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Comment on “Electron states for gapped pseudospin-1 fermions in the field of a charged impurity”
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In a recent paper [Phys. Rev. B 99, 155124 (2019)], the spectrum of a regularized Coulomb charge was
studied in gapped pseudospin-1 systems generated by an α − T3 lattice. The electronic spectrum was studied
as a function of the impurity strength Zα. However, the results and conclusions on the behavior of the flatband
states as a function of the impurity strength are incomplete. In this Comment, I argue that because of the
dispersionless nature of the flatband, the states spread out under the influence of a charged impurity forming
a continuous band of states. I support my arguments with explicit numerical calculations which show the
emergence of a continuum of states.
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In a recent paper [1], one of the main points of investigation
was how a Coulomb potential affects flatband states. Espe-
cially, in the case of the Dice model (� = π/4), they find that
the flatband does not survive under a Coulomb impurity and
that bound states split off and eventually sink in the negative
continuum with increasing charge of the impurity. However,
the authors presented an incomplete picture on the behavior
of the flatband states under a regularized Coulomb impurity.
In this Comment, I argue, based on both intuitive arguments
and explicit finite element calculations, that the flatband states
form a continuum as a function of the Coulomb charge. In this
Comment, I limit myself to the most relevant case of the Dice
model for which � = π/4 and which exhibits a band that is
perfectly flat [see Fig. 1(a)].

As discussed in previous theoretical [2–5] works, the oc-
currence of flatband states leads to very peculiar physics. For
a flatband, the kinetic energy is completely quenched (and the
effective mass is infinite) with infinite degeneracy, and this can
be, for example, seen as the divergence of the density of states
(see Fig. 4 of Ref. [1]). Consequently, it is always possible to
construct a linear combination of flatband states in such a way
that the particle becomes infinitely localized [4,5]. In essence,
the flatband consists of an infinite number of degenerate states
which are perfectly localized at one specific point in space.
These infinitely localized wave packets remain eigenstates of
the single-particle Hamiltonian [5]. Thus, in the presence of a
Coulomb charge, the flatband states will undergo a constant
shift determined by the value of the Coulomb potential at
the position of the particle. Consequently, the flatband states
are expected to spread out as a continuum of states where
the position of the lowest state is determined by the value of
the Coulomb potential at the center of the charge. Whereas
the top of the continuum is composed of states located
infinitely far away from the Coulomb impurity that barely
undergoes a shift. In Fig. 1(b), we show schematically how
the spectrum will behave under the influence of a regularized
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charge V (r) = −Zα0/
√

r2 + r2
0 as considered in Ref. [1] with

Zα0 as the strength of the Coulomb potential and r0 as the
regularization parameter. The orange continuum allows for
bound states exactly as in the case of gapped graphene (shown
by the orange curves) [6]. However, the flatband (indicated
in blue) spreads out and forms a continuum as a function
of the impurity charge. The bottom of this band is given by
E = −Zα0/r0. The green band corresponds to hole states and,
consequently, does not allow for bound states in the case of a
positive impurity charge.

Our argument, based on the nature of the flatband states,
also explains why the flatband survives in the case of the step
potential well but not in the case of a Coulomb potential. In the
case of a step potential, electronic states infinitely localized
outside the well will not undergo a shift remaining at E =
0. In contrast, for the Coulomb potential, there is always a
long-range tail which means that even particles infinitely far
away from the charge will feel a, albeit small, shift effectively
destroying the flatband at E = 0.

So far I have only given intuitive arguments based on the
nature of the flatband states. In order to confirm my argu-
ments, I performed explicit numerical calculations. I solved
the following set of dimensionless differential equations nu-
merically using the finite elments method, see Eqs. (19) and
(20) in Ref. [1]:(
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Here, ρ = r/r0, ε = Er0/h̄vF , m̄ = mr0/h̄vF , and α =
α0/h̄vF . In my calculations, I took the Dice model for which
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FIG. 1. (a) Zero field band structure of the gapped Dice model
which exhibits a perfect flatband (blue) at E = 0. (b) Schematic of
how the bands will behave under the influence of a charged impurity.

� = π/4. For computational simplicity, I used a regularized
Coulomb potential of the form V (r) = −Zα0/

√
r2 + r2

0 .
Note that the exact form of the regularized potential does not
matter.

My calculations were performed using the finite elements
method implemented in Mathematica where the lattice is
discretized and the coupled differential equations (1)–(3) are
solved giving the eigenvalues and eigenfunctions. I solve the
set of coupled equations on a descretized lattice from 0 to
600r0. In Fig. 2, the results are plotted for two mesh sizes
(0.5r0 blue and 2r0 red), m̄ = 0.08 and j = 0. I observe a
number of states originating from E = 0 as expected from

FIG. 2. Finite elements calculation on a lattice from 0 to 600r0

for two different kinds of mesh sizes (blue 0.5r0 and red 2r0). For
m̄, we took the values of 0.08 and j = 0. The black line denotes
E = −Zα.

FIG. 3. The same as in Fig. 2 but for j = 2.

my intuitive arguments. I observe that, with decreasing mesh
size (from red to blue in Fig. 2), the density of states as
a function of energy increases. This means that the finite
elements method picks ups a continuum originating from
E = 0 (otherwise, it would converge to a fixed number of
levels). I, indeed, observed that decreasing the mesh size even
further leads to the emergence of even more states closer to
each other than the blue ones observed in Fig. 2. Interestingly,
none of states cross the line E [h̄vF /r0] = −Zα, indicated as
the black line in Fig. 2. This line exactly corresponds to the
argument made that the lowest state should behave as E =
−Zα0/r0 (E = −Zα in units of h̄vF /r0) made previously. I
find a similar result for higher angular momentum states as
shown in Fig. 3 for j = 2. In short, the fact that the finite
elements method picks up a continuum together with the
fact that none of the numerically calculated states dive below
E = −Zα confirms my intuitively made argument. Note that
the gap between the top state and E = 0 observed in Fig. 2 is
a consequence from the fact that the eigenvalue solver is only
able to find a finite number of solutions. I would also like to

FIG. 4. Typical spatial profile of a state calculated in Fig. 2 shows
a sharp localization.
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note that, although the numerical solutions approximate the
real solutions, they technically do not represent real physical
states for a finite mesh.

In Fig. 4, I show the spatial distribution obtained from the
finite elements method for one of the states shown in Fig. 2. A
very sharp and distinct peak can be observed confirming my
intuitive arguments previously made. The value of the wave
function increases with decreasing mesh size retaining its
form as seen in Fig. 4.

In this Comment, I argued that the spectrum for a gapped
Dice model under an impurity charge calculated in Ref. [1] is
incomplete. I argued that, based on the dispersionless proper-
ties of the flatband and the states being completely localized,
that no states split of but, instead, a continuum as a function of
the charge Zα0 will be formed. I supported my arguments by
explicit numerical finite elements calculations. I showed that
the finite elements find a number of states originating from

E = 0 which never cross E = −Zα0/r0 and move closer to
each other with decreasing mesh size. This behavior indicates
the emergence of a continuum originating from the flatband
as a function of the impurity strength. To conclude, I would
like to make the remark that the Hamiltonian solved in this
Comment constitutes a continuum limit of the Dice model
and should not be confused with the real lattice of the Dice
model. For future work, it would be interesting to study the
problem in a tight-binding context which models the real
Dice lattice.
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