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Spin textures in chiral magnetic monolayers with suppressed nearest-neighbor exchange
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1Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
2NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium

3Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901, Recife-PE, Brazil

(Received 16 March 2020; revised manuscript received 5 June 2020; accepted 5 June 2020;
published 18 June 2020)

High tunability of two-dimensional magnetic materials (by strain, gating, heterostructuring, or otherwise)
provides unique conditions for studying versatile magnetic properties and controlling emergent magnetic phases.
Expanding the scope of achievable magnetic phenomena in such materials is important for both fundamental and
technological advances. Here we perform atomistic spin-dynamics simulations to explore the (chiral) magnetic
phases of atomic monolayers in the limit of suppressed first-neighbors exchange interaction. We report the rich
phase diagram of exotic magnetic configurations, obtained for both square and honeycomb lattice symmetries,
comprising coexistence of ferromagnetic and antiferromagnetic spin cycloids, as well as multiple types of
magnetic skyrmions. We perform a minimum-energy path analysis for the skyrmion collapse to evaluate the
stability of such topological objects and reveal that magnetic monolayers could be good candidates to host the
antiferromagnetic skyrmions that are experimentally evasive to date.
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I. INTRODUCTION

Magnetism in two dimensions (2D) has recently drawn
immense attention of both theoretical and experimental re-
search, due to its fundamental significance and promising
technological applications [1,2]. Magnetic 2D atomic crystals
present a diapason of possibilities for controlling magnetic
interactions by different composition and structural arrange-
ments [3–6], as well as engineering techniques [7,8]. The
competition between the magnetic interactions in such 2D ma-
terials, e.g., crystalline anisotropy, exchange, dipole-dipole,
Dzyaloshinskii-Moriya interaction [9,10] (DMI), etc., is likely
to lead to a wide range of physical phenomena and novel
magnetic phases. It is well known that the exchange interac-
tion between neighboring spins of a magnetic system plays a
determinant role in resulting magnetic configurations. Inter-
estingly, the exchange coupling of magnetic monolayers can
be tuned in a multitude of ways. For example, a manganese
monolayer presents ferromagnetic (FM) order when grown on
the (001) surface of tungsten substrate [11], but presents an-
tiferromagnetic (AFM) order when grown on tungsten (110)
[12]. Reference [3] claimed, based on first-principles calcu-
lations, that the nearest-neighbor (NN) exchange interaction
of an iron monolayer on the (001) surface of a TaxW1−x

alloy can be continuously tuned from FM to AFM coupling
by varying the Ta concentration in the substrate, and that
in the situation of weak NN exchange, nontrivial magnetic
configurations can be achieved. Similarly, Ref. [13] showed
that the ground state of a Fe monolayer on top of different 4d
and 5d nonmagnetic metals can be continuously manipulated
from FM to AFM by in-plane biaxial and uniaxial strain
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on the substrates. Reference [5] demonstrated tunability of
the exchange interaction by changing the stacking order of
Fe/5d bilayers on Rh(001). The exchange interaction can
also be tuned by strain in magnetic 2D monolayer chromium
trihalides CrX3 (with X = I, Cl and Br), continuously from FM
to AFM one [8].

In addition to this (symmetric) exchange interaction, the
asymmetric Dzyaloshinskii-Moriya interaction plays an im-
portant role in the ordering of a magnetic system. Instead of
(anti)parallel spins, DMI favors the rotation of magnetization
at short length scales, giving rise to chiral spin structures,
such as cycloids and magnetic skyrmions. DMI can be tuned
in 2D magnets by breaking inversion symmetry, e.g., in
Janus structures of chromium trihalides [6] and manganese
dichalcogenides [14], or at the interface of the magnetic
monolayer with a heavy-metal substrate [15].

In spite of the many possibilities for tuning exchange
interactions in 2D magnets, the resultant magnetic states of
such systems remain scarcely investigated. Therefore, in this
work we explore the magnetic phases of chiral magnetic
monolayers, such as Fe monolayer and CrX3 lattices, in the
limit of suppressed NN exchange interaction. We present the
rich phase diagram obtained for both square and honeycomb
symmetries, where exotic magnetic configurations can be sta-
bilized. There we reveal states with coexisting FM and AFM
spin-cycloids and magnetic skyrmions, as well as the novel
p-AFM skyrmion state, and explore stability of magnetic
skyrmions when dominated either by NN or second-nearest-
neighbor (SNN) exchange coupling.

The paper is organized as follows. In Sec. II, we introduce
the atomistic spin model used to describe the chiral magnetic
monolayer. Section III contains all our results and discussions,
starting from the effects of NN and SNN exchange coupling
on the magnetic ground state in the presence of dipole-dipole

2469-9950/2020/101(21)/214429(9) 214429-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9824-4561
https://orcid.org/0000-0002-0910-2543
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.214429&domain=pdf&date_stamp=2020-06-18
https://doi.org/10.1103/PhysRevB.101.214429
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interactions (DDIs) (Sec. III A). In Sec. III B, we present the
phase diagram for varied DMI and anisotropy interactions
in the limit of suppressed NN exchange in a square lattice
and derive analytical expressions for the phase boundaries
in Sec. III B 1. In Sec. III B 2, we discuss several types of
magnetic skyrmions stabilized in the considered system, and
perform minimum-energy path calculations to evaluate the
stability of magnetic skyrmions when dominated either by NN
or SNN exchange coupling. Section III C contains the phase
diagram and notes for a honeycomb lattice, comparatively to
the discussion presented for a square lattice in Sec. III B. Our
findings are summarized in Sec. IV.

II. ATOMISTIC SPIN MODEL

In this paper, we perform atomistic spin simulations to cap-
ture possible magnetic phases of chiral magnetic monolayers,
primarily based on the simulation package Spirit (see Ref.
[16]). The extended Heisenberg Hamiltonian of the consid-
ered classical system of spins, in absence of applied magnetic
field, is given by

H = −
∑

<i, j>sd

Ji jni · n j −
∑

<i, j>st

Di j · (ni × n j )

− 1

2
Dddi

∑

i, j �=i

3(ni · r̂i j )(n j · r̂i j ) − (ni · n j )

(ri j/r0)3

− K
∑

i

(ni · ẑ)2, (1)

where ni = μi/μ is the ith spin orientation, with μi the
magnetic moment of the ith atomic site and |μi| = μ. Ji j is
the exchange coupling, where we define J1 and J2 as the NN
and SNN exchange coupling, respectively; Di j = D(r̂i j × ẑ)
is the DMI vector, with D the DMI strength and ri j the vector
connecting spins i and j. K is the perpendicular magnetic
anisotropy and Dddi = μ0μ

2/(4πr3
0 ) defines the magnitude of

the DDI, with r0 the NN distance and μ0 the vacuum perme-
ability. 〈〉st and 〈〉sd denote summation up to first- and second-
neighbor sites, respectively. For the DDI, we make use of fast
Fourier transforms and the convolution theorem [17] adapted
to treat arbitrary spin lattice configurations, as implemented
in Spirit, which reduces significantly the computational effort.
Moreover, a direct summation of dipoles has been performed
to verify selected results. Although thermal fluctuations play
an important role in the stability of any spin texture, in this
paper we describe all the fundamental states emerging from
the competing interactions due to tuned exchange terms and
leave the limitations brought by thermal effects for a separate
study.

The energy minimization is performed using a Verlet-like
velocity projection method, as explained in Refs. [16,18],
which accelerates convergence toward local minima and
avoids overstepping due to momentum considered in the
standard Landau-Lifshitz-Gilbert equation [19,20]. In this
method, the spins are treated as massive particles moving on
the surfaces of spheres, where the velocity at each time step
is damped by projecting it along the force Fi = −∂H/∂ni and
ni is renormalized after each iteration to conserve the length
of the spins.

When constructing the equilibrium phase diagram of a spin
system in the space of two relevant parameters in Eq. (1)
(e.g., J1 and J2), the spin-relaxation simulations are performed
for a uniform 10 × 10 matrix of values within the parametric
range of the phase diagram. For each selected point of the
phase diagram, the spin system is initialized from a random
configuration and the energy is minimized numerically for
a sufficient number of different initial states to identify the
configurations of lowest energy. In the following step, the
energies of all found configurations were evaluated on a high-
density grid in the parametric space (typically a 200 × 200
grid) and compared with each other to obtain the phase
boundaries. In the simulations, a spin lattice with 102 × 102
unit cells is considered, with one and two spins per unit cell
for the cases of square and honeycomb lattices, respectively,
unless otherwise specified. Periodic boundary conditions are
considered along the 2D of the system. For DDI calculations,
four images of the spin system are considered along the 2D.
In the case of incommensurate phases such as cycloids, we
ensured that the considered system size is much larger than
the periodicity of the final state.

III. RESULTS AND DISCUSSION

A. Competing exchange interactions

In this paper, we are interested in magnetic configurations
that emerge in the limit of vanishing NN exchange interaction.
To be able to systematically discern effects from different
types of interactions, we remove DMI and anisotropy and
examine purely the effects of tuning the exchange coupling
between both NN and SNN sites, with DDIs taken into
account.

1. Square lattice

We first consider a square lattice of spin sites, represen-
tative of, e.g., Fe monolayer on a substrate [3]. Figure 1(a)
shows the ground-state phase diagram obtained in the numer-
ical experiments based on Eq. (1). The corresponding minimal
energy configurations belonging to different regions of the
phase diagram in Fig. 1(a) are depicted in Figs. 1(b)–1(d).
For dominating NN exchange interaction (|J1| > 2|J2|), only
two states can occur, the FM state [Fig. 1(b)] for J1 > 0, and
the checkerboard c(2x2)-AFM state [Fig. 1(c)], also referred
to as c-AFM, for J1 < 0. Notice that DDI favors in-plane
spin configurations except for the c-AFM phase, where the
“head-to-head” arrangement of spins is not energetically fa-
vored, forcing the system to align out of plane. However,
if J2 < −|J1|/2 the exchange term in Eq. (1) favors the so-
called p(2x1)-AFM ordering [see Fig. 1(d)], also referred
to as p-AFM. The p-AFM state is a degenerate solution
of the Heisenberg Hamiltonian with respect to rotation of
consecutive spins by an angle of ±�, with exchange energy
Eex = 4J2 per spin. Ferriani et al. [3] demonstrated that such
degeneracy can be lifted by higher-order interactions such
as four-spin and biquadratic ones, where noncollinear states,
i.e., with � �= 0, are favored. Here we observed that the
presence of DDIs favors collinear configurations. However,
for dominating exchange energy, even small fluctuations of
the spin configurations can overcome the dipolar ineractions
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FIG. 1. (a) Phase diagram for a square monolayer lattice for
different values of exchange couplings J1 and J2, in the presence
of dipole-dipole interactions, for K = D = 0. (b)–(d) Ground-state
magnetic phases, corresponding to nomenclature indicated in (a).
Note that in the case of dominating exchange interaction, the non-
collinear and collinear states become nearly energetically degenerate
within phase I, so states similar to the one shown in panel (e)
frequently appear as stable.

so noncollinear domains can coexist with the collinear ones.
In such conditions, even though the state shown in Fig. 1(c)
remains the ground state of the system, the states similar to
the one shown in Fig. 1(e) become increasingly stable and
frequently appearing. Such AFM states are similar to those
obtained for pure dipolar systems on a square lattice [21].

2. Honeycomb lattice

In Fig. 2(a), we show the phase diagram for the honeycomb
lattice symmetry, analogous to the one of Fig. 1(a) obtained
for the square lattice. In the honeycomb case, the nontrivial
structure, as well as the mismatch in the number of NN and
SNN bonds of the honeycomb lattice give rise to several
more magnetic phases. Furthermore, one should note that the
SNN bonds form a triangular lattice, which is intrinsically
frustrated under AFM coupling, which can lead to nontrivial
spin textures. For the case of J2 > 0, the FM and AFM states
(phases II and III in Fig. 2) are analogous to the ones observed
in the square lattice. On the other hand, for dominating J2 < 0,
two degenerate lattices of spin loops are obtained, shown
in Figs. 2(b) and 2(c). Such magnetic phases are similar to
those found for multiferroic hexagonal compounds [22,23],
which in that case are associated to the �1 and �3 irreducible
representations of the P63cm space group [24]. In our system,
the spin-loop configurations are also favored by the DDIs [25].
By increasing the magnitude of |J1|, the competing NN and
SNN coupling give rise to spin cycloids (phases IV and VII
in Fig. 2), collinear AFM states (phases V and VIII in Fig. 2),
and vortexlike configurations (lattice of FM vortices in phase
VI and a lattice of AFM antivortices in phase IX, see Fig. 2).
We notice that for J1 > 0, the spins tend to form pairs of rows
with the same orientation [see, e.g., Fig. 2(h)] due to the FM
NN coupling and the cycling of the spins in the cycloidal
phase [Fig. 2(f)] is of the Néel type. In contrast, for J1 < 0,
the spins are aligned in single rows and the cycloids are of the
Bloch type.

B. Suppressed nearest-neighbor exchange in the square lattice

Having understood the competing effects between the NN
and SNN exchange and dipolar interactions, we proceed to
examine spin configurations in the limit of vanishing NN
exchange interaction. We start with the square lattice, which,
due to its simpler geometry, allows for a more illuminating
analysis of cycloids and skyrmions induced by suppressed
NN exchange. Moreover, as will be shown, the square lattice
encompasses all the main ingredients behind the physics of
the chiral magnetic textures in the 2D limit. Supplementary
notes on the honeycomb lattice case are given in Sec. III C.

In Fig. 3(a), we show the phase diagram for the square
lattice, obtained for J1 = 0, as a function of J2 but also
as a function of increasing DMI. For negative values of
J2, increasing DMI strength favors the formation of p-AFM
spin cycloids, shown in Fig. 3(h), while for positive J2 we
report the coexistence of FM and c-AFM spin cycloids with
opposite chiralities [Fig. 3(i)]. Notice that when neglecting the
DDI term in the Hamiltonian [Eq. (1)], the FM and c-AFM
states are energetically degenerate for the case of J1 = 0
and J2 > 0 [see also Supplemental Material Fig. S1(a) [26]
for a better visualization of the coexisting FM and c-AFM
domains]. For the case of dominating DMI energy, all spins
are forced orthogonal to each other, driving a transition to
an emergent spin-ice-type of state (V-a), of checkerboard
symmetry with four spins pointing in, or four spins pointing
out of a same tetragon, or a degenerated striped state (V-b)
shown, respectively in Figs. 3(e) and 3(f). The effects of
anisotropy interaction (parameter K in the Hamiltonian) are
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FIG. 2. (a) Phase diagram for a honeycomb monolayer lattice for
different values of exchange couplings J1 and J2, in the presence
of dipole-dipole interactions, for K = D = 0. (b)–(k) Ground-state
magnetic phases, corresponding to labeling indicated in panel (a).

shown in Figs. 3(b)–3(d) for J2 = 0, 300Dddi and −300Dddi,
respectively. For J2 = 0, the in-plane order of state V is
preserved and the z component of the spins are continuously

deformed by anisotropy interaction. For J2 > 0, the out-of-
plane (in-plane) anisotropy favors the c-AFM (FM) state,
while for J2 < 0 the out-of-plane anisotropy gives rise to the
out-of-plane p-AFM state, shown in Fig. 3(g).

1. Phase boundaries

As will be shown in this section, analytical expressions can
be derived for most of the phase boundaries in Fig. 3. In that
derivation, we consider the extended Heisenberg Hamiltonian
in Eq. (1) with suppressed NN exchange interaction and
initially neglect the DDI. For a simplified analysis, we assume
the cycloidal phases are characterized by uniform rotation of
the spins along one easy axis, say x. Accordingly, the angle θ

of a spin in the cycloid with respect to the ẑ axis is modeled as

FM θm,n = 2πm

Np
, (2)

c-AFM θm,n = −2πm

Np
− π [1 − (−1)m+n], (3)

p-AFM θm,n = 2πm

Np
− π [1 − (−1)n], (4)

where index m (n) counts spin rows parallel (perpendicular) to
the x axis (see Fig. 4) and Np is the number of spins involved
in one period of the cycloid, which is to be determined after
minimization of the free energy.

The DMI contribution to the energy of the system can eas-
ily be calculated by noticing that in all the above-described cy-
cloidal configurations only spins linked along the x direction
have nonzero DMI energy. In this case, Di j = −ŷD, ni × n j =
−ŷ sin(θm+1,n − θm,n) = −ŷ sin(2π/Np), and thereby the to-
tal DMI energy is EDMI = −ND sin(2π/Np). For the total
SNN exchange energy EJ2, we sum up terms like ni · n j =
− cos(θm±1,n − θm,n) = σ cos(2π/Np), where σ = 1 for pos-
itive exchange interaction (phases FM and c-AFM) and σ =
−1 for negative exchange interaction (phase p-AFM). There-
fore, for all three cases, EJ2 = −2|J2| cos(2π/Np). Finally,
the contribution of anisotropy to the total energy is given by
EK = −K

∑
m,n cos2 θm,n, which, by assuming that N/Np is

an integer, leads to EK = − 1
2 NK . The total energy of the cy-

cloidal phases is then given by E/N = −2|J2| cos(2π/Np) −
D sin(2π/Np) − K/2. Minimizing the energy with respect to
Np yields

Np = 2π

tan−1(D/2|J2|) (5)

and

E

N
= −

√
4|J2|2 + D2 − K

2
. (6)

Similar expressions can be obtained for the case of dom-
inating NN exchange interaction, leading to the well-known
dependence of the cycloid period on the ratio D/J [27,28]. To
delineate the boundaries of the cycloidal phases, we compare
Eq. (6) with other (noncycloidal) candidates to ground-state
configuration. First, we consider phase V (see Fig. 3). This
phase is dominated by DMI interactions, where all neighbor-
ing spins are orthogonal to each other, so EJ2 = 0. The DMI
and anisotropy contribution to the energy can be calculated
trivially, resulting in a total energy per spin E/N = −√

2D −
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FIG. 3. Phase diagram for a square monolayer lattice for vanishing nearest-neighbor exchange interaction. (a) As a function of the second-
nearest-neighbor exchange J2 and the DMI strength D, for K = 0. (b)–(d) As a function of magnetic anisotropy K and DMI strength D, for
J2 = 0 (b), J2 = 300Dddi (c), and J2 = −300Dddi (d). The patterned region in (b) indicates disordered configurations. (e)–(i) Spin configurations
corresponding to phases indicated in (a)–(d). Solid lines in panels (a), (c), and (d) represent analytical solutions for the phase boundaries of the
cycloidal states derived in Sec. III B 1.

K/2. The critical DMI value, calculated by comparing this
result with Eq. (6), is given by Dc = 2|J2| [see solid black
lines in Fig. 3(a)], irrespective of the anisotropy parameter K .
Below this value, the cycloidal phases are favored against the
homogeneous configuration V.

As shown in Figs. 3(c) and 3(d), the cycloidal phases
also become unstable above a certain value of the anisotropy
parameter. For positive K , the c-AFM phase (III) is potentially
favored for J2 > 0, while for J2 < 0, the p-AFM (VII) be-
comes the potential candidate. Their energy per spin is simply
E/N = −2|J2| − K . Comparing with Eq. (6), we get Kc =
2
√

4|J2|2 + D2 − 4|J2| [see solid black lines in Figs. 3(c) and
3(d)].

For K � 0, the cycloids decay into phases I and II, which
are significantly influenced by the DDI. For those cases, the
demagnetizing energy can be approximated by an in-plane
contribution to the effective anisotropy [29] Keff = K − Kddi,
and the critical curves for K � 0 are simply shifted by a factor

FIG. 4. Schematic representation of the lattice indices and spin
angle θ considered in the calculations in Sec. III B 1.

of Kddi [see dashed and dashed-dotted lines in Figs. 3(c) and
3(d)]. The same curves can be plotted for the case K = 0 as
shown in Fig. 3(a), where we used Kddi = 3.8Dddi and 2Dddi

for phase boundaries II–VI and I–IV, respectively.

2. Domain walls and magnetic skyrmions

Domain walls (DWs) and magnetic skyrmions are promis-
ing candidates for technological applications, especially for
spin-based information processing and memory devices. In
this section, we look for such magnetic configurations in the
limit of suppressed NN exchange coupling. Figure 5 sum-
marizes different types of DWs obtained in our simulations.
For J2 > 0, the well-known c-AFM DW [Fig. 5(a)] and FM
DW [Fig. 5(b)] are found. However, since the FM and c-AFM
states can coexist in this region of the phase diagram, a DW
between the two phases is necessary to stabilize the spin
system, as shown in Fig. 5(c). In this case, only one sublattice
of the c-AFM structure is rotated to form the FM state. For
J2 < 0, the p-AFM DW [Fig. 5(d)] is the only one found. Due
to such possibilities for different types of DWs, one also ex-
pects a variety of magnetic skyrmions in this system. Isolated
magnetic skyrmions are expected to be (meta)stable for the
combination of microscopic parameters that yields K > Kc,
where the background magnetization, either FM or AFM, is
aligned out of plane. Figure 6(a) shows an example of FM
and c-AFM skyrmions coexisting for J2 > 0 [see also Sup-
plemental Material Fig. S1(b) [26] for a better visualization
of the coexisting FM and c-AFM skyrmions] and Fig. 6(b)
shows the p-AFM skyrmion obtained for J2 < 0—which to
our knowledge is the first such skyrmion reported in literature.
One should note that the FM-AFM DW [as shown in Fig. 5(c)]
cannot form a stable topological object by enclosing itself
(contrary to its FM or AFM counterparts, since in this case
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FIG. 5. Néel domain wall structure for the c(2x2)-AFM state (a),
FM state (b), between FM and AFM states (c) and p(2x1)-AFM
state (d).

only half of the spins would rotate across the DW and the
resultant net topological charge is noninteger).

Now let us compare the influence of both NN and SNN
exchange on the skyrmion stability. For that purpose, we
analyze the energy of an isolated c-AFM skyrmion, which
can be stabilized by both J1 and J2. In Fig. 6(c), we show
the c-AFM skyrmion energy calculated for (i) J1 = 0, J2 = J ,
and (ii) J1 = −J , J2 = 0, where we fixed the parameters K =
3 meV and D = 5 meV in such a way that the skyrmion can
be stabilized for |J2| similar to that obtained in Refs. [3,13],
where |J1| ≈ 0. Notice that in case (i), one can stabilize
skyrmions with equivalent energy but for smaller values of
J when compared to case (ii), which indicates that SNN
exchange can dominate the skyrmion energy over small values
of J1. Figure 6(d) shows the minimal-energy-path calculations
for the isotropic collapse of the c-AFM skyrmion in both cases
(i) and (ii), where the activation energy, Ea, is calculated by
the geodesic nudged elastic band method [18,30] with the help
of a climbing image method [31], both implemented in the
simulation package Spirit, allowing an accurate determination
of the highest-energy saddle point along the minimal energy
path connecting the two states. Notice that, for both cases
(i) and (ii), the activation energies have the same order of
magnitude, which indicates that the skyrmions stabilized by
dominating SNN exchange interaction present similar sta-
bility, and consequently a similar lifetime [30,32], to those
stabilized by dominating NN exchange coupling. Notice that
even though for some parameters the energy difference be-
tween initial and final states can be the same for both cases (i)
and (ii), the skyrmion profiles are not identical (e.g., the DW
width depends on exchange), which may cause the difference
in the activation energy. Finally, the stability of the p-AFM
skyrmion was found to be the same as the stability of the

FIG. 6. (a) State with coexisting FM and c-AFM skyrmions,
obtained for J2 > 0. (b) The p-AFM skyrmion, obtained for J2 < 0.
(c) Skyrmion energy as a function of exchange coupling for (i)
J1 = 0, J2 = J and (ii) J1 = −J , J2 = 0, both with K = 3 meV and
D = 5 meV. (d) Minimal-energy-path calculations for the isotropic
collapse of the c-AFM skyrmion in both cases (i) and (ii). Here, the
reaction coordinate defines the normalized (geodesic) displacement
along the formation path and the activation energy Ea is defined by
the highest-energy point along the path.

c-AFM skyrmion, as long as the same values of |J2| are
considered.

C. Suppressed nearest-neighbor exchange
in the honeycomb lattice

The honeycomb lattice symmetry is representative of a
variety of magnetic 2D materials, and is hence of particular
recent interest. Notice that for a complete description of truly
2D magnetic materials (such as monolayer CrI3), one should
consider more magnetic interactions in the Hamiltonian, such
as the Kitaev interaction [33]. In the present consideration,
for simplicity and clarity, but also to provide a fair com-
parison between square and honeycomb lattice symmetry,
we do not include those additional magnetic interactions
in our spin system. Figure 7(a) exhibits the phase diagram
obtained for the honeycomb lattice, for zeroed NN exchange
coupling (J1) and anisotropy (K), in the presence of DDIs,
and for varied SNN exchange (J2) and DMI strength (D).
Similar to the square lattice, for J2 > 0, increasing DMI favors
FM and AFM spin cycloids [see Figs. 7(e) and S1(c) [26]
for a better visualization of the coexisting FM and AFM
states]. For dominating DMI interaction, all spins are forced
orthogonal to each other, as shown in Figs. 7(c) and 7(d)
(phase XI). Since in the honeycomb lattice the SNN bonds
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FIG. 7. (a) Phase diagram for the honeycomb lattice for var-
ied second-nearest-neighbor exchange J2 and DMI strength D, for
vanishing nearest-neighbor exchange and K = 0. (b)–(e) The spin
textures corresponding to the characteristic magnetic phases in
panel (a).

form a triangular lattice, which is frustrated under AFM cou-
pling, the analogous forms of the p-AFM state and the p-AFM
skyrmion found in the square lattice cannot be obtained for
J2 < 0. Instead, for J2 < 0 we obtained frustrated AFM spin

FIG. 8. (a) Decomposition of phase X (obtained in the phase
diagram for the honeycomb lattice for J1 = 0, J2 < 0 and D > 0)
into six spin sublattices (S1–S6). (b) Orientation of spins around the
unit sphere, demonstrating the sublattice-specific cycloidal behavior.

cycloids (shown in Fig. 7(b), but can be visualized better in
Supplemental Material Fig. S2(a) [26]). In Fig. 8(a), we show
that this configuration can actually be decomposed into six
sublattices, each of which exhibit a cycloidal behavior—as
seen in the orientation of spins shown in Fig. 8(b). Due to
the honeycomb symmetry of the lattice, the antiparallel AFM
coupling between the SNN spins cannot be satisfied at all
bonds and the system is therefore frustrated, causing this
unique cycloidal spin state.

Such a frustrated cycloid presents the same period in each
one of the six spin sublattices (named S1 to S6), but its
oscillations are not in phase, as shown in Fig. 8(a). In addition,
the cycloid rotation is not unidirectional, with three sublat-
tices (S1, S2, S3) rotating across the other three (S4, S5, S6)
as seen in the orientation of spins shown in Fig. 8(b). In
the Supplemental Material Fig. S2(b) [26], we show the
optimized cycloid period λ, after we found the minimum
in the average energy density as a function of the cycloid
period for different values of the DMI strength D. As expected
for the conventional spin cycloids [see, e.g., Eq. (5)], one
sees there that increasing the DMI favors the rotation of the
magnetization in shorter periods.
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MENEZES, SILVA, AND MILOŠEVIĆ PHYSICAL REVIEW B 101, 214429 (2020)

FIG. 9. (a) State with coexisting FM and AFM skyrmions, ob-
tained for J2 > 0 in the honeycomb symmetry. (b) Skyrmion en-
ergy as a function of exchange coupling for (i) J1 = 0, J2 = J ,
and (ii) J1 = −J , J2 = 0, both with K = 3 meV and D = 5 meV.
(c) Minimal-energy-path calculations for the isotropic collapse of
the AFM skyrmion in both cases (i) and (ii). Here, the reaction
coordinate defines the normalized (geodesic) displacement along
the formation path and the activation energy Ea is defined by the
highest-energy point along the path.

To conclude the comparison to our previous findings for
the square lattice, in Fig. 9(a) we show an example of FM and
c-AFM skyrmions coexisting for J2 > 0 in the honeycomb
lattice symmetry (see also Supplemental Material Fig. S1(d)
[26] for a better visualization of the coexisting FM and AFM
skyrmions). Similar to the analysis made in the preceding
section, we have calculated the energy of an isolated AFM
skyrmion and performed minimal-energy-path calculations to
evaluate the influence of both NN and SNN exchanges to
the skyrmion stability. As in the square lattice, both kinds of
skyrmions have equivalent energies [see Fig. 9(c)] but their
stability falls in different ranges of the exchange intensity |J|,
with the SNN-stabilized skyrmions occurring at considerably

smaller values of |J|. Finally, we note again that, contrary
to the square-lattice case, skyrmions with a p-AFM back-
ground are not possible in the honeycomb lattice because, as
discussed above, AFM ordering is frustrated on a triangular
lattice of SNNs.

IV. CONCLUSIONS

The advent of monolayer materials over the last decade,
freestanding or deposited, raises questions whether such sys-
tems can harbor unique magnetic properties and potential for
technological applications. It is primarily the vast tunability
of magnetic interactions in such magnetic monolayers that
can lead to unexpected physical phenomena and magnetic
phases. Our present paper is a step in that direction, re-
vealing the rich magnetic phase diagram for both square
and honeycomb symmetries of a magnetic monolayer, in the
limit of suppressed NN exchange interaction. With underlying
expectation of degenerate FM and AFM states promoted by
the absence of the NN exchange, the competition between the
SNN exchange, DMI, and dipolar interactions leads to sev-
eral unique cycloidal, checkerboard, row-wise, and spin-ice
states, unattainable otherwise. Moreover, coexisting FM and
AFM skyrmions are found, as well as unique types of chiral
DWs and skyrmions (such as the p-AFM ones). With several
existing ab initio predictions that exchange interactions in
elemental magnetic monolayers can be varied depending on
the substrate [3–5,13], the phases mapped out in our work
can help the experimental validation of such claims, although
influence of a broader range of interactions can be expected
than considered here [34]. Last but not least, the interactions
in the recently realized 2D magnetic materials can also be
broadly manipulated by, e.g., strain engineering [8], where our
present results can provide basic expectations and understand-
ing before the more detailed calculations (including additional
anisotropic exchange couplings such as Kitaev one [35]) are
performed.
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