486 0.497 0.508 0.245

(c, 1,−) 0.521 0.536 0.307 0.391 0.536 0.533 0.544 0.555 0.268

(c, 2,+) 0.502 0.489 1.540 0.744 0.490 0.492 0.481 0.471 ∞

(c, 2,−) 0.502 0.489 1.540 0.744 0.490 0.539 0.528 0.518 ∞

(v, 1,+) -0.489 -0.486 -0.497 -0.493 -0.489 -0.486 -0.478 -0.471 ∞

(v, 1,−) -0.489 -0.486 -0.497 -0.493 -0.489 -0.533 -0.525 -0.518 ∞

(v, 2,+) -0.536 -0.540 -0.529 -0.533 -0.537 -0.492 -0.500 -0.508 -0.245

(v, 2,−) -0.536 -0.540 -0.529 -0.533 -0.537 -0.539 -0.547 -0.555 -0.268

mγ
v1 → ∞ and the energy dispersion comes mainly from the k4 term; (ii) comparing with the

effective electron masses m∗/m0 ∼ 0.5 at the edges of conduction and valence bands for ML

MoS2 obtained from DFT calculations [6], the effective band masses for HM
M, H

M
X and RM

M

stacking BL MoS2 do not differ significantly from this value; and (iii) for RM
M/H

X
X stacking,

the dependence of mγ
µν and βγ

µν upon ϕ1/ϕ2 can be clearly seen.

C. The electron density-of-states

From Eq. (9), we can find the singular point in electron DoS at K/K
′

point (i.e., at

k = 0) in BL MoS2. Letting limk→0Q
γ
µν(E0, k) = 0, we can get E0 and then find the singular

point when E0 = Eγ
µν(0). Since

lim
k→0

Qγ
µν(E0, k)/A

2 = lim
k→0

4E2 − 2γ(1 + ϵ)(λc + λv)E − 4A2k2 −∆2 − γ(1 + ϵ)∆(λc − λv)

+ 4λcλv + 4(|tcc||tvv| cosϕ1 + |tcv||tvc| cosϕ2) = 0, (12)

we find that there are two singular points at E0 = −∆/2 + γλv = Eγ
v1(0) and E0 = ∆/2 +

γλc = Eγ
c2(0) for R

M
X and RX

M stacking structures so thatDc(∆/2+γλc) = ∞, andDv(−∆/2+

γλv) = ∞. There is no singular point in other stacking orders.
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TABLE IV: The fourth-order correction parameter, βγ
µν in units of eVÅ4, at the band edge in six

types of high-symmetric BL MoS2. Here (µ, ν, γ) represents Eγ
µν(k) and the effect of (φ1, φ2) on

βγ
µν for (RM

M,HX
X) structure is indicated.

HX
X (φ2) RM

M (φ1)

HM
M HM

X 0 π/2 π 0 π/2 π RM
X /RX

M

(c, 1,+) -29.7 -16.8 -8153.2 -1793.7 -26.9 -39.1 -36.1 -34.3 -106860.3

(c, 1,−) -29.7 -16.8 -8153.2 -1793.7 -26.9 -29.6 -27.5 -26.2 -97433.3

(c, 2,+) -37.8 -50.9 8086.5 1726.7 -40.4 -37.6 -40.9 -43.0 106783.9

(c, 2,−) -37.8 -50.9 8086.5 1726.7 -40.4 -28.6 -30.8 -32.3 97375.4

(v, 1,+) 38.5 39.2 36.4 37.4 38.2 39.1 41.3 43.0 -106783.9

(v, 1,−) 38.5 39.2 36.4 37.4 38.2 29.6 31.1 32.3 -97375.4

(v, 2,+) 29.0 28.5 30.3 29.6 29.0 37.6 35.7 34.3 106860.3

(v, 2,−) 29.0 28.5 30.3 29.6 29.0 28.6 27.3 26.2 97433.3

In Figs. 7, 8, and 9, we show the electron DoS in six types of high-symmetric BL

MoS2 as a function of the electron energy E. It is known that for an ideal 2DES with a

parabolic energy spectrum, the electron DoS is a unit-step function [42]. In contrast, the

electron DoSs in high-symmetric BL MoS2 do not show this feature, indicating that the

corresponding electronic energy spectra are nonparabolic. Once again, the electron DoS in

(HX
X, R

M
M) stacking order depends on the phase angle (ϕ2, ϕ1).

D. The Fermi energy

We use Eq. (10) to evaluate the Fermi energy in n-type BL MoS2 with six types of high

symmetries at temperature T → 0. In Figs. 10, 11, and 12, we plot the Fermi energy

as a function of the electron density ne in n-type BL MoS2 respectively. For H-stacking

structures, because the subband energies are spin degenerate [see Figs. 2(a), 2(b), and 3],

(ν, γ) = (2, γ) states are occupied by electrons first and, with increasing ne, the higher energy

(1, γ) can become populated. For RM
M stacked BL TMDs, because of the spin splitting of the

subband energies (see Fig. 4), (2,+) states are occupied first and then (2,−), (1,+), and

(1,−) states become populated respectively with increasing ne. In contrast, for RM
X and RX

M
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FIG. 7: The electron DoS in four types of high-symmetric BL MoS2, as indicated. The legends are

the same as in Fig. 8 and Fig. 9. The inset shows the DoS around the conduction band edge.

stacking orders [see Fig. 2(c)], (2,+) states are occupied first and then (1,+), (2,−), and

(1,−) states become populated respectively with increasing ne. These features are consistent

with the electron energy levels shown in Figs. 2 - 4. Moreover, we find that EF increases

with ϕ1 (ϕ2) up to ne ∼ 3× 1013 cm−2 in RM
M (HX

X) stacked BL TMDs, as a consequence of

the dependence of the corresponding electron energies upon the phase angles of the hopping

matrix elements.
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FIG. 8: The electron DoS in HX
X stacked BL MoS2. (µ, ν, γ) denotes D

γ
µν(E). The inset shows the

DoS around the conduction band edge.

It is known that the dependence of the Fermi energy upon the electron density directly

reflects the features of the electron DoS [see Eq. (10)]. For a n-type BL MoS2, the DoS

Dc(E) exists immediately when E ≥ Eb the bottom of the conduction band (see Figs. 7 - 9)

so that the electrons are populated in the conduction band and the Fermi level is established.

In general, EF increases with ne because more electrons have to occupy the higher-energy

states. For six types of high-symmetric homo-BL MoS2, the slope of the increase in EF with
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FIG. 9: The electron DoS in RM
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increasing ne depends on the dependence of Dc(E) upon the electron energy. It is interesting

to notice that in contrast to a semiconductor-based quantum well system (QWS) in which

the DoS is the unit-step function like, the DoS for six types of high-symmetric homo-BL

MoS2 is the functional form of electron energy E. Therefore, the dependence of EF upon ne

here differs from that in a semiconductor-based QWS.
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shows the EF around E−
c2(0) and E−

c1(0) in RM
X and RX

M stacking BL MoS2.

IV. CONCLUSIONS

In this paper, we have systematically analyzed the electronic band structure of six types

of high-symmetric BL TMDs, namely HM
M, H

M
X , H

X
X, R

M
M, R

M
X , and RX

M ones, exploiting the

practical and analytical convenience of the k · p approach. The electron Hamiltonian for BL

TMDs has been constructed on the basis of ML TMDs in the presence of interlayer hopping.

The phase angle of the hopping matrix elements has been considered. In this way, we have

conveniently obtained the electronic energy spectrum, the electron wave function, the band

parameters, the electron density of states, and the Fermi energy in the BL TMD structures

of interest. Furthermore, we applied the methodology specifically to BL MoS2 as a useful

example to evaluate and examine the features of the above listed electronic properties. The

main conclusions obtained from this study are summarized as follows.

(1) High-symmetric BL TMDs include three types of center-inversion-symmetric H-

stacked BL and three types of R-stacked BL orders. They all maintain time-reversal sym-

metry. Among them, the electronic band structure only in RM
M and HX

X stacking orders

depends on the phase angle of the interlayer hopping matrix elements. Furthermore, RM
X

and RX
M stacked BL TMDs are with the same electronic energy spectrum but their electron
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wavefunctions are different.

(2) For the HX
X stacking order, ϕ2 affects significantly the energy difference between elec-

tronic subbands, effective band masses, fourth-order correction parameter, electron DoS,

and Fermi energy. In comparison, ϕ1 affects relatively weakly the electronic band structure

in RM
M stacked BL TMDs.

(3) Interestingly, although the intrinsic SOC can lead to spin splitting in electronic band

in ML TMDs, this band splitting can be suppressed in H-stacked BL TMDs due to the

center-inversion symmetry and time-inversion symmetry.

(4) The electron energy dispersions in six types of high-symmetric BL TMDs are not

parabolic like. The effective electron band mass and the fourth-order correction coefficient

of the energy dispersion in different subbands depend strongly on the stacking configurations.

Although limited in scope, the results obtained from this study provide analytical in-

sights lacking in the literature, and thereby help one gain an in-depth understanding of

BL TMDs with different high-symmetric stacking structures. Moreover, our paper provides

important input for subsequent transport and optical calculations, while opening further

theoretical challenges using a similar approach. The predictions made in this paper are ver-

ifiable experimentally, and are relevant to any further use of bilayer TMDs in electronic and
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FIG. 12: The Fermi energy in RM
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dependence of EF around E−
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c1(0), and E−
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optoelectronic devices, for which these materials are among the prominent vdW candidates.
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APPENDIX

To understand the results presented and discussed in this work and for further application

of these results in the calculation of electronic transport and optical properties of high-

symmetric BL TMDs, here we present the coefficients regarding electron wavefunction in

Eq. (4) and electron energy in Eq. (3) with specific stacking order. In these results, we

define (µ, ν, τ, s, k) as the corresponding electron state with Eγ
µν(k) and γ = τs.
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A. HM
M stacking order

For energy spectrum Eγ
µν(k), we have

b3 =0,

b2 =− 2A2k2 −∆2/2− (λ2c + λ2v)− |tcc|2,

b1 =−∆(λ2c − λ2v)−∆|tcc|2,

b0 =A
4k4 + A2k2∆2/2− 2A2k2λcλv +∆4/16

−∆2(λ2c + λ2v)/4 + λ2cλ
2
v − (∆2/4− λ2v)|tcc|2. (A1)

For wavefunction at (µ, ν, τ, s, k) states with Eγ
µν(k),

c1 =− A3k2k−τ tcc + Ak−τ (A
2k2 − h−c h

−
v )tcc,

c2 =A
2k−τ k

−
τ h

−
c tcc,

c3 =Ak
−
τ (−A2k2 + h−c h

−
v )h

−
c ,

c4 =(A2k2 − h−c h
−
v )h

+
c h

−
c + h−c h

−
v |tcc|2. (A2)

B. HM
X stacking order

For energy spectrum Eγ
µν(k), we have

b3 =0,

b2 =− 2A2k2 −∆2/2− (λ2c + λ2v)− |tvv|2,

b1 =−∆(λ2c − λ2v) + ∆|tvv|2,

b0 =A
4k4 + A2k2∆2/2− 2A2k2λcλv +∆4/16

−∆2(λ2c + λ2v)/4 + λ2cλ
2
v − (∆2/4− λ2c)|tvv|2. (B1)

For wavefunction at (µ, ν, τ, s, k) states with Eγ
µν(k),

c1 =− Ak+τ h
+
c h

−
c tvv,

c2 =h
+
c h

−
c h

−
c tvv,

c3 =Ak
−
τ (−A2k2 + h−c h

−
v )h

−
c ,

c4 =(A2k2 − h−c h
−
v )h

+
c h

−
c . (B2)
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C. HX
X stacking order

For energy spectrum Eγ
µν(k), we have

b3 =0,

b2 =− 2A2k2 −∆2/2− (λ2c + λ2v)− |tcv|2 − |tvc|2,

b1 =−∆(λ2c − λ2v) + τs(λc − λv)(|tcv|2 − |tvc|2),

b0 =A
4k4 + A2k2∆2/2− 2A2k2λcλv

− 2A2k2|tcv||tvc| cosϕ2 +∆4/16

−∆2(λ2c + λ2v)/4 + λ2cλ
2
v

+ τs∆(λc + λv)(|tcv|2 − |tvc|2)/2

+ (∆2/4 + λcλv)(|tcv|2 + |tvc|2) + |tcv|2|tvc|2. (C1)

The H-stacked BL TMDs satisfy both center-inversion symmetry and time-reversal sym-

metry, which means τs disappears in Eq. (C1). Thus, |tcv| = |tvc| (see the fourth line of

b0).

For wavefunction at (µ, ν, τ, s, k) states with Eγ
µν(k),

c1 =A
2k2h+c tcv + A2k2h−c tvc − h−c tcv|tvc|2 − (A2k2 − h−c h

−
v )h

+
c tcv,

c2 =− Ak−τ h
+
c h

−
c tcv − Ak−τ h

−
c h

−
c tvc,

c3 =Ak
−
τ (−A2k2 + h−c h

−
v + tcvt

∗
vc)h

−
c ,

c4 =(A2k2 − h−c h
−
v )h

+
c h

−
c + h−c h

−
c |tvc|2. (C2)
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D. RM
M stacking order

For energy spectrum Eγ
µν(k), we have

b3 =− 2τs(λc + λv),

b2 =− 2A2k2 −∆2/2− τs∆(λc − λv) + 4λcλv + (λ2c + λ2v)− |tcc|2 − |tvv|2,

b1 =2A2k2τs(λc + λv) + τs∆2(λc + λv)/2 + ∆(λ2c − λ2v)

− 2τs(λ2cλv + λcλ
2
v)− [∆− 2τsλv]|tcc|2 + [∆ + 2τsλc]|tvv|2,

b0 =A
4k4 + A2k2∆2/2 + A2k2τs∆(λc − λv)− 2A2k2λcλv +∆4/16

− 2A2k2|tcc||tvv| cosϕ1 + τs∆3(λc − λv)/4 + ∆2(λ2c + λ2v)/4

−∆2λcλv − τs∆(λ2cλv − λcλ
2
v) + λ2cλ

2
v + τs∆(λv|tcc|2 − λc|tvv|2)

− (∆2/4 + λ2v)|tcc|2 − (∆2/4 + λ2c)|tvv|2 + |tcc|2|tvv|2. (D1)

For wavefunction at (µ, ν, τ, s, k) states with Eγ
µν(k),

c1 =− A3k2k−τ tcc + Ak−τ (A
2k2 − h+c h

+
v )tcc − Ak−τ h

+
c h

+
c tvv,

c2 =A
2k2h+c tcc + (h+c h

+
c − |tcc|2)h+c tvv,

c3 =Ak
−
τ (−A2k2 + h+c h

+
v + t∗cctvv)h

+
c ,

c4 =(A2k2 − h+c h
+
v )h

+
c h

+
c + h+c h

+
v |tcc|2. (D2)

E. RM
X stacking order

For energy spectrum Eγ
µν(k), we have

b3 =− 2τs(λc + λv),

b2 =− 2A2k2 −∆2/2− τs∆(λc − λv) + 4λcλv + (λ2c + λ2v)− |tvc|2,

b1 =2A2k2τs(λc + λv) + τs∆2(λc + λv)/2 + ∆(λ2c − λ2v)

− 2τs(λ2cλv + λcλ
2
v) + τs(λc + λv)|tvc|2,

b0 =A
4k4 + A2k2∆2/2 + A2k2τs∆(λc − λv)− 2A2k2λcλv

+∆4/16 + τs∆3(λc − λv)/4−∆2λcλv +∆2(λ2c + λ2v)/4

− τs∆(λ2cλv − λcλ
2
v) + λ2cλ

2
v + τs∆(λc − λv)|tvc|2/2

+ (∆2/4− λcλv)|tvc|2. (E1)
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For wavefunction at (µ, ν, τ, s, k) states with Eγ
µν(k),

c1 =A
2k−τ k

−
τ h

+
c tvc − h+c tcv|tvc|2,

c2 =− Ak−τ h
+
c h

+
c tvc,

c3 =Ak
−
τ (−A2k2 + h+c h

+
v )h

+
c ,

c4 =(A2k2 − h+c h
+
v )h

+
c h

+
c + h+c h

+
c |tvc|2. (E2)

F. RX
M stacking order

For energy spectrum Eγ
µν(k), we have

b3 =− 2τs(λc + λv),

b2 =− 2A2k2 −∆2/2− τs∆(λc − λv) + 4λcλv + (λ2c + λ2v)− |tcv|2,

b1 =2A2k2τs(λc + λv) + τs∆2(λc + λv)/2 + ∆(λ2c − λ2v)

− 2τs(λ2cλv + λcλ
2
v) + τs(λc + λv)|tcv|2,

b0 =A
4k4 + A2k2∆2/2 + A2k2τs∆(λc − λv)− 2A2k2λcλv

+∆4/16 + τs∆3(λc − λv)/4−∆2λcλv +∆2(λ2c + λ2v)/4

− τs∆(λ2cλv − λcλ
2
v) + λ2cλ

2
v + τs∆(λc − λv)|tcv|2/2

+ (∆2/4− λcλv)|tcv|2. (F1)

Through replacing |tvc| in Eq. (E1) with |tcv|, we can get Eq. (F1). If |tcv| = |tvc|, the band
energies of RM

X and RX
M are the same. As RM

X is the result of operating out-of-plane mirror

symmetry on RX
M, their band energies should be the same. Hence, |tvc| of RM

X is equal to

|tcv| of RX
M.

For wavefunction at (µ, ν, τ, s, k) states with Eγ
µν(k),

c1 =A
2k2h+c tcv − (A2k2 − h+c h

+
v )h

+
c tcv,

c2 =− Ak+τ h
+
c h

+
c tcv,

c3 =Ak
−
τ (−A2k2 + h+c h

+
v )h

+
c ,

c4 =(A2k2 − h+c h
+
v )h

+
c h

+
c . (F2)
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G. The allowed tµµ′ in six types of homo-BL TMDs

Following Refs. [6, 35], here we present the derivations to evaluate interlayer hopping

matrix element given as tµµ′ = ⟨Ψu
µ(r)|Hint|Ψl

µ
′ (r)⟩, where Hint is the interlayer hopping

Hamiltonian between the two layers and is invariant under the C3 rotation for six symmetric

configurations of H and R staking. Ψ
u(l)
τµ (r) denotes the Bloch states at the K/K

′

points and

u (l) denote the upper (lower) layer, which are eigenstates of Ĉ3,

Ĉ3Ψ
u
τµ(r) = eiϵτφ

u

γumΨ
u
τµ(r),

Ĉ3Ψ
l
τµ(r) = eiτφ

l

γlmΨ
l
τµ(r), (G1)

where γmu(l)
= e−i2mu(l)π/3 is the eigenvalue of Ĉ3 operating on atomic orbits, mu(l) = 0 for

Ψ
u(l)
τc (r), mu = 2ϵτ for Ψu

τv(r), and ml = 2τ for Ψl
τv(r). φ

u(l) depends on rotation centers at

M atom (M), X atom (X) or hollow center (h),

φu(l) =



























0, for M,

2π

3
, for X,

−2π

3
, for h.

(G2)

Thus,

tµµ′ = ⟨Ψu
τµ(r)|Ĉ3

−1
Ĉ3HintĈ3

−1
Ĉ3|Ψl

τµ
′ (r)⟩ = ⟨Ĉ3Ψ

u
τµ(r)|Hint|Ĉ3Ψ

l
τµ

′ (r)⟩ = eiτ(φ
l−ϵφu)γ∗mu

γml
tµµ′ .

Consequently, tµµ′ ̸= 0 can only exist as eiτ(φ
l−ϵφu)γ∗mu

γml
= 1. For example, for HM

X stacking

(ϵ = −1), its rotation center of upper (lower) layer is M (X), corresponding to φu = 0 and

φl = 2π/3. Therefore, eiτ(φ
l−ϵφu)γ∗mu

γml
= e−2πiτ = 1 can only be satisfied by Ψu

τv(r) and

Ψl
τv(r), namely only tvv is allowed in this stacking order.
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