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The recent development in the field of two-dimensional magnetic materials urges reliable theoretical
methodology for determination of magnetic properties. Among the available methods, ab initio four-state energy
mapping based on density functional theory stands out as a powerful technique to calculate the magnetic
exchange interaction in the Heisenberg spin model. Although the required formulas were explained in earlier
works, the considered Hamiltonian in those studies always corresponded to the specific case that the off-diagonal
part of J matrix is antisymmetric, which may be misleading in other cases. Therefore, using the most general
form of the Heisenberg spin Hamiltonian, we here derive the generic formulas. With a proper choice of four
different magnetic states, a single formula governs all elements of the exchange interaction matrix for any
considered pair of spin sites.
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I. INTRODUCTION

After the experimental realization of the ferromagnetic
monolayer of CrI3 in 2017 [1], two-dimensional (2D) mag-
netic materials have been at the very forefront of both the-
oretical [2–5] and experimental [6–8] investigations. Previ-
ously, 2D ferromagnetism was not deemed possible due to
the Mermin-Wagner theorem [9], which states that long-range
order cannot survive temperature fluctuations in an isotropic
system. In monolayer CrI3 and in different 2D magnetic
materials reported later [2,8], the magnetic anisotropy due to
the strong spin-orbit coupling removes the Mermin-Wagner
restriction and allows the material to retain the magnetization
at nonzero temperature.

On the other hand, strong spin-orbit coupling also insti-
gates antisymmetric magnetic exchange interaction between
the spin sites, the so-called Dzyaloshinskii-Moriya interaction
(DMI) [10,11]. Contrary to the usual magnetic exchange
interaction which favors magnetic moments that are parallel or
antiparallel, DMI forces the magnetic moments to be orthog-
onal. DMI is observed in the presence of structural anisotropy
in the system at low temperatures and is responsible for the
emergence of nontrivial spin textures, such as skyrmionic
ones [12,13].

With such prominent recent advances in the field of 2D
magnetism and the emerging significance of the microscopic
interactions, such as DMI, for the overall magnetic proper-
ties, the need for reliable theoretical frameworks is growing
rapidly.

The calculation of the microscopic magnetic parameters
using methods based on mapping between the quantum many-
body Hamiltonian and the simpler, classical spin Hamilto-
nian is already common [3,4,7,14–19]. Mapping between two
spectra can roughly be grouped into two categories. The first
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category maps (the first or second) derivatives of the total
energies between two Hamiltonians [17–19], where deriva-
tives are taken with respect to the polar and/or azimuthal
angles of each spin vector. The second category maps the
total energies between two Hamiltonians [3,4,7,14–16]. These
methods, in general, rely on obtaining the energies of several
alternative magnetic configurations and mapping those ener-
gies to the specific Hamiltonian that governs the considered
system. Such energy mapping produces a system of equations
to be solved by algebraic methods in order to obtain the
magnetic exchange parameters. Since algebraic manipulations
are, in general, much less demanding than dealing with the
derivatives, most recent studies employed methods based on
the second type of energy mapping. Among such methods,
the four-state methodology (4SM), which was presented by
Xiang et al. [15,16], stands out as particularly effective [5,7].
One should note, however, that 4SM, although widely used in
the analysis of 2D magnetic crystal analysis, is not limited to
2D crystals exclusively. As explained in Refs. [15,16], 4SM
can be employed in any magnetic system.

The most important advantage of the 4SM method com-
pared to methods based on density functional theory (DFT)
and energy mapping used previously [3,4,14] is that all pa-
rameters of the Heisenberg spin Hamiltonian are calculated on
an atomic level, i.e., pair- or sitewise, instead of the collective
spin-state considerations leading to quasiaveraged values of
the microscopic magnetic exchange parameters. Furthermore,
Refs. [15,16] also presented the technique to calculate DMI
parameters in detail. As a consequence of the recent advance
in field of 2D magnetism, the impact of studies involving
magnetic chirality is growing rapidly [5,20,21]. However, in
both Refs. [15,16], the considered spin Hamiltonian consisted
of an exchange interaction matrix where the off-diagonal
elements were antisymmetric. In Ref. [22] [Eq. (2c)] and in
Ref. [23], one can find that the antisymmetric spin Hamilto-
nian is considered a general one. This is not correct, and in
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later studies [5,20,21], such a consideration was shown not to
be compatible with all materials, although in a subtle way, i.e.,
without any specific comment on that matter.

To remove any possible ambiguity in the procedure to
properly calculate off-diagonal exchange elements and DMI
components, here, we rewrite the methodology by considering
the truly general Heisenberg spin Hamiltonian, without any
constraint. In a general case, one should use the same formulas
for all exchange parameters Jαβ (without an extra minus sign
in any case) and then calculate DMI components in, e.g.,
the Cartesian frame of reference as Dx = 1

2 (Jyz − Jzy), Dy =
1
2 (Jzx − Jxz ), and Dz = 1

2 (Jxy − Jyx ). In addition, we further
derive the formulas for single-ion anisotropy (SIA) parame-
ters. We also discuss the formation of the SIA matrix in the
presence of rotational symmetry as found in 2D and quasi-2D
materials (such as few-layer 2D materials and layered bulk
materials), where it is clearly possible to distinguish the in-
plane directions from the out-of-plane direction. However,
different constraints for the SIA matrix might be imposed
by different symmetry operations, even in three-dimensional
crystals, such as that considered by Xu et al. [20] for the rota-
tion around the (111) direction. Although 2D magnetism was
the core motivation for this paper, the formulas presented here
are applicable to a magnetic system without any structural
constraint.

This paper is organized as follows. In Sec. II, starting from
the most general form of the spin Hamiltonian, we rederive the
formulas that allow one to calculate the exchange parameters
between different spin sites, as presented in Sec. II A, as
well as the single-ion anisotropy, as presented in Sec. II B.
In Sec. III we exemplify the 4SM methodology for the case
of monolayer CrI3, with matrix elements extracted from DFT
calculations. We present the results obtained using our derived
formulas and the results obtained by blindly following the
formulas from Refs. [15,16], and we illustrate in detail how
one can get misled in the formalism and obtain erroneous con-
clusions about the physics of magnetic systems. The summary
of our calculations and findings is given in Sec. IV.

II. REDERIVATION OF THE FORMULAS

In this section, we present the derivation of the formulas for
exchange J and single-ion anisotropy A parameters, starting
from the general quadratic Heisenberg spin Hamiltonian for a
magnetic system given as

H = HEX + HSIA,

H =
∑
i< j

�Si · Ji j · �S j +
∑

i

�Si · Aii · �Si. (1)

The quadratic spin Hamiltonian is the simplest formal-
ism that successfully captures the magnetic properties of the
crystal. Although the terms that include more than two spins
can be taken into account, their contribution enters as higher-
order perturbations and hence is always smaller than that of
quadratic terms. We also note that Hamiltonians with terms
higher than quadratic would require a departure from the
four-state methodology towards an eight- or sixteen-state one
in order to have a sufficient number of equations to be able to
reduce them to only the terms of interest, as demonstrated in
this paper.

The first term describes the magnetic exchange interaction
between the ith and jth spin sites, with Ji j being a 3 × 3
matrix. In this study, spin is considered a classical vector
�Si = (Sx

i , Sy
i , Sz

i ), where x, y, and z are chosen Cartesian
coordinates. For instance, the interaction between Sy

i and Sz
j is

determined by Jyz
i j or, equivalently, by Jzy

ji (≡ Jyz
i j ). The details

of the methodology to obtain each element of the exchange
matrix are given in Sec. II A.

The second term in the Hamiltonian describes the inter-
action between the spin components of a single ion. Three-
dimensional consideration of spin ensures that Aii is a 3 × 3
matrix which consists of the elements Aαβ

ii (α and β are
Cartesian coordinates). The process to determine its elements
is explained in Sec. II B.

A. Exchange parameter J

We start with the exchange term. In order to determine
the magnetic exchange interaction between two neighboring
spins, one needs to calculate all nine parameters (nine ele-
ments of the exchange interaction matrix Ji j). The exchange
part of the general Hamiltonian can be written in the explicit
form

HEX =
∑
i< j

�Si · Ji j · �S j

=
∑
i< j

[
Sx

i · Jxx
i j · Sx

j + Sx
i · Jxy

i j · Sy
j + Sx

i · Jxz
i j · Sz

j

+ Sy
i · Jyx

i j · Sx
j + Sy

i · Jyy
i j · Sy

j + Sy
i · Jyz

i j · Sz
j

+ Sz
i · Jzx

i j · Sx
j + Sz

i · Jzy
i j · Sy

j + Sz
i · Jzz

i j · Sz
j

]
. (2)

One should note that in general Jαβ
i j �= Jβα

i j (α, β =
x, y, z; α �= β), although the symmetry of a system might
impose equality. Next, we arbitrarily choose two spin sites
(labeled i = 1 and j = 2). The contribution of the chosen pair
to the general Hamiltonian can be written as

H = �S1 · J12 · �S2 +
∑
j �=2

�S1 · J1 j · �S j +
∑
i �=1

�Si · Ji2 · �S2

+
∑

i �=1, j �=2

�Si · Ji j · �S j + �S1 · A11 · �S1 + �S2 · A22 · �S2

+
∑
i �=1,2

�Si · Aii · �Si. (3)

The decomposition of the matrices into Cartesian components
results in

H =
∑
α,β

Sα
1 · Jαβ

12 · Sβ

2 +
∑
j �=2

∑
α,β

Sα
1 · Jαβ

1 j · Sβ
j

+
∑
i �=1

∑
α,β

Sα
i · Jαβ

i2 · Sβ

2 +
∑

i �=1, j �=2

∑
α,β

Sα
i · Jαβ

i j · Sβ
j

+
∑
α,β

Sα
1 · Aαβ

11 · Sβ

1 +
∑
α,β

Sα
2 · Aαβ

22 · Sβ

2

+
∑
i �=1,2

∑
α,β

Sα
i · Aαβ

ii · Sβ
i . (4)
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Here, the only thing left is to choose which parameter Jαβ

12
from the 3 × 3 matrix J12 one wants to calculate. Without
the loss of generality, we choose α to be x and β to be
z. We present the derivation and formula only for the Jxz

12
matrix element, as all other elements can be determined in
the same manner. The reason for the particular choice of this
matrix element lies in the fact that it is connected to the
y component of the DMI vector. In the paper where 4SM
was introduced [16], there is an additional minus sign in the
formula for the mentioned y component, which is correct for
the antisymmetric Hamiltonian considered in that paper, but
not for a general Hamiltonian. In order to isolate Jxz

12, one
needs to obtain the energies of four different magnetic states
of the lattice as follows:

State 1 : �S1 = (+S, 0, 0), �S2 = (0, 0,+S),

State 2 : �S1 = (+S, 0, 0), �S2 = (0, 0,−S),

State 3 : �S1 = (−S, 0, 0), �S2 = (0, 0,+S),

State 4 : �S1 = (−S, 0, 0), �S2 = (0, 0,−S),

and for all the rest, �Si �=1,2 = (0,+S, 0) or �Si �=1,2 = (0,−S, 0)
for all four states. The four states give four energies:

E1 = S · Jxz
12 · S +

∑
j �=2

S · Jxy
1 j · S +

∑
i �=1

S · Jyz
i2 · S

+
∑

i �=1, j �=2

S · Jyy
i j · S + S · Axx

11 · S + S · Azz
22 · S

+
∑
i �=1,2

S · Ayy
ii · S, (5)

E2 = −S · Jxz
12 · S +

∑
j �=2

S · Jxy
1 j · S −

∑
i �=1

S · Jyz
i2 · S

+
∑

i �=1, j �=2

S · Jyy
i j · S + S · Axx

11 · S + S · Azz
22 · S

+
∑
i �=1,2

S · Ayy
ii · S, (6)

E3 = −S · Jxz
12 · S −

∑
j �=2

S · Jxy
1 j · S +

∑
i �=1

S · Jyz
i2 · S

+
∑

i �=1, j �=2

S · Jyy
i j · S + S · Axx

11 · S + S · Azz
22 · S

+
∑
i �=1,2

S · Ayy
ii · S, (7)

and

E4 = S · Jxz
12 · S −

∑
j �=2

S · Jxy
1 j · S −

∑
i �=1

S · Jyz
i2 · S

+
∑

i �=1, j �=2

S · Jyy
i j · S + S · Axx

11 · S + S · Azz
22 · S

+
∑
i �=1,2

S · Ayy
ii · S. (8)

We explicitly write resultant energy expressions in order to
show why these four states are necessary and how they serve
to determine the sought-for parameter. In order to extract only

the first term one needs to form pairs of equations where
the first term has the same sign, i.e., to pair the equations
(E1, E4) and (E2, E3). Equations within one pair should be
summed to cancel out the interaction of each of the two ions
of interest with the “sea” of others, while these sums of two
pairs of equations should be subtracted from one another
in order to cancel out the interactions between and on the
other ions. Therefore, it is necessary to combine all four
independent configurations as described above to isolate the
desired interaction parameter.

After subtracting the energies corresponding to states 2 and
3 from the sum of energies corresponding to states 1 and 4
and canceling all the terms with opposite signs and the same
magnitude, the only noncanceled term is proportional to the
parameter we intended to extract. This manipulation results in

E1 + E4 − E2 − E3 = 4S2 · Jxz
12,

where it is trivial now to extract Jxz
12, i.e.,

Jxz
12 = E1 + E4 − E2 − E3

4S2
. (9)

It is worth mentioning that in the special case when the off-
diagonal elements are antisymmetric, i.e., Jαβ = −Jβα = Dγ ,
where (α, β, γ ) are (x, y, z) or (y, z, x) or (z, x, y), Eq. (9)
from this derivation reduces to Eq. (A5) from Ref. [16].

We want to point out that �S1 and �S2 are alternating in par-
allel to the x and z directions, respectively, which corresponds
to the Jxz

12 element and �Si �=1,2 being parallel or antiparallel to
the y direction. In the case of the calculation of the diagonal
elements, i.e., Jxx

12 , Jyy
12 , or Jzz

12, both �S1 and �S2 are chosen to be
alternating in parallel to x, y, and z, respectively, and �Si �=1,2 are
chosen to be perpendicular to them.

B. Single-ion anisotropy A

In order to complete the analysis, we also consider SIA
parameters which govern the interaction between the spin
components of the single ion. Unlike Ji j , SIA matrix Aii has
to be symmetric, regardless of the structural symmetry. This
is a consequence of the fact that the interaction between, e.g.,
x and z components is physically the same interaction as be-
tween z and x components on the same spin site i. In addition,
based on the relation S2

i = S2 = (Sx
i )2 + (Sy

i )2 + (Sz
i )2, each

component can be represented through the total spin S and
two other components. Due to everything stated above, in
general case, for the off-diagonal elements of the SIA matrix,
one needs to calculate only three upper (or lower) elements.
For the diagonal element of the SIA matrix, it is sufficient
to obtain two reduced terms for the diagonal part instead of
all three elements separately. First of all, we present the SIA
Hamiltonian in explicit form:

HSIA =
∑

i

�Si · Aii · �Si

=
∑

i

[
Sx

i · Axx
ii · Sx

i + Sx
i · Axy

ii · Sy
i + Sx

i · Axz
ii · Sz

i

+ Sy
i · Ayx

ii · Sx
i + Sy

i · Ayy
ii · Sy

i + Sy
i · Ayz

ii · Sz
i

+ Sz
i · Azx

ii · Sx
i + Sz

i · Azy
ii · Sy

i + Sz
i · Azz

ii · Sz
i

]
. (10)
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In order to obtain the elements of the SIA matrix, one can use
the same idea as for the exchange matrix elements with small
adaptations. The first adaptation is that one needs to choose
the spin site, not the pair. The second adaptation is that one
should use different procedures to obtain the off-diagonal and
diagonal elements.

1. Off-diagonal elements of the SIA matrix

An off-diagonal element of the SIA matrix describes the
interaction between different Cartesian components of the
spin at the chosen site (we take site i = 1 without loss of
generality). Namely, the elements are Axy

11 = Ayx
11, Axz

11 = Azx
11,

and Ayz
11 = Azy

11. The spin vector at that site should lie on
the plane determined by the Cartesian components whose
interaction one wants to investigate, making a 45◦ angle with
the two axes. All the other spins should be chosen along the
complementary Cartesian axis. This means that in order to
conduct 4SM using the DFT calculation for the Axy

11 parameter,
one should choose the four states in the following form:

State 1 : �S1 = (+S
√

2/2,+S
√

2/2, 0),

State 2 : �S1 = (+S
√

2/2,−S
√

2/2, 0),

State 3 : �S1 = (−S
√

2/2,+S
√

2/2, 0),

State 4 : �S1 = (−S
√

2/2,−S
√

2/2, 0),

and for all the rest, �Si = (0, 0,+S) for all states. As was the
case with exchange interaction, all four independent config-
urations need to be combined in order to extract only the
desired parameter. The same paired energies will be summed
in order to cancel out interactions of the desired site with the
others, and then those sums will be subtracted from each other
to cancel out the same additive constant appearing in all four
equations.

The four states give four energies:

E1 =
∑
j>1

S
√

2/2 · Jxz
1 j · S +

∑
j>1

S
√

2/2 · Jyz
1 j · S

+
∑

i �=1, j>i

S · Jzz
i j · S + S2

2
· Axx

11 + S2

2
· Axy

11

+ S2

2
· Ayx

11 + S2

2
· Ayy

11 +
∑
i �=1

S · Azz
ii · S, (11)

E2 =
∑
j>1

S
√

2/2 · Jxz
1 j · S −

∑
j>1

S
√

2/2 · Jyz
1 j · S

+
∑

i �=1, j>i

S · Jzz
i j · S + S2

2
· Axx

11 − S2

2
· Axy

11

− S2

2
· Ayx

11 + S2

2
· Ayy

11 +
∑
i �=1

S · Azz
ii · S, (12)

E3 = −
∑
j>1

S
√

2/2 · Jxz
1 j · S +

∑
j>1

S
√

2/2 · Jyz
1 j · S

+
∑

i �=1, j>i

S · Jzz
i j · S + S2

2
· Axx

11 − S2

2
· Axy

11

− S2

2
· Ayx

11 + S2

2
· Ayy

11 +
∑
i �=1

S · Azz
ii · S, (13)

and

E4 = −
∑
j>1

S
√

2/2 · Jxz
1 j · S −

∑
j>1

S
√

2/2 · Jyz
1 j · S

+
∑

i �=1, j>i

S · Jzz
i j · S + S2

2
· Axx

11 + S2

2
· Axy

11

+ S2

2
· Ayx

11 + S2

2
· Ayy

11 +
∑
i �=1

S · Azz
ii · S. (14)

After adding the energies for states 1 and 4 and subtracting
from energies corresponding to states 2 and 3, the only term
remaining is Axy

11 = Ayx
11:

E1 + E4 − E2 −E3 = 2S2 · Axy
11 + 2S2 · Ayx

11 = 4S2 · Axy
11;

hence, the single-ion anisotropy parameter is obtained by the
formula

Axy
11 = Ayx

11 = E1 + E4 − E2 − E3

4S2
. (15)

The same equation (with the corresponding energies) can be
written for all off-diagonal terms in the SIA matrix.

2. Diagonal elements of the SIA matrix

As we pointed out above, in order to describe the diagonal
elements of the SIA matrix, it is sufficient to calculate two re-
duced terms of the diagonal elements due to the fact that (Sx

i )2

can be written as (Sx
i )2 = (Si )2 − (Sy

i )2 − (Sz
i )2. According to

the relation, the diagonal part of the SIA Hamiltonian can be
written as follows:

Hdia
SIA = Sx

1Axx
11Sx

1 + Sy
1Ayy

11Sy
1 + Sz

1Azz
11Sz

1

= Axx
11S2

1 + (
Ayy

11 − Axx
11

)(
Sy

1

)2

+ (
Azz

11 − Axx
11

)(
Sz

1

)2
. (16)

The term Axx
11S2

1 is simply an additive constant. The terms
Ayy

11 − Axx
11 and Azz

11 − Axx
11 govern all information of the diag-

onal part of the SIA matrix. Here, we present the extraction
of the parameter Ayy

11 − Axx
11 as an example in which the same

strategy is valid to determine Azz
11 − Axx

11 as well. The four
states to be obtained are as follows:

State 1 : �S1 = (0,+S, 0),

State 2 : �S1 = (0,−S, 0),

State 3 : �S1 = (+S, 0, 0),

State 4 : �S1 = (−S, 0, 0),

and for all the rest, �Si �=1 = (0, 0,+S) for all states. The
energies corresponding to the chosen states are

E1 =
∑
j>1

S · Jyz
1 j · S +

∑
i �=1, j>i

S · Jzz
i j · S

+ S · Ayy
11 · S +

∑
i �=1

S · Azz
ii · S, (17)
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E2 = −
∑
j>1

S · Jyz
1 j · S +

∑
i �=1, j>i

S · Jzz
i j · S

+ S · Ayy
11 · S +

∑
i �=1

S · Azz
ii · S, (18)

E3 =
∑
j>1

S · Jxz
1 j · S +

∑
i �=1, j>i

S · Jzz
i j · S

+ S · Axx
11 · S +

∑
i �=1

S · Azz
ii · S, (19)

and

E4 = −
∑
j>1

S · Jxz
1 j · S +

∑
i �=1, j>i

S · Jzz
i j · S

+ S · Axx
11 · S +

∑
i �=1

S · Azz
ii · S. (20)

Here, the form of equations is different from those in ex-
change interaction and off-diagonal SIA parameters. There-
fore, the pairing of equations needed to extract the sought-for
parameter is different, but the reasons are exactly the same:
summation of energies within the pair of equations will cancel
the interaction of the desired site with the other sites, and
subtraction between pair sums of equations will cancel the
additive constant originating from the other sites. In this case,
the suitable pairs are (E1, E2) and (E3, E4). After summing the
energies of states 1 and 2 and subtracting those of states 3 and
4, one obtains the relation

E1+ E2 − E3 − E4 = 2S2 · Ayy
11 − 2S2 · Axx

11,

which results in the formula

Ayy
11 − Axx

11 = E1 + E2 − E3 − E4

2S2
. (21)

In general material analysis, one needs to find all five ele-
ments of all the SIA matrices. Here, we extend our discussion
on SIA for 2D and quasi-2D materials which exhibit three-,
four-, and sixfold rotation symmetry around the out-of-plane
axis. In such a case, SIA of the spin site can be described by a
single parameter instead of a matrix.

3. Symmetry-imposed constraint in SIA of 2D
and quasi-2D materials

The constraints in the SIA matrix are a direct consequence
of the symmetry of the crystal. In the presence of three-, four-,
or sixfold rotation symmetry around the out-of-plane axis in
a 2D or quasi-2D material, all the elements of each matrix
are equal to zero, except Azz

11 − Axx
11. Here, we show how the

structural symmetry affects SIA of a spin site. The symmetry
can be described by the transformation matrix. Let B be the
transformation of the form

Anew = B · Aold · BT . (22)

Moreover, if the coordinate transformation B is a symmetry
operation of the considered system, then Anew ≡ Aold.

In this particular section, we discuss coordinate transfor-
mation under rotation of the system. This means that matrix
B is actually the rotation matrix around the z axis—the axis

orthogonal to the layer(s) of the (quasi-)2D material. We
start from the general rotation matrix (any arbitrary angle
θ ) and later choose only four possible values compatible
with the translation symmetry of the crystal systems, i.e.,
π, 2π

3 , π
2 , π

3 , corresponding to two-, three-, four-, and sixfold
rotation symmetries, respectively.

The rotation by angle θ around the z axis is given in its
matrix representation as

Rz(θ ) =
⎡
⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦. (23)

Now, after using A = Rz(θ ) · A · RT
z (θ ) on each matrix ele-

ment, one ends up with three systems of equations. Namely,
the matrix elements with indices 11 (22) and 12 (21) yield the
following system of equations:

(Ayy − Axx ) · sin2 θ + 2Axy · sin θ cos θ = 0,

(Ayy − Axx ) · sin θ cos θ − 2Axy · sin2 θ = 0. (24)

The elements with indices 13 (31) and 23 (32) result in the
equations

Axz · (cos θ − 1) + Ayz · sin θ = 0,

−Axz · sin θ − Ayz · (cos θ − 1) = 0, (25)

while equality of the elements with indices 33 yields the trivial
relation Azz = Azz.

One can easily obtain determinants of the 2 × 2 systems 24
and 25, D∗ and D∗∗, respectively, as

D∗ = − sin2 θ,

D∗∗ = 2(1 − cos θ ). (26)

It is well known that a homogeneous system has a non-
trivial solution if and only if the determinant of the system
is equal to zero. It is obvious that in the case of three-,
four-, and sixfold rotational symmetry, both determinants are
different from zero, resulting in only trivial solutions for the
corresponding systems of equations. This means that if three-,
four-, or sixfold rotational symmetry around the out-of-plane
axis is present in the system, the only element of the SIA
matrix allowed to be nonzero is Azz − Axx.

This makes the computation of the SIA part of the general
spin Hamiltonian parameters five times less demanding in the
case of three-, four-, and sixfold symmetry in 2D materials.
This is due to the fact that one needs to find only one SIA
matrix element, instead of five, as is the case in the most
general computation, when none of the mentioned symmetries
are a priori present.

III. EXAMPLE OF MONOLAYER CrI3

In this section we present the values obtained for the
exchange matrix parameters, as well as the SIA matrix pa-
rameters for a pristine monolayer of CrI3, using the DFT
methodology described in the Appendix, in combination with
calculations described in Sec. II. We present results calculated
by applying the formulas given in this study, together with
the results obtained by directly applying the formulas given
in the Ref. [16]. Furthermore, we comment on the differences
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FIG. 1. Pristine monolayer CrI3 and its 2 × 2 × 1 supercell
(black solid line). Magnetic Cr atoms are colored yellow and labeled,
while nonmagnetic I atoms are colored purple. Three Cr-Cr bonds
connected with the threefold in-plane symmetry are shown as blue,
green, and red bars with the respective magnetic exchange matrices.

between the formulas and potential misconceptions that could
arise.

We present the values of the exchange parameters between
Cr atoms labeled 2 and 3 in Fig. 1. The exchange interaction
matrix between any other nearest-neighbor pair in the crystal
can be calculated from the results for the mentioned pair
2-3. Atom pairs 4-1, 8-5, and 6-7 are structurally identical
to pair 2-3; therefore, the matrix parameters are the same
as those of pair 2-3. Exchange matrices for pairs 2-5, 8-3,
4-7, and 6-1, as well as for pairs 1-2, 3-4, 5-6, and 7-8,
can be obtained from the matrix characterizing pair 2-3 by
applying the threefold rotation (around the out-of-plane axis)
operations on the matrix corresponding to pair 2-3. Regarding
the single-ion anisotropy, all atoms are described with a single
matrix in the case of pristine CrI3. Moreover, the only nonzero
SIA matrix element is Azz − Axx (for details, see Sec. II B 3).

Following the formulas given in this paper, we found all
nine elements of the matrix J23. The total magnetic moment
of monolayer CrI3 in its ground state is found to be 3μB

per Cr atom, which is consistent with previous studies [4,5].
Therefore, we use S = 3/2 everywhere in the formulas. The
diagonal elements are Jxx

23 = −4.12 meV, Jyy
23 = −4.79 meV,

and Jzz
23 = −4.63 meV, and off-diagonal elements are Jxy

23 =
Jyx

23 = −0.58 meV, Jzx
23 = Jxz

23 = 0.74 meV, and Jyz
23 = Jzy

23 =
−0.40 meV. Obviously, matrix J23 is symmetric. Moreover,
exchange matrices of all other pairs are symmetric. This
means that the antisymmetric exchange interaction, i.e., DMI,
between any two nearest-neighbor spin sites is equal to zero.
This is in agreement with Ref. [10], which states that if an
inversion center is present in the middle between two spin
sites, the DMI between them has to be zero. The same con-
clusion is reached in Ref. [5] as well. Moreover, one notices
the qualitative similarity and consistent quantitative difference
between parameters calculated in Ref. [5] and the ones re-
ported here. After aligning the global Cartesian coordinate
systems from two studies, one realizes that the ratios of the
corresponding exchange parameters are consistently between
2 and 2.5, which we believe is mainly the consequence of
different exchange-correlation energy functionals.

Although the four-state analysis in Ref. [5] was done by
following the main idea of Ref. [16], the correct formula for

the Jxy parameter in Ref. [5] is given only in the supplementary
material. However, no comment on the generalization of the
procedure from Ref. [16] is presented there; on the contrary, it
is stated that a detailed analysis is readily given in Ref. [16],
and in the supplementary material of Ref. [5] the main idea of
the method is briefly introduced. In other words, the ambiguity
of the method remained unresolved. To illustrate the impact
that direct use of the formulas from Ref. [16] could have,
we present below the results obtained in that manner for
monolayer CrI3. Formulas for the off-diagonal elements of
the exchange matrix yield Dz

23 = −0.58 meV, Dy
23 = −0.74

meV, and Dx
23 = −0.40 meV. This is in contradiction to the

symmetry consideration by Moriya [10]. Furthermore, this
error is even more dangerous than it may seem since the
approach gives zero average DMI experienced by each site,
which is actually correct! For example, focusing on site 2 and
calculating Dz

12 and Dz
25 using the formulas from Ref. [16],

one finds that together with Dz
23 they add up to zero, i.e., Dz

12 +
Dz

23 + Dz
25 = 0 (the same as for the x and y components).

This leads to an incorrect conclusion that DMI exists on the
pair level (between two spin sites) in pristine monolayer CrI3

but is then canceled out by different pair contributions. The
influence of these and similar errors could progressively grow
in the future with the strongly increasing number of works
on 2D magnetic materials. Misconceptions at the onset of
a new and growing field must be avoided, and our above
considerations are in service of exactly that.

Regarding the SIA matrix, since spin sites in monolayer
CrI3 exhibit threefold rotation symmetry around the out-of-
plane axis, it follows that the only nonzero SIA parameter
is Azz

11 − Axx
11, and it is equal to −0.08 meV in our case. A

negative value implies that the SIA favors the out-of-plane
direction instead of the in-plane one.

IV. SUMMARY AND CONCLUSIONS

To summarize, starting from the general Heisenberg spin
Hamiltonian, we derived the formulas for diagonal and off-
diagonal elements of 3 × 3 matrices governing the magnetic
exchange interaction between two magnetic sites J and single-
ion anisotropy of a single magnetic site A. The formulas are
based on ab initio energetic calculations of the four different
magnetic configurations of the magnetic crystal. The formulas
as previously derived in Refs. [15,16] are not appropriate
for the general case. The generalization provided here is
important and timely due to the recent realization of 2D
ferromagnetism and the gaining momentum of the ab initio
approach to magnetic systems. Otherwise, the general use of
nongeneralized formulas may result in incorrect conclusions,
e.g., about the existence of DMI between the magnetic sites
of the perfectly symmetric lattice of CrI3.

In order to prevent researchers from misusing the formulas,
here, we presented the general and complete set of equations
that is applicable to any magnetic crystal. The general formula
for each element of the exchange matrix J is in the form

Jαβ
i j = E1 + E4 − E2 − E3

4S2
, (27)

where i and j are indices for different magnetic sites and α

and β correspond to two of the three Cartesian coordinates.
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E1−4 are the energies of the four states corresponding to the
spins of the ith and jth sites (Si and S j) aligning parallel to
the directions of ±α and ±β, combined with the alignment of
Sothers �=i, j with the third Cartesian axis (�= α, β).

The formulas for the off-diagonal elements (α �= β) of A
are of the form

Aαβ
ii = E1 + E4 − E2 − E3

4S2
, (28)

where i is the index of the considered single magnetic site. α

and β correspond to two of the three Cartesian coordinates.
E1−4 are the energies of the four states specified as Si lying in
the αβ plane and making a 45◦ angle with α, β; −α, β; α,−β;
and −α,−β. The spins of other sites Sother �=i point along the
third Cartesian axis. For the diagonal elements (α = β) one
needs to calculate their reduced form:

Aαα
ii − Axx

ii = E1 + E2 − E3 − E4

2S2
, (29)

where α is either y or z. E1−4 are the energies of the four states
of Si pointing along ±α and ±x, with Sother �=i being orthogonal
to both α and x. In addition to the general assessment of
SIA, we present SIA analysis for specifically 2D-like crystals
which exhibit three-, four-, or sixfold rotation symmetry. In
such cases, there are three possible results: (i) the in-plane
anisotropy, where Azz − Axx > 0; (ii) out-of-plane anisotropy,
where Azz − Axx < 0; and (iii) no anisotropy Azz − Axx = 0. In
the last case, SIA is the zero matrix, i.e., Axx = Ayy = Azz = A.
In terms of the total Heisenberg Hamiltonian, SIA is just an
additive constant equal to AS2 and does not influence the
Hamiltonian spectrum.

Finally, the formulas derived here were applied to the pris-
tine crystal of monolayer CrI3. The results are given together
with those obtained by strictly following Refs. [15,16] in
order to illustrate the error one could make if not carefully
applying four-state methodology to the system of interest.
For example, the general formula presented here results in no
DMI between adjacent Cr atoms of monolayer CrI3, which
is consistent with Moriya’s theorem [10], while the direct
application of previously established formulas yields finite
DMI as an erroneous result.

By clearly stating the complete formalism, we hope to
remove any potential doubt or eventual error that might have
arisen in the field. Such error is rather likely when estimating
the off-diagonal exchange parameters, which correspond to
the DMI. In fact the DMI in 2D materials is an entirely

new subject; hence, it is timely and important to clarify and
generalize the relevant formulas and thereby avoid erroneous
results and conclusions at the onset of this exciting field of
research.
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APPENDIX: COMPUTATIONAL DFT METHODOLOGY

For the purposes of applying the formulas derived in this
paper to a specific material, we performed DFT-based calcu-
lations using the Vienna Ab initio Simulation Package (VASP)
[24,25] within the projector augmented-wave [26] method,
with spin-orbit coupling always included. The electron ex-
change and correlation are described as the Perdew-Burke-
Ernzerhof [27] form of the generalized gradient approxima-
tion due to its documented advantages over the local-density
approximation regarding simulations of transition-metal com-
pounds [28]. The 3d5 and 4s1 electrons of the Cr atom [29]
and 5s2 and 5p5 electrons of the I atom were considered as
valence electrons. To construct a 2D crystal structure, we set
a vacuum height of 15 Å. In order to isolate the spin (pair)
site from the neighboring unit cell, a 2 × 2 × 1 supercell was
considered as the unit cell for the four-state calculation, and
a 3 × 3 × 1 k-point sampling was chosen. We have validated
that a 2 × 2 × 1 supercell is large enough to (1) isolate the
desired pair or ion and (2) exclude the influence of further
nearest neighbors, up to the fourth one (i.e., its contribution
remains below 0.01 meV). Note that if one needs to calculate
any other neighbor interaction, one requires a larger unit cell
(e.g., in the case of a second-nearest neighbor one needs at
least a 3 × 3 × 1 supercell). The cutoff energy for a plane
wave basis set was chosen to be 500 eV. The energy conver-
gence criterion was set to 10−5 eV between two successive
iterations. The on-site Coulomb repulsion parameter U was
taken to be 4 eV for magnetic Cr atoms [30] and zero for
I atoms [31]. For the Brillouin zone integration we used
Gaussian smearing of 0.01 meV.
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