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The anomalous Hall effect (AHE) is studied on the surface of a 3D magnetic topological insulator. By
applying a modified semiclassical framework, all three contributions to the AHE, the Berry curvature effect,
the side-jump effect and the skew scattering effects are systematically treated, and analytical expressions for the
conductivities are obtained in terms of the Fermi level, the spatial orientation of the surface magnetization and
the concentration of magnetic and nonmagnetic impurities. We demonstrate that the AHE can change sign by
altering the orientation of the surface magnetization, the concentration of the impurities and also the position
of the Fermi level, in agreement with recent experimental observations. We show how each contribution to the
AHE, or even the whole AHE, can be turned off by properly adjusting the given parameters. For example, one
can turn off the anomalous hall conductivity in a system with in-plane magnetization by pushing the system into
the fully metallic regime.
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I. INTRODUCTION

Topological insulators are a new class of matter that resem-
ble band insulators in the bulk while capable of conducting
along gapless states on the surfaces or edges [1–4]. Topolog-
ical properties of the band structure in these materials protect
the metallic surface or edge states, as long as time-reversal
or crystalline symmetry is present [5]. Surface states of a
3D topological insulator can be described by an effective 2D
massless Dirac Hamiltonian, within a certain energy range [6].
Spin-momentum locking of these massless Dirac fermions
prohibits backscattering of the itinerant electrons off non-
magnetic impurities and consequently results in anti-weak
localization [7,8]. All these exotic features of topological
insulators have attracted a lot of interests theoretically and
experimentally [9–11]. Revealing these topological features
in surface transport is an important direction of research, and
the dependency of the surface charge transport on the type
of disorder and the range of disorder-electron interaction has
been extensively studied theoretically [12,13].

The collective behavior of randomly distributed pointlike
magnetic impurities on the surface and in the bulk of a
topological insulator can break time-reversal symmetry and
drive the system into a gapped system. This introduced gap in
spin space influences, via the spin-orbit coupling, the charge
dependent properties of the massive Dirac fermions. As the
anomalous Hall effect (AHE) is the manifestation of the Hall
effect in systems without time-reversal symmetry, a gaped
magnetic topological insulator is a valuable host medium
for realizing both the quantized version of the anomalous
Hall effect [14–17], and the unquantized version [18,19].
The unquantized version of the AHE as one of the most
fundamental transport properties of magnetic materials has
been an enigmatic problem for almost a century and still
remains a poorly understood phenomenon. Understanding the
rich physics behind this effect in different systems presents

a deep insight into magnetic materials, and also enables us
to introduce new novel properties which can be used in new
devices for prospective technological advances in spintronics,
random access memory, etc. [20,21].

Although considerable studies have been devoted to the
AHE in different systems and different regimes [22–26], less
attention has been paid to this phenomenon in magnetic topo-
logical insulators. In this work, we investigate the AHE arising
from scatterings of massive Dirac fermions by dilute and
randomly placed point-like magnetic and nonmagnetic impu-
rities on the surface of a 3D topological insulator. Based on
Boltzmann’s semiclassical framework [27–29] along with a
modified relaxation time scheme to capture anisotropic effects
[30], we provide a comprehensive analysis of the transport
of massive Dirac fermions. Interestingly, our results provide
a clear scenario behind the sign change of the AHE via
changing the concentration of the impurities or via the value
of the gate voltage, as was recently shown experimentally in
topological materials [31]. Within the semiclassical regime,
we found that the calculated AHE can also change sign if one
changes the magnetic easy axis from fully out-of-plane to in-
plane. Interestingly, such sign change of the AHE with respect
to the spatial orientation of the magnetization has already
been experimentally observed in ultrathin Co0.3 nm/Pd0.5 nm

multilayers [32]. Besides, it has recently been shown ex-
perimentally that the AHE can undergo a sign change by
altering the spatial orientation of an applied magnetic field in
nonmagnetic ZrTe5, which is a candidate for a Dirac or Weyl
semmimetal [33]. To the best of our knowledge, a sign change
of the AHE with respect to the spatial orientation of the
surface magnetization has not been reported experimentally
for the surface of a topological insulator, and therefore further
experiments on this material can test our model.

In the literature, the AHE that arises from scattering of
massive Dirac fermions off nonmagnetic impurities has been
studied based on the Boltzmann kinetic equation and the
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microscopic Kubo-Streda formalism [34–36], and off mag-
netic impurities with an out-of plane magnetization based on
the kinetic equation for the density matrix [37]. In this work
we also stress the importance of the magnetization direction.
We thoroughly study the three distinct contributions to the
AHE, the contribution arising from the intrinsic Berry-phase
curvature [38–40], the extrinsic side-jump effect [41,42], and
the skew scattering effect [43]. Fully analytical expressions
for these contributions to the anomalous Hall conductivity
arising from magnetic impurities with arbitrary magnetization
direction are derived. Our method was chosen to properly
incorporate this anisotropy of the scattering potential. How-
ever, we also apply our method to derive the contributions
of nonmagnetic isotropic scatterers. In this way, we complete
our discussion and it allows us to compare our results for
nonmagnetic impurities with those that already have been
reported in literature [34]. Many AHE related experiments
have been conducted and in some of them a sign change has
been reported against temperature, gate voltage, thickness,
etc. Different studies have been performed to understand these
observed sign changes [44–47]. One of the main findings
of this work is introducing a clear and different scenario
behind the sign change in the anomalous Hall conductivity
for massive Dirac fermions on the surface of a magnetic TI.
Two terms with opposite signs compete simultaneously to take
control of this conductivity. These terms consist of contribu-
tions from the three different effects which all have a different
dependency on the Fermi level, the spatial orientation of the
surface magnetization and/or the concentration of impurities.
Exerting an external electric field determines the momentum
direction of the charge carriers which is locked to their spin. In
addition, by altering the orientation of the TI’s surface mag-
netization by an applied field, the strength of the scattering
potential can be changed, and by changing the Fermi level, the
spin orientation can be altered. Accordingly, size and sign of
each contribution can vary. Then, since the relative importance
of the total positive and negative terms changes, the AHE
can undergo a sign and size change against Fermi level,
concentration of impurities and spatial orientation of the sur-
face magnetization. Further, the detailed information of each
of the three contributions (intrinsic Berry-phase curvature,
side-jump effect and skew scattering effect) to the AHE is
hidden in the total value of the experimentally measured AHE.
Investigating experimentally each of these contributions to the
AHE separately is therefore not possible. To overcome this
problem, we indicate the experimental regimes in which each
contribution is dominant over the others. We have organized
the rest of this paper as follows. In Sec. II, we introduce the
effective model of massive Dirac fermions on the surface of
a magnetically doped three-dimensional topological insulator.
In addition, we present the semiclassical approach to correctly
incorporate the side-jump and skew scattering contributions in
the AHE dynamics of the charge carriers, and outline the need
and use of the generalized relaxation time approach. The ob-
tained results are shown in Sec. III. In Sec. IV, we summarize
our findings and conclude with our main results. Finally, some
more detailed results are collected in the Appendices, as well
as the derivation of important expressions to ease tracing some
results presented in the previous sections.

FIG. 1. Schematical overview of the system under study: a mag-
netic impurity on the surface of a TI, with its magnetization in the yz
plane, tilted over an angle θ . An electron with initial wave vector ke

approaches the impurity and elastically scatters off the impurity with
φk′ as the polar angle for k′

e.

II. MODEL AND APPROACH

A. Model Hamiltonian

The minimal effective Hamiltonian describing massive
Dirac fermions on the surface of a 3D TI is given by

HD = h̄vF (k × σ )z + Mσz, (1)

where the ẑ direction is chosen normal to the surface of
the TI. Here, vF, k = (kx, ky), and M are respectively the
Fermi velocity, the wave vector, and the mass of the surface
Dirac electrons, and σ = (σx, σy, σz ) is the vector of Pauli
matrices acting on the spin of the electrons. vF and M are
material dependent parameters. For example, in Bi2Se3, vF �
5 × 105 m s−1 [48], and Dirac massless fermions have a linear
dispersion in the energy range 0 � E − ED � 0.3 eV, with
ED the energy at the Dirac point. In Ref. [49], it was shown
that a gap of 50 meV can be introduced in the surface band
structure in Fe-doped Bi2Se3, (Bi0.88Fe0.12)2Se3, leading to
M � 25 meV.

The eigenvalues and eigenvectors of HD are

ψk,α (r) = eik·r√
A
(
1 + ξ 2α

k

)
(

e−iφk/2

iαξα
k eiφk/2

)
, (2)

εk,α = α εk = α
√

(h̄vFk)2 + M2, (3)

where α labels the conduction (α = +1) and valence (α =
−1) bands, k = |k|, ξk = √

(1 − γk )/(1 + γk ), with γk =
M/εk , and φk = arctan( ky

kx
) refers to the direction of the wave

vector of the surface electrons (see also Fig. 1). In the follow-
ing, we will also label the eigenstates and energies with the
index l ≡ (k, α) as the combined (momentum, band) index.

The presence of dilute and randomly placed magnetic
impurities on the surface of a 3D TI, scatter electrons and
influence the transport properties of the system. We model
the interaction between an electron located at r and a single
magnetic impurity at Rm as

V m(r − Rm) = Jδ(r − Rm) Sm · s, (4)

where Sm and s = h̄σ/2 are the spins of the impurity and
the electron, respectively. J is the exchange coupling, and
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the Dirac delta function refers to the short-range nature of
the electron-impurity interaction we have considered in this
study. In the regime of large magnetic spin |S| → ∞, weak
interaction J → 0 and J|S| = constant, we can treat the spin
of the magnetic impurities classically. We assume that the
magnetic impurities are all aligned in the same direction and
lie in the yz plane. Since the system is usually not pure and
often also contains nonmagnetic impurities, we also consider,
in addition to the term V m,

V nm(r − Rnm) = V nm
0 δ(r − Rnm), (5)

as another source for scattering of itinerant electrons off
nonmagnetic impurities located at Rnm. The massive Dirac
Hamiltonian HD is a consequence of very strong spin-orbit
coupling in the crystal lattice of the TI with many heavy
atoms. Therefore, in the presence of such a strong spin-orbit
potential, we disregard the correction to Eq. (5) due to the
spin-orbit effect of a single impurity atom [43]. We relied
on the modified Boltzmann formalism [30] separately for
these two kinds of impurities to obtain analytical results for
the different contributions to the AHE in a magnetic TI. An
overview of the system with some important definitions is
shown in Fig. 1.

B. Semiclassical approach

Boltzmann semiclassical approach states

−|e|E · v0l

(
−∂ f 0

∂εl

)
=

∑
l ′

wll ′ ( fl − fl ′ ), (6)

with v0l = 1
h̄∇kεk the velocity of the incident wave packet, E

is the external applied electric field, f 0(εl ) the Fermi-Dirac
distribution function, wll ′ the transition rate between states
l and l ′ and finally f the distribution function of itinerant
electrons. This semiclassical Eq. (6) deals only with gauge
invariant quantities, such as the scattering rate, band veloc-
ity and the distribution function. Nevertheless, since in this
equation the only role of the electric field is to accelerate
wave packets, and the only role of impurities is to produce
incoherent instantaneous events, it is clear that this approach
must often be insufficient. In studying the AHE, more than
ever, we need to modify the semiclassical framework to incor-
porate all the relevant phenomena correctly. We now discuss
separately the corrections that are added to the velocity of the
electrons, the transition rates and also the distribution function
of the electrons in the semiclassical approach, in order to
correctly include all phenomena—skew scattering as well as
the side-jump and anomalous velocity effects—during the
scattering time of electrons off impurities under the presence
of an external electric field.

1. Transition rate

To study the transport of electrons in a quantum regime,
we need to find the scattering matrix (or T matrix) of the
electrons. Within the semiclassical framework, the scattering
rate, as a classical object, can be obtained by its connection to
the scattering matrix through Fermi’s golden rule. However, it
should be noted that only the absolute value of the T -matrix
elements are present in the scattering rate. Consequently, all

the phase information of the T -matrix elements is lost. In
this section, we forget about this insufficiency of the golden
rule, but in the following sections we will discuss how we
can restore all the missing phase information. The scattering
rate between two different quantum states is connected to the
T -matrix elements and is given by

wll ′ = 2π

h̄
|Tll ′ |2δ(εl ′ − εl ), (7)

in which the scattering T matrix is defined as

Tll ′ = 〈l|Vsc|ψl ′ 〉, (8)

where l is an eigenstate of the Hamiltonian HD, Vsc is the
scattering potential operator and |ψl ′ 〉 is an eigenstate of the
full Hamiltonian H = HD + Vsc, that satisfies the Lippmann-
Schwinger equation

|ψl ′ 〉 = |l ′〉 + Vsc

εl ′ − H0 + iη
|ψl ′ 〉. (9)

For weak disorder, |ψl ′ 〉 can be approximated by a truncated
series in powers of Vll ′ = 〈l|Vsc|l ′〉. By applying Eqs. (9) and
(8), Tll ′ up to third order in Vsc is given by

Tll ′ = Vll ′ +
∑

l ′′

Vll ′′Vl ′′l ′

εl − εl ′′ + iη

+
∑

l ′′′

∑
l ′′

Vll ′′Vl ′′l ′′′Vl ′′′l ′

(εl − εl ′′ + iη)(εl − εl ′′′ + iη)
. (10)

Substituting this expansion for Tll ′ into Eq. (7) leads to the
following scattering rate up to fourth order in the scattering
potential:

wll ′ = w
(2)
ll ′ + w

(3)
ll ′ + w

(4)
ll ′ , (11)

where w
(2)
ll ′ is symmetric under changing l ←→ l ′, and is

given by

w
(2)
ll ′ = 2π

h̄
〈|Vll ′ |2〉dis δ(εl − εl ′ ), (12)

where “dis” denotes averaging over all possible distributions
of impurities in our system. For dilute and randomly placed
impurities, it has been shown that 〈|Vll ′ |2〉dis ∼ nim [38], with
nim the concentration of impurities. As already indicated, one
of the main contributions to the AHE originates from skew
scattering. In order to investigate this contribution, we need
to calculate the asymmetric part of the transition rate, w

(a)
ll ′ =

wll′−wl′ l
2 . Since w

(2)
ll ′ is symmetric, the first asymmetric term in

the transition rate wll ′ appears at the order of V 3
0 . Now w

(3)
ll ′ is

given by

w
(3)
ll ′ = 2π

h̄

(∑
l ′′

〈Vll ′Vl ′l ′′Vl ′′l〉dis

εl − εl ′′ − iη
+ c.c.

)
δ(εl − εl ′ ). (13)

w
(3)
ll ′ itself can be written as a sum of a symmetric term w(3s)

and an asymmetric term w(3a). Then, w
(3)
ll ′ = w

(3a)
ll ′ + w

(3s)
ll ′ ,

where w
(3s/a)
ll ′ = w

(3)
ll′ ±w

(3)
l′ l

2 . Since the symmetric part of w
(3)
ll ′

w
(3s)
ll ′ = 4π

h̄
P

(∑
l ′′

Re[〈Vll ′Vl ′l ′′Vl ′′l〉dis]

εl − εl ′′

)
, (14)
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just renormalizes w
(2)
ll ′ , it does not introduce a new physical

contribution to the scattering and is further not considered.
Note, P in the above equation refers to the principal value.
The remaining asymmetric term w

(3a)
ll ′ can be expressed as

w
(3a)
ll ′ = −(2π )2

h̄
δ(εl − εl ′ )

∑
l ′′

Im〈(Vll ′Vl ′l ′′Vl ′′l )〉disδ(εl − εl ′′ ).

(15)

This contribution scales with the impurity concentration
(for a so-called non-Gaussian disorder model [38]) as
(Vll ′Vl ′l ′′Vl ′′l )dis ∼ nim. Consequently we can expect that the
transverse conductivity associated to this term will be in-
versely proportional to nim [38]. Therefore this contribution
to the conductivity of the system dominates in very dilute
systems.

Two different scattering processes contribute to the fourth-
order expression for the scattering rate. A fourth-order scat-
tering process can occur at a single defect, but also two
second-order scattering processes can occur at two different
defects. As the sequence of scatterings that lead to these two
second-order pair scattering events is arbitrary, this process
leads to three contributions in the expression for w

(4)
ll ′ [50]:

w
(4)
ll ′ =

(∑
l ′′

∑
l ′′′

[ 〈Vl ′′′lVll ′′ 〉dis

εl − εl ′′ + iη

〈Vl ′′l ′Vl ′l ′′′ 〉dis

εl − εl ′′′ − iη

]

+
∑

l ′′

∑
l ′′′

[ 〈Vl ′′lVll ′ 〉dis

εl − εl ′′′ − iη

〈Vl ′l ′′′Vl ′′′l ′′ 〉dis

εl − εl ′′ − iη
+ c.c.

]

+
∑

l ′′

∑
l ′′′

[ 〈Vll ′Vl ′l ′′′ 〉dis

εl − εl ′′′ − iη

〈Vl ′′′l ′′Vl ′′l〉dis

εl − εl ′′ − iη
+ c.c.

])

× δ(εk − εk′ ). (16)

The factors like 〈Vl ′′′lVll ′′ 〉dis are all proportional to nim, and
therefore these contributions to w

(4)
ll ′ are proportional to n2

im.
The fourth-order contribution due to a scattering event at
a single impurity contains factors like 〈Vll ′′Vl ′′l ′′′Vl ′′′l ′Vl ′l〉dis

which are proportional to nim. This non-Gaussian correlation
yields a term in the transition rate which is physically similar
to w

(3a)
ll ′ (with respect to the concentration of impurities) but

much smaller. Therefore we only consider the contribution of
the two second-order pair scattering events in w

(4)
ll ′ . The term

w
(4)
ll ′ expressed above is responsible for producing the second

contribution of the skew scattering in the anomalous Hall
conductivity, in the noncrossing approximation, similar to the
results presented in the Appendix of Ref. [50]. This second
contribution of the skew scattering is disorder-independent,
as will be shown later. In this work, we are interested in the
zero temperature regime. Furthermore, in the weak disorder
limit that we consider, the energy width of the Bloch state
spectral peaks is smaller than the gap, allowing us to ignore
direct interband scattering. Therefore we will only consider
intraband transitions in calculating w

(2)
ll ′ and w

(3)
ll ′ . We consider

electron transport in electron doped systems, thus the Fermi
level εF lies inside the conduction band, consequently α = +1
for all states in Eqs. (12) and (15). However, for w

(4)
ll ′ , we

also incorporate the off-diagonal scattering matrix elements
as they produce virtual transitions that mix states in the two

bands in a way which is ultimately crucial [34]. Thus for
the calculation of w

(4)
ll ′ , also interband virtual transitions with

α, α′ = ±1 are taken into account.

2. Electron velocity

To obtain the current density of the system J = ∑
l vl fl ,

we need to calculate the velocity vl of the itinerant electrons
and also their distribution function fl in the presence of an
external electric field and randomly placed dilute magnetic
and nonmagnetic impurities. The conventional semiclassical
approach just studies electrons at scattering events and ignores
the evolution of the wave packets during the scattering time
interval where a side jump can occur. Furthermore, in a system
with broken either time-reversal or inversion symmetries, an
additional term should be added to the velocity expression
of electrons to incorporate properly the effect of the nonzero
Berry-phase curvature in the electron dynamics. If we incor-
porate both extra effects, which are missing in the conven-
tional semiclassical approach, the velocity can be written as

vl = v0l + van
l + vs j

l , (17)

in which van
l = −k̇ × (∇k × Al ) is the anomalous velocity,

with Al = i〈ul |∇k|ul〉 the Berry connection where ul (r) =
e−ik·rψl (r), and vs j

l = ∑
l ′ δrll ′wll ′ is the side-jump velocity.

Here, δrll ′ denotes the anomalous deflection which electrons
experience during scattering time. The gauge invariant
expression of this anomalous displacement is given by [28]

δrll ′ = Al ′ − Al − (∇k + ∇k ) arg(Vll ′ ), (18)

where arg(Vll ′ ) is the argument of Vll ′ . While the phase
information of the scattering amplitude is absent in the
first-order Born approximation, the third term on the right
hand side of Eq. (18) is responsible for restoring this
information to the dynamics of the charge carriers.

3. Distribution function

After obtaining all terms for the velocity expression of the
electrons, the next step is to calculate the distribution function
of the electrons. Therefore we write the electron distribution
function as follows:

fl = f 0 + gs
l + ga1

1 + ga2
l + gad

l . (19)

The largest deviation from the Fermi-Dirac distribution is
given by gs

l . It arises from the symmetric part of the scattering
rate w

(2)
ll ′ and also describes the longitudinal conductivity. ga1

l
is defined as the deviation due to the asymmetric part of the
scattering rate w

(3a)
ll ′ , and ga2

l due to w
(4)
ll ′ . Finally, gad

l is respon-
sible for capturing the effect of the side jump which changes
the energy of the scattered electrons and consequently their
distribution function. Substituting the transition rate wll ′ ex-
pressed in Eq. (11) along with the above nonequilibrium
distribution function into Eq. (6), we obtain the following
self-consistent time-independent integral equations:

−eE · v0l

(
−∂ f 0

∂εl

)
=

∑
l ′

w
(2)
ll ′

(
gs

l − gs
l ′
)
, (20)

∑
l ′

w
(3a)
ll ′

(
gs

l − gs
l ′
) +

∑
l ′

wll ′
(
ga1

l − ga1
l ′

) = 0, (21)
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−eE · vs j
l

(
−∂ f 0

∂εl

)
=

∑
l ′

wll ′
(
gad

l − gad
l ′

)
, (22)

∑
l ′

w
(4)
ll ′

(
gs

l − gs
l ′
) +

∑
l ′

wll ′
(
ga2

l − ga2
l ′

) = 0. (23)

In the presence of an external electric field E, electrons
acquire an extra potential energy �Ull ′ = −eE · δrll ′ during
the side jump δrll ′ . Since the energy of the electrons is
conserved during elastic scattering, this change in potential
energy during a side-jump event should be compensated
by a change in the kinetic energy of the electrons given
by �εll ′ = εl ′ − εl = eE · δrll ′ . Therefore, based on conser-
vation of energy, one obtains

∑
l ′ wll ′ [( f 0(εl ) − f 0(εl ′ )] =

−eE · vs j
l (− ∂ f 0

∂εl
), which reduces to Eq. (22) based on

∑
l ′

wll ′ [( f 0(εl ) + gad
l ) − ( f 0(εl ′ ) + gad

l ′ )] = 0. As ga1
l , ga2

l and
gad

l are small compared to gs
l , we approximate wll ′ in

Eqs. (21)–(23) by w
(2)
ll ′ .

It is now interesting to deduce how each contribution to
the distribution function scales with the impurity concentra-
tion. Since w

(2)
ll ′ ∼ nim, we find, based on equation Eq. (20),

that gs
l ∼ n−1

im . Like w
(2)
ll ′ , w

(3a)
ll ′ ∼ nim, therefore referring to

Eq. (21) shows that ga1
l ∼ n−1

im . As it is clear that vs j
l ∼ w

(2)
ll ′ ∼

nim, then based on Eq. (22), one can conclude that gad
l ∼ n0

im.
Finally, let us consider ga2

l . Since w
(4)
ll ′ ∼ n2

im and gs
l ∼ n−1

im we
come to the conclusion that ga2

l ∼ n0
im.

4. Current density

The next step is to calculate the relevant terms in the
current density. Using Eqs. (17) and (19), the charge current
density is given by

J = −e
∑

l

flvl

� Jan + Js + Jad + Js j + Jsk1 + Jsk2, (24)

where Jan = −e
∑

l f 0(εl )van
l is the anomalous current den-

sity, Js = −e
∑

l gs
lv0l is the regular contribution to the

charge current, arising from impurity scattering events within
the first-order Born approximation, Jad = −e

∑
l gad

l v0l and
Js j = −e

∑
l gs

l v
s j
l are consequences of the side-jump effect

on the distribution function and the electron velocity, respec-
tively. Jsk1 = −e

∑
l ga1

l v0l and Jsk2 = −e
∑

l ga2
l v0l result

from skew scattering. In the second line of Eq. (24), among
the 15 terms we just consider 6 terms nonnegligible. It is obvi-
ous that

∑
l f 0

l (v0l + vs j
l ) = 0 for the equilibrium distribution

function. In addition, we have ignored the small contributions∑
l (g

a1
l + ga2

2 + gad
l )vs j

l . Moreover, as van is already linear in
the electric field, the nonlinear contributions to the current∑

l (g
s
l + ga1

l + ga2
l + gad

l )van
l are also omitted.

C. Generalized relaxation time approximation

In order to solve the integral equations (20)–(23), we
rely on the generalized relaxation-time approach introduced
first in Ref. [30]. When both the energy spectrum and the
scattering potential are isotropic, the transition probability wll ′

will depend only on the angle between k and k′, and one can
employ the standard relaxation time approach [51]. This is

indeed the case when the spins of the magnetic impurities
in Eq. (4) are aligned perpendicular to the surface, i.e., Sm =
Smẑ. On the other hand, for an arbitrary orientation of the spins
of the aligned magnetic impurities, the scattering of helical
electrons becomes anisotropic and the transition probability
depends on the directions of both k and k′. Consequently,
the relaxation time is strongly anisotropic and depends on
the magnitude and direction of k, and on the orientation
of the magnetic impurities. The generalized relaxation time
approximation captures the effects of this anisotropy in the
conductivity [30]. In this approach, the different contributions
to the nonequilibrium distribution function are written as

gp
l = eE

[
λ

p
1l cos χ + λ

p
2l sin χ

]∂ f 0

∂εl
. (25)

Here, p stands for s, a1, a2, and ad . χ is the angle of E
with the x̂ direction, λ

p
il (i = 1, 2) are the generalized mean

free paths of the charge carriers. In anisotropic systems, the
size of the mean free paths of electrons depends on the
relative direction of the drift velocity of the electrons respect
to the external electric field. Hence, in order to capture this
anisotropy, two different mean free paths are introduced in the
proposal for the electron distribution function, namely λ

p
1l and

λ
p
2l . λ

p
1l corresponds to those electrons that move parallel to

the external electric field and λ
p
2l for those electrons that move

perpendicular to the external electric field. Then, since in
isotropic systems, electrons feel the same scattering potential
in every direction, the form of this proposal for the distribution
function of the electrons reduces to the well-known relaxation
time formalism in isotropic systems.

Considering now an electric field in the x̂ or ŷ direction
E = Ex̂i (x̂1 = x̂, x̂2 = ŷ) and substituting gp

l from Eq. (25)
into Eqs. (20)–(23), we arrive at

v0l · x̂i =
∑

l ′
w

(2)
ll ′

[
λs

il − λs
il ′

]
, (26)

vs j
l · x̂i =

∑
l ′

w
(2)
ll ′

[
λad

il − λad
il ′

]
, (27)

∑
l ′

w
(2)
ll ′

[
λa1

il − λa
il ′

] +
∑

l ′
w

(3a)
ll ′

[
λs

il − λs
il ′

] = 0, (28)

∑
l ′

w
(4)
ll ′

[
λs

il − λs
il ′

] +
∑

l ′
w

(2)
ll ′

[
λa2

il − λa2
il ′

] = 0. (29)

To solve the above equations, all mean free paths λ
p
il are

expanded in Fourier series. Finally we obtain the Fourier
coefficients of λ

m.p
i , the general mean free path of the Dirac

fermions due to scattering off magnetic impurities, and also
the Fourier coefficients of λ

nm.p
i , the general mean free path

of the Dirac fermions due to scattering off nonmagnetic
impurities.

III. RESULTS AND DISCUSSIONS

In this section, we present our results for the anomalous
Hall response on the surface of a 3D topological insula-
tor. Different regimes can be identified. As shown in the
previous section, some contributions to the anomalous Hall
conductivity are independent of the impurity concentration,
others are inversely proportional. Therefore we can express
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the anomalous Hall conductivity of the system as

σ AHE
i j = σ int. AHE

i j + σ ext. AHE
i j , (30)

where we label the term σ ext. AHE
i j as extrinsic because it

depends on the concentration of impurities, while we label the
term σ int. AHE

i j as intrinsic because it is independent of the con-
centration of impurities. If only the first term is significant and
the second term is negligible, we call this regime the intrinsic
regime, and when the first term is very small and negligible
the system is in the extrinsic regime. If both contributions are
comparable, the systems is in the intermediate regime. Since
the anomalous Hall response of the system behaves differently
in these distinctive regimes, they are discussed separately in
the following sections.

A. The intrinsic regime

σ int. AHE
i j originates from three effects simultaneously,

namely the Berry-phase curvature, the side-jump effect and
the skew scattering. Except the contribution arising from the
Berry-phase curvature, the other contributions in this regime
originate from the impurities, even though the expressions
of their corresponding conductivities do not depend on the
concentration of impurities. To better understand the behavior
of σ int. AHE

i j , each of these contributions is discussed separately
in Secs. III A 1–III A 3. Finally, after discussing comprehen-
sively these involved contributions, the anomalous Hall con-
ductivity in the intrinsic regime is studied in Sec. III A 4.

1. Berry curvature contribution

Unlike side jump and skew scattering, this contribution
does not rely on the presence of impurities and interestingly
produces a nonzero conductivity even in a pure system. As we
already mentioned, the nonzero Berry-phase curvature causes
an anomalous velocity van

l and consequently contributes to
the AHE by Jan = −e

∑
l f 0(εl )van

l . In order to calculate this
term, one has to consider the contributions of all electrons
residing in the whole Fermi sea, instead of just considering
those electrons in the conduction band. Using the eigenstates
in Eq. (2), one arrives at the following expression for the

anomalous velocity:

van
k,α = −k̇ × �k,α = eE

h̄
× −αMv2

F h̄2

2
(
k2v2

F h̄2 + M2
)3/2 ẑ. (31)

This correction to the velocity of electrons produces following
contribution to the conductivity of the system:

σ an
xy = −e

(
kF∑

k=0

van
k,+/Ey +

∞∑
k=0

van
k,−/Ey

)
= − 1

2m
, (32)

with σ an
yx = −σ an

xy and m = εF
M . Note that all contributions to

the AHE, like the expression above, are given in units of e2

h .
This contribution can be regarded as an “unquantized” version
of the quantum Hall effect which is given by σ QHE

xy = − 1
2 .

This term changes within 0 � |σ an
i j [m]| � 0.5 , if 1 � m � ∞

and since is inversely proportional to m = εF
M , it obviously

turns off in the gapless regime (M = 0). We will show that of
the three involved contributions to the AHE, this contribution
dominates the AHE when m = 1, not only in the intrinsic
regime but also in the intermediate regime.

2. Side-jump related contributions

As we indicated before, there are two distinct effects due
to the anomalous coordinate shift: the side jump δrkk′ and a
change in the energy of the electron. After averaging over
many scattering events, side jumps do not cancel out and
give rise to a nonzero contribution vs j

k to the velocity of the
electrons given in Eq. (17). This correction to the velocity of
the electrons itself changes the conductivity of the electrons
and we call this contribution σ

s j
i j . The second effect is the

energy change of an electron when it makes a deflection
δrkk′ in the presence of an external electric field E. This
change in its potential energy is given by e δrkk′ · E, which
eventually leads to the deviation of the distribution function
of the electrons that we indicate as gad

l in Eq. (19). We now
separately discuss the resultant conductivities σ

s j
i j and σ ad

i j .
Using the eigenvectors of the conductive massive Dirac

fermions given in Eq. (2) and applying Eq. (18), we obtain the
deflections δrm

kk′ and δrnm
kk′ due to the scattering off magnetic

and nonmagnetic impurities, and they are given by

δrm
kk′

[
h̄vF

εk

]
= γ (1/2 − c)√

(1 − γ 2)
[φ̂k′ − φ̂k] + c tan θ [cos φk′ φ̂k − cos φk φ̂k′]

+ (2cγ 2 tan θ sin φ− cos φ+ − c
√

γ 2 − γ 4 sin 2φ−)[k̂ + k̂′], (33)

δrnm
kk′

[
h̄vF

εk

]
= γ (1 − γ 2)1/2

4(cos2 φ− + γ 2 sin2 φ−)
(sin 2φ−[k̂ + k̂′] − 2 sin2 φ−[φ̂k′ − φ̂k]), (34)

where the two vectors k̂ and φ̂k are unit vectors in
spherical coordinates, respectively in the radial and po-
lar direction, θ is the tilting angle of the randomly
placed point-like magnetic impurities on the surface of the
magnetic TI, γ = γk = M

εk
, φ± = φk±φk′

2 , and finally c =
(2 sin2 φ− + 2[γk cos φ− +

√
1 − γ 2

k tan θ cos φ+]2)
−1

. Since

electrons undergo two distinctive and independent scattering
events, magnetic and nonmagnetic, we treat them separately.
As Eq. (33) shows, the side jump of an electron during a
magnetic scattering strongly depends on its incident angle φk,
scattering angle φk′ and also θ , the tilting angle with respect
to the ẑ direction of the magnetic orientation of the surface
impurities.
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k

FIG. 2. vm.s j
k is shown as a function of φk and θ , with ϑm

k = 1.
The background color shows cos ϕ, with ϕ the angle between vm.s j

k
and v0k .

Using the derived side jumps δrkk′ for magnetic and non-
magnetic scattering events, we can obtain the following side-
jump velocities:

vm.s j
k = ϑm

k [(1 + 2 sin2 θ ) sin φk x̂ − cos φk ŷ], (35)

vnm.s j
k = ϑnm

k φ̂k, (36)

where ϑm
k = S2

mJ2nim

8h̄2vF
�k and ϑnm

k = V 2
0 ninm

2h̄2vF
�k with �k =

γk

√
1 − γ 2

k and ninm the concentration of the nonmagnetic im-
purities. Both of these velocity expressions are only nonzero
for gaped systems (i.e., γk = 0) and therefore this effect is
a consequence of the gap opening. Also note that Eqs. (35)
and (36) show that vk

nm.s j is always perpendicular to the band
velocity v0k (directed in the k̂ direction), in contrary to vk

m.s j .
Only when all magnetic impurities are aligned perpendicular
to the surface of the TI (i.e., θ = 0) or when the electrons
move on the surface of the TI in the direction perpendicular to
the in-plane component of the magnetization (i.e., φk = 0) we
find vm.s j

k ‖ vnm.s j
k .

To better trace the behavior of the side-jump velocity of
the electrons during a magnetic scattering event, Fig. 2 is
provided to show vm.s j

k as function of θ and φk. Here, ϑm
k was

set to 1 and the background color shows cos ϕ, with ϕ the
angle between vm.s j

k and v0k. This figure now reveals when
the side-jump contribution to the transverse conductivity is
largest. As it is shown, by increasing θ the side-jump velocity
vm.s j

k increases (indicated by the increase in length of the red
arrows in Fig. 2), most clear around φk = π/2 and 3π/2,
and consequently a larger transverse conductivity can be
expected. The averaged band velocity of itinerant electrons
in the presence of an external electric field along the x̂/ŷ
direction would be along the −x̂/ − ŷ direction, correspond-
ing to φk = π and 3π

2 , respectively. This figure shows that

the side-jump velocity vm.s j
k of electrons for φk = π is along

the ŷ direction and for φk = 3π
2 is along the −x̂ direction.

Therefore we can expect that σ
m.s j
yx < 0 and σ

m.s j
xy > 0 for the

corresponding transverse conductivities. Furthermore, from
the background color of Fig. 2 which shows cos ϕ with ϕ

the angle between vm.s j
k and v0k, we can deduce that the area

for which vm.s j
k · v0k ∼ 0 is larger around φk = 3π

2 than for

φk = π . Therefore we expect |σ m.s j
xy | > |σ m.s j

yx |. Now we
are ready to derive all side-jump contributions in the charge
current of the massive Dirac fermions due to the magnetic
impurities Jtot.m.s j = Jm.s j + Jm.ad and the nonmagnetic im-
purities Jtot.nm.s j = Jnm.s j + Jnm.ad . In order to find Jm.ad and
Jnm.ad , we need to solve the corresponding Eq. (27). We obtain
all the mean free paths λm.ad

i and λnm.ad
i by relying on their

Fourier expansions (the expressions are given in Appendix B)
and obtain the following corresponding charge conductivities

σ m.ad
xy = 2(1 − m2)

4m(4m2 cos2 θ + g(m2 + cos 2θ ))
, (37)

σ m.ad
yx = (2 − cos 2θ )(m2 + cos 2θ )(g − 2)

4m( cos 4θ − 1 + (m2 + cos 2θ )(g − 2))
, (38)

σ nm.ad
xy = −σ nm.s j

yx = 1 − m2

m(m2 + 3)
, (39)

with g = (4(m4+1)+2m2(4 cos 2θ+cos 4θ−1))
1/2

|m2+cos 2θ | . Because Js j =
−e

∑
k gs

kvs j
k and using the already reported distribution

function gs
k in Ref. [52], we come to the conclusion that

σ
m.s j
i j = σ m.ad

ji and σ
nm.s j
i j = σ nm.ad

i j , for i = j. Equation
(39) for nonmagnetic impurities agrees with the result
reported in Ref. [34]. However, in contrary to Ref. [34],
which indicates that in general σ

s j
i j = σ ad

i j for nonmagnetic
impurities, our result shows that this is not true for the
side-jump conductivity of massive Dirac fermions that
scatter off magnetic impurities. The reason is that, although
the coordinate shift is responsible for both σ

s j
i j and σ ad

i j ,
the interaction between magnetic impurities and massive
Dirac fermions is anisotropic. Consequently, the transport of
massive Dirac fermions during their side jump depends on
the direction of the external electric field.

σ
m.s j
i j (with i j = xy and yx) is plotted against θ for some

different values of m in panel (a) of Fig. 3 and also in
terms of m for some different values of θ in panel (b) of
this figure. In case of θ = 0, |σ m.s j

xy | = |σ m.s j
yx | and putting

aside the sign of these conductivities, the system behaves
isotropically relative to the external electric field direction.
Increasing θ increases the magnitude of the corresponding
transverse conductivity, and this is caused by the interplay
between two factors. Firstly, the back-scattering probability is
the main mechanism which suppresses both longitudinal and
transverse conductivity. By increasing θ , the back-scattering
probability w(2.m)(k,−k) ∼ [(1 − γ 2

k ) sin2 θ sin2 φk + cos2 θ ]
decreases, so the transverse conductivity will increase. Sec-
ondly, the angular part of the magnetic side-jump velocity
[ 1 + 4 sin2 φk(sin2 θ + sin4 θ ) ]1/2 increases with increasing
θ and subsequently the conductivity increases. As it is clear
from panel (b) of the figure, σ

m.s j
i j is zero if we put the Fermi

level exactly on the lowest state of the surface band structure
(m = 1 or εF = M). Beyond m = 1, σ

m.s j
i j experiences a peak
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FIG. 3. σ m.s j
xy and σ m.s j

yx are plotted in terms of θ for some different
values of m in (a), and in terms of m for some different values of θ

in panel (b), respectively. In the inset of (b), �kF is plotted against
m. As it is clear from the main window of (b), σ

m.s j
i j is inherited its

nonmonotonic behavior from �kF .

close to m = 1, and thereafter decreases by increasing m for
all values of θ . This nonmonotonic feature of the conductivity
arises from the nonangular part of the side-jump velocity
(�k) which has the same trend against m [as shown in inset
of Fig. 3(b)]. Therefore deviating the system a bit from the
insulating state or being far enough away from the perfect
metallic state (m � 1 or μ � M) can produce a large value
for the side-jump conductivity.

To better understand the behavior of σ
m.s j
i j and σ m.ad

i j in this
section and also the behavior of other magnetic contributions
to the AHE discussed in other sections, Fig. 4 is presented,
which shows different effective mean free paths of the elec-
trons as function of θ . The red and magenta curves in this
figure represent λ̃m.ad,s

1,1 (m, θ ) = εF
h̄vF

λm.ad,s
1,1 and λ̃m.s,c

1,1 (m, θ ) =
nimεF J2S2

m

4h̄3v3
F

λm.s,c
1,1 for m = 1.5 and E = E x̂. Based on Eq. (25),

for the case that E = E x̂, one obtains gm.ad
k = eEλm.ad

1k
∂ f 0

∂εk
and

gm.s
k = eEλm.s

1k
∂ f 0

∂εk
. Furthermore (as shown in Appendixes A

and B), among all terms in the Fourier expansion of λm.ad
1k

FIG. 4. Effective mean free path of electrons during different
scattering events are plotted against θ for m = 1.5 and E = E x̂.
λ̃m.ad,s

1,1 , λ̃m.s,c
1,1 , λ̃m.a1,s

1,1 , and λ̃m.a2,s
1,1 are the effective mean free paths

of electrons during a magnetic side-jump scattering, a magnetic
longitudinal scattering, a conventional magnetic skew scattering and
an intrinsic magnetic skew scattering, respectively.

and λm.s
1k only λm.ad,s

1,1 and λm.s,c
1,1 determine the corresponding

conductivity. As shown in Fig. 4, when θ increases from 0
to π

2 , λ̃m.ad,s
1,1 and λ̃m.s,c

1,1 increase, which means an increase in
the number of electrons participating in the magnetic side-
jump scattering. Consequently this leads to an increase in the
corresponding conductivities σ m.ad

yx and σ
m.s j
yx .

In addition, since σ
m.s j
i j = σ m.ad

ji we find σ
tot.m.s j
xy = σ

m.s j
xy +

σ
m.s j
yx . Furthermore, as Fig. 3 shows σ

m.s j
yx < 0, then we can

rewrite σ
tot.m.s j
xy = |σ m.s j

xy | − |σ m.s j
yx |. Finally since based on

Fig. 5 always σ
tot.m.s j
xy � 0, we can conclude that |σ m.s j

xy | �
|σ m.s j

yx |. This inequality surprisingly proves our already made
prediction just based on looking at the profile of vm.s j

k . Figure 5
shows σ

tot.m.s j
i j in terms of m for some values of θ in the

main window and against θ for some different values of m
in the inset. In this figure for two cases θ = 0 and θ = π

2 ,
Jm.ad and Jm.s j cancel out each other and there is no net

0 π/4 π/2

  = 0   = π/6 
 = π/4   = π/3

  =π/2.5  = π/2

FIG. 5. σ
tot.m.s j
i j is plotted in terms of m for some values of θ in

the main panel, and in terms of θ for some different values of m in
the inset.
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−0.3

−0.2

−0.1

0

FIG. 6. σ tot.s j
xy is plotted in terms of θ and m.

conductivity due to the side-jump effect. Within 0 < θ < π
2 ,

σ
tot.m.s j
i j has a minimum value at m = 1, thereafter increases

sharply within interval of 1 � m � 1.5, until it reaches its
maximum value. By further increasing m, the net side-jump
conductivity decreases until it reaches zero in the limit of
m → ∞ or a gapless system. By changing the spatial ori-
entation of the surface magnetization within 0 � θ � π

2 and
also tuning the mass of the Dirac fermions, this contribution
varies within 0 � σ

tot.m.s j
i j [m, θ ] < 0.07. The small value of

this contribution is caused by the fact that σ
m.s j
i j and σ m.ad

i j

partially cancel each other in σ
tot.m.s j
i j . In short, in order to

have a maximal total side-jump conductivity arising from just
magnetic impurities, we need to put the Fermi level just above
the lowest state in the surface band structure and also tune
the orientation of the surface magnetization within the interval
π
3 < θ < π

2 .
Finally, we consider the nonmagnetic scattering events, and

using Eq. (39) we arrive at

σ tot.nm.s j
xy = −σ tot.nm.s j

yx = 2(1 − m2)

m(m2 + 3)
, (40)

where σ
tot.nm.s j
i j = σ

tot.nm.s j
i j + σ tot.nm.ad

i j . These results also co-
incide with the ones reported in Ref. [34]. Thus also this
contribution to the side-jump conductivity is isotropic (ignor-
ing the sign difference). Figure 6 shows σ

tot.s j
xy in terms of θ

and m, where σ
tot.s j
xy = σ

tot.m.s j
xy + σ

tot.nm.s j
xy . As Fig. 6 shows,

σ
tot.s j
xy has a negligible sensitivity against θ . It can easily be

verified that this is true also for σ
tot.s j
yx . Therefore, among the

two different types of impurities, the nonmagnetic impurities
contribution to the side-jump conductivity σ

tot.s j
i j dominates.

We also want to stress that both σ
tot.m.s j
yx and σ

tot.nm.s j
yx have

positive signs for all values of m and θ , hence σ
tot.s j
yx is always

positive. However, σ
tot.m.s j
xy and σ

tot.nm.s j
xy have opposite signs.

Consequently, σ
tot.s j
xy could change sign if one changes m or θ .

Figure 6 shows this sign change at the boundaries of the black
region in this figure.

Finally, notice that even though the concentration of impu-
rities does not appear in the final expression for σ

tot.s j
i j , this

contribution does originate from the presence of impurities.
There are two parameters which play an important role in the
transport of electrons during their side jump, the so called
side-jump relaxation time and the side-jump velocity. The
first one is inversely proportional to the concentration of
impurities, though the second one is directly proportional to
the concentration of impurities. Therefore, interestingly, their
product is independent of the concentration of impurities.

3. Skew scattering

As we already indicated, skew scattering contributes to
the AHE by two distinct terms. Here, we call the first term
conventional skew scattering and the second term intrinsic
skew scattering. The first term depends on the concentration
of impurities and introduces ga1

k in the distribution function fk ,
and the other term which is independent of the concentration
of impurities adds ga2

k to fk . Since we deal now with the
intrinsic regime in which the first term is very negligible,
we just keep the second term. The associated contribution
to the second term is Jsk2 = −e

∑
k ga2

k v0k. In order to find
Jsk2, we first need to calculate w

(4)
kk′ through Eq. (16) and then

by solving Eq. (29) we find ga2
k . Our result for both kinds of

impurities are

w
(4.nm)
kk′ = 3Mπ

(
ninmV 2

0

)2

4h̄

k2

ε3
k

sin αk δ(εk − εk′ ), (41)

w
(4.m)
kk′ = w

(4)
0 γ [(γ 2 − 1) cos 2θ (sin φk cos φk′ − sin αk)

+ γ
√

1 − γ 2 sin 2θ (2 sin φk − sin φk′ )

− (γ 2 − 1)(sin αk + sin φk′ cos φk)], (42)

with αk = φk′ − φk and w
(4)
0 = π (nimJ2S2

m )2

4h̄3v2
F

δ(εk − εk′ ). Insert-

ing these scattering rates in Eq. (29) and using the already
found w

(2.m)
kk′ and gs

k expressions, we obtain the following
transverse conductivities associated to scattering off mag-
netic and nonmagnetic impurities (for more information see
Appendix D):

σ m.sk2
xy = 16(g − 2)[m2 − 1](− cos 4θ + (m2 + 2) cos 2θ + 2m2 + 2)

m([g + 2] cos 2θ + [g + 4]m2 − 2)(gcos 4θ + 2[g − 2]m2 cos 2θ + g − 4)
, (43)

σ m.sk2
yx = 4(g − 2)(b cos 2θ − g[2(g + 1)m4 + g − 2] − [g − 2][g + 2m2] cos 4θ + 8m4 − 4m2 + 8)

gm([g + 2m2] cos 2θ + [g + 2]m2)([g − 2][cos 2θ + m2] + cos 4θ − 1)
, (44)

σ nm.sk2
xy = −σ nm.sk2

yx = −3

2

(m2 − 1)2

m(m2 + 3)2
, (45)
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0 π/4 π/2

[

[
θ π  θ  π
θ  π θ  π
θ

0 π/4 π/2

[

[

θ θ  π
θ  π  θ  π
θ π

(a)

(b)

FIG. 7. σ m.sk2
xy is plotted in terms of θ for some different values of

m in the main window of (a), and against m for some different values
of θ in the inset of this panel. σ m.sk2

yx is plotted in (b) for the same
choice of parameters θ and m.

with b = 2[(−2g2 + g + 8)m2 − 2gm4 + g]. Note that
σ m.sk2

i j = 0 for the case m = 1 (the insulating regime) or
in the limit of large m (the perfect metallic regime). To study
σ m.sk2

i j , Eq. (43) and (44) are illustrated in panels (a) and (b)
of Fig. 7, respectively. As it is clear from panel (a), σ m.sk2

xy
increases with increasing θ for all values of m, and reaches
a maximum in the interval π

4 < θ < π
2 . The inset of panel

(a) shows σ m.sk2
xy as function of m for some values of θ . Each

curve in this inset shows a maximum value in the interval
1 � m � 2, followed by a sharp decrease. Panel (b) of this
figure shows σ m.sk2

yx as function of θ for some values of m.
The inset of this panel shows σ m.sk2

yx as function of m for some
values of θ . Surprisingly σ m.sk2

yx is negative for 0 � θ < π
3

and has a positive value for π
3 < θ � π

2 . This contribution
changes sign if one changes the spatial orientation of the
surface magnetization from 0 to π

2 . The inset of this figure
shows that, for all given values of θ , |σ m.sk2

yx | starts from zero
at m = 1, then increases till it reaches a maximum value
within the interval 1 � m � 2, after which it decreases. Also
in agreement with the main window of panel (b) which shows

0

0.5

1.0

1.5

0
0.25
0.50
0.75
1.00

(a)

(b)

FIG. 8. σ tot.sk2
xy and σ tot.sk2

yx as functions of θ and m, are plotted in
(a) and (b), respectively.

that the conductivity at θ = π
2 is positive for all values of m,

the green curve in the inset is positive for all values of m.
The observed sign change in σ m.sk2

yx can be understood
from Eq. (23), which is a consequence of the principle of
detailed balance, along with the conservation of the number
of particles, which leads to

∑
k (gs

k + gad
k + ga1

k + ga2
k ) = 0.

To fulfill these two constraints, the corresponding effective
mean free path λ̃m.a2,s

1,1 = εF
h̄vF

λm.a2,s
1,1 in ga2

k (see Appendix D),
changes sign, as shown by the green curve in Fig. 4. Since
λm.a2,s

1,1 is the only parameter involved in σ m.sk2
yx that depends on

θ , the observed sign change of σ m.sk2
yx is totally inherited from

this effective mean free path. Therefore, since each scattering
process should be compensated by its reverse process and
the external electric field should not alter the total number of
residing electrons in the allowed states, σ m.sk2

yx has to change
sign.

Finally, we consider the contribution due to the spin in-
dependent intrinsic skew scattering to the AHE, given in
Eq. (45). This expression indicates that this conductivity is
isotropic and also like σ m.sk2

i j it disappears for large values
of m.

We have now obtained the condunctivities σ m.sk2
i j and

σ nm.sk2
i j , which combined yield the total intrinsic skew scat-

tering σ tot.sk2
i j = σ m.sk2

i j + σ nm.sk2
i j . σ tot.sk2

xy and σ tot.sk2
yx are illus-

trated respectively in panels (a) and (b) of Fig. 8, in terms
of θ and m. The white lines in these two panels specify the
(θ, m) combinations for which the corresponding conductivity
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FIG. 9. σ int. AHE
xy [θ, m] and σ int. AHE

yx [θ, m] are plotted in (a) and
(b), respectively.

is zero. Panels (a) and (b) show that, for 1 < m � 2, σ tot.sk2
xy

and σ tot.sk2
yx undergo a considerable change with respect to θ .

Putting the Fermi level just above the gap and also aligning the
surface magnetization close to the surface of the TI (π

3 � θ �
π
2 ) causes the system to reach its maximum value for σ tot.sk2

i j .
It is also clear from panel (a) that there is just a small (θ, m)
region with a significant σ tot.sk2

xy , while in panel (b) a broad
region shows a significant conductivity σ tot.sk2

yx .

4. Total AHE in the intrinsic regime

After devoting Secs. III A 1–III A 3 to the different contri-
butions to the AHE in the intrinsic regime, we are ready to
discuss σ int. AHE

i j = σ an
i j + σ

tot.s j
i j + σ tot.sk2

i j . The result is illus-
trated in Fig. 9. Based on this figure, we observe that σ int. AHE

i j
is anisotropic. The black dashed line in panel (a) of Fig. 9
indicates the (m, θ ) combinations for which σ int. AHE

xy [m, θ ] =
0. Accordingly, tuning (m, θ ) around this dashed line leads to
a sign change in σ int. AHE

xy . As it its clear from panel (b) of this
figure, σ int. AHE

yx has always a persistent positive sign against
any change in θ or m. Also, note that like the contribution
of the intrinsic skew scattering, tuning the Fermi level just
above the gap and also aligning the magnetization close to the
surface, the maximum value for both components σ int. AHE

yx and
σ int. AHE

xy is attained. At the end of this section, we consider
two special magnetization orientations θ = 0 and π

2 . The

FIG. 10. σ int. AHE
i j is plotted as function of m for two values of

θ = 0 and π

2 .

total intrinsic anomalous Hall conductivities corresponding to
these two important cases are

σ int. AHE
xy [θ = 0] = m6 + 95m4 + 79m2 − 207

2(m2 + 3)2(3m3 + m)
, (46)

σ int. AHE
yx [θ = 0] = m6 − 81m4 − 49m2 + 225

2(m2 + 3)2(3m3 + m)
, (47)

σ int. AHE
xy

[
θ = π

2

]
= −29m4 + 54m2 + 45

6m(m2 + 3)2
, (48)

σ int. AHE
yx

[
θ = π

2

]
= 17m4 + 62m2 + 81

2m(m2 + 3)2
. (49)

Above expressions are shown in Fig. 10. According to this
figure, the anomalous Hall conductivity of the system with
in-plane magnetization in the intrinsic regime is much larger
than the conductivity of the same system and in the same
regime with fully out-of-plane magnetization. For a system
with fully out of plane easy axis magnetization (θ = 0) and
Fermi level close to the bottom of conduction band, the
skew scattering contribution is negligible and the other two
contributions control the AHE with comparable size. For the
same system but with in-plane easy axis magnetization (θ =
π
2 ), surprisingly the contribution arising from skew scattering
dominates the AHE. Remarkably, all contributions to the AHE
in this regime vanish for a system in the fully metallic state
(i.e., a large value of m), whatever the value of θ .

B. The extrinsic regime

According to our classification in Eq. (30), two terms
control the AHE. As we already explained, σ int. AHE

i j is neg-
ligible against σ ext. AHE

i j in the extrinsic regime. Then neither
the Berry-phase curvature nor the side jump play a role in
σ ext. AHE

i j , and the skew scattering is the only involved effect
to the AHE in this regime, by its conventional component
Jsk1 = ∑

k v0kga1
k . Since ga1

k is inversely proportional to the
concentration of the impurities, σ tot.sk1

i j = σ ext. AHE
i j dominates

the AHE in a very dilute regime. From Eq. (15), we obtain
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(a) (b)

FIG. 11. σ m.sk1
yx is plotted in terms of θ and m in (a) and (b),

respectively.

w
(3a.m)
kk′ for a magnetic scattering event and w

(3a.nm)
kk′ for a

nonmagnetic scattering event

w
(3a.m)
kk′ = w

(3a.m)
0 cos θ sin αk, (50)

w
(3a.nm)
kk′ = w

(3a.nm)
0 sin αk, (51)

with w
(3a.m)
0 = −π nimJ3S3

mk2

2 h̄ εk
δ(εk − εk′ ) and w

(3a.nm)
0 =

−π ninmV 3
0 Mk2

2 h̄ ε2
k

δ(εk − εk′ ). The factor cos θ in the above

expression implies that the z component of magnetization
is responsible for the conventional skew scattering in
our system. In addition the factor sin αk shows that the
corresponding event is asymmetric under the exchange of
indexes k ←→ k′. The result for nonmagnetic scatterers,
Eq. (51), is again in agreement with the literature (see
Eq. (70) in Ref. [34]). Substituting w

(3a.m)
kk′ in Eq. (28) gives

us the corresponding mean free paths λm.a1
i (k)(i = 1, 2), from

which we obtain the distribution function gm.a1
k using Eq. (25),

and subsequently the following corresponding conductivity
for scattering off magnetic impurities (for more details see
Appendix C):

σ m.sk1
xy = D(2 − g)(cos 2θ + m2)

(gcos 4θ + 2(g − 2)m2 cos 2θ + g − 4)
, (52)

with D = ηm
1

4(m2−1) cos θ

(g+2) cos 2θ+(g+4)m2−2 , ηm
1 = μ

nimSmJ . Also, we show

that σ m.sk1
yx = −σ m.sk1

xy .
In panel (a) of Fig. 11, σ m.sk1

yx [ηm
1 ] is shown against θ for

some values of m. This figure shows that σ m.sk1
yx smoothly

increases for increasing θ , until it reaches a maximum in the
interval π

4 < θ < π
2 . Thereafter it sharply decreases until it

vanishes at θ = π
2 . Panel (b) shows that putting the surface of

the system into the insulator regime, i.e., m = 1, turns off the
transverse conductivity σ m.sk1

yx , regardless of the orientation of
the magnetization. For larger values of m, σ m.sk1

yx increases
with increasing m. In addition, as shown by the black curve
in panel (a), the conductivity saturates at σ m.sk1

yx (m → ∞) =
ηm

1
cos θ

6+3 cos 2θ
for very large values of m. Thus by closing the

gap or driving the system into a perfect metallic regime,
conventional skew scattering still has a nonzero contribution
in the conductivity of the system. This feature reveals one of
the main differences between the magnetic skew scattering

contribution and the other contributions which vanish in a
gapless system or in the perfect metallic regime.

Since the conductivity of electrons during conventional
magnetic skew scattering depends on v0k and gm.a1

k (see
Appendix C), its behavior with respect to θ can be easily
traced by looking at the behavior of v0k and gm.a1

k against
θ . As v0k is independent of θ , studying gm.a1

k against θ is
sufficient for this purpose. Considering that σ m.sk1

yx = −σ m.sk1
xy ,

we just discuss the distribution function associated to σ m.sk1
yx ,

gm.a1
k = eEλm.a1

1k
∂ f 0

∂εk
. Among all terms in the Fourier expan-

sion of λm.a1
1k , we just need to discuss effective term λ̃m.a1,s

1,1 =
JnimSm

h̄vF
λm.a1,s

1,1 . The curve corresponding to this term is the blue
curve in Fig. 4. This curve shows that when θ increases,
λ̃m.a1,s

1,1 and consequently the number of electrons participating
in the conventional magnetic skew scattering increase very
smoothly, and decrease again after a certain value of θ , and
further turn off at the θ = π

2 . Accordingly, as Fig. 11 confirms,
the contribution of the magnetic conventional skew scattering
to the AHE σ m.sk1

yx has the same trend of λ̃m.a1,s
1,1 against θ .

Repeating the same calculations for the conventional skew
scattering contribution due to scattering of nonmagnetic impu-
rities, we obtain the following expression for the conductivity:

σ nm.sk1
yx = −σ nm.sk1

xy = ηnm
1

(m2 − 1)2

m(m2 + 3)(5 + 3m2)
, (53)

with ηnm
1 = μ

ninmV0
. The minimum value of |σ nm.sk1

i j [m]| is
obtained in those systems with the Fermi level just above the
bottom of the conduction band, and the maximum value is
reached in a system with m = 3.5. Equation (53) does not co-
incide completely with Eq. (72) in Ref. [34], which might be
due to an extra approximation that is made in Ref. [34]. Like
all the previously discussed contributions, this contribution is
zero for an insulating surface m = 1. In contrast to σ m.sk1

i j , this
contribution is absent in the perfect metallic regime m → ∞.
Since σ tot.sk1

i j = σ m.sk1
i j + σ nm.sk1

i j = −σ tot.sk1
ji , we just discuss

σ tot.sk1
yx in the remaining part. Figure 12 shows σ tot.sk1

yx [ηnm
1 ] in

terms of θ and m for two different values of ν = ηm
1

ηnm
1

, ν = 0.1
and ν = 100 in panels (a) and (b), respectively, for the partic-
ular case of nim = ninm. It shows that increasing m increases
σ tot.sk1

yx , while increasing ν decreases this conductivity. In
addition, this contribution becomes insignificant for small
values of m, independent of the value of ν and θ .

Also note that, in contrary to the total contribution of the
side jump and intrinsic skew scattering, the total contribution

0
0.5
1.0
1.5
2.0

(a) (b)

0
0.1
0.2
0.3
0.4
0.5

FIG. 12. σ tot.sk1
yx [ηnm] is plotted in terms of θ and m for ν = 0.1

and ν = 100 in (a) and (b), respectively.
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(a) (d)

(b) (e)

(c) (f)

FIG. 13. σ AHE
xy and σ AHE

yx are plotted respectively in the first and
second columns, in terms of θ and m, for some values of nim.
First, second, and third rows correspond to nim = 0.4, 0.7 and 1,
respectively.

of the conventional skew scattering never changes its sign,
whatever the value of θ , m or E.

There is some experimental and theoretical evidences that
the surface magnetization of a TI is preferentially orientated
in the plane of the surface or perpendicular to it [31,53]. For
these orientations, θ = 0 and π

2 , σ tot.sk1
yx [ηnm

1 ] is given by

σ tot.sk1
yx [θ = 0] = −ν − νm2

3m2 + 1
+ m4 − 2m2 + 1

3m5 + 14m3 + 15m
, (54)

σ tot.sk1
yx

[
θ = π

2

]
= (m2 − 1)2

2(3m4 + 14m2 + 15)
. (55)

Investigations of the above expressions show that σ tot.sk1
yx [θ =

0] does not vary much against m for small values of ν.
However, for large ν values, it undergoes a large change with
respect to m. Moreover, since the magnetic skew scattering
of the Fermi electrons has no contribution to the AHE in a
system with in-plane magnetization, the σ tot.sk1

yx [θ = π
2 ] does

not change with ν.

C. The intermediate regime

In this regime, extrinsic and intrinsic terms both contribute
to the AHE with comparable sizes. Figure 13 is shown to dis-
cuss the behavior of the conductivity σ AHE

i j in terms of θ and m

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14. σ AHE
xy is plotted in terms of nim and m for some values

of θ and ν. The blue part corresponds to negative values of σ AHE
xy

and the red part corresponds to positive values. The first, second,
and third rows correspond to ν = 10, 0.1, and 0, respectively. Also,
first, second and third column correspond to θ = π

6 , π

3 , and 0.44π ,
respectively.

for some values of nim(=ninm ) at an arbitrary ν = ηm
1

ηnm
1

= 0.83.

The first column of this figure illustrates how σ AHE
xy behaves

against θ and m for nim = 0.4, 0.7, and 1 in panels (a), (b), and
(c), respectively. In the second column, σ AHE

yx is shown for the
same choices of nim. As it is shown in panels (a), (b), and (c)
there is a crossover from the positive values to the negative
values for the corresponding conductivity. In addition, the
maximum value of σ AHE

xy occurs if we place the Fermi level
close to the bottom of the conduction band and also adjust
the surface magnetization close to π

2 . Surprisingly, in contrast
to σ AHE

xy , the second column illustrates that σ AHE
yx is always

positive. This term in panel d , e and f gets its maximum value
for large values of m (close to 5) and a magnetization within
π
4 � θ � π

2 . Then, although these two components of σ AHE
i j

behave differently respect to given parameters, they share this
feature that they get their maximum value around θ � π

2 .
Moreover, as all panels in Fig. 14 except panels (a) and (d)

show, σ AHE
xy undergoes a sign change with respect to nim. This

sign change in the anomalous Hall conductivity has recently
been observed experimentally [31]. Remarkably, for specific
impurity concentrations, the AHE can two times undergo a
sign change by increasing the Fermi level m, as panels (b)
and (e) of Fig. 15 show. This interesting sign change of the
AHE is inherited from the nonmonotonic behavior of all the
contributions to the AHE. In addition, this nonmonotonic
behavior of the AHE distinguishes it from the corresponding
reported longitudinal conductivity [52].
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(a) (b)

(c) (d)

FIG. 15. σ AHE
xy and σ AHE

yx are plotted in the first and the second
columns, respectively. In the first row, these conductivities are plotted
against m for nim = ninm = 1 and ν = 1, and in the second row,
against nim for m = 3 and ν = 1. The red and blue curves correspond
to the cases θ = 0 and π

2 , respectively. It is clear that, in contrast
to the case θ = π

2 , sign changes occur with respect to m or nim for
θ = 0.

Finally, like in previous sections, we briefly discuss the
two cases σ AHE

i j [θ = 0] and σ AHE
i j [θ = π

2 ]. All red curves in
Fig. 15, corresponding to σ AHE

i j [θ = 0] undergo a sign change
via changing m or nim, in contrary to σ AHE

i j [π
2 ] (blue curve)

which does not show such a sign change. Therefore, since
the AHE in this regime is very anisotropic, observing its sign
change with respect to m or nim, requires properly adjusting
all the involved parameters, the direction of external electric
field, the orientation of the surface magnetization, the position
of the Fermi level, the concentration of the impurities and
also the ratio of the nonmagnetic scattering potential to the
magnetic scattering potential.

In addition, note that in the absence of magnetic impurities,
we can write the total AHE as

σ AHE
i j = σ an

i j + σ
tot.nm.s j
i j + σ nm.sk1

i j + σ nm.sk2
i j . (56)

For i j = xy, one can show, based on Eqs. (32), (40),
(53), and (45), that σ an

xy < 0, σ
tot.nm.s j
xy < 0, σ nm.sk1

xy < 0 and
σ nm.sk2

i j < 0. Obviously, in the absence of magnetic impuri-
ties σ AHE

xy < 0 for all m � 1. For i j = yx, considering that

σ an
yx = −σ an

xy , σ
tot.nm.s j
yx = −σ

tot.nm.s j
xy , σ nm.sk1

yx = −σ nm.sk1
xy , and

σ nm.sk2
yx = −σ nm.sk2

xy , it is clear that in the absence of magnetic
impurities σ AHE

yx > 0 for all m � 1. Therefore we can con-
clude that, in the presence of just nonmagnetic impurities, the
AHE never undergoes a sign change, whatever the direction
of E. The absence of this sign change in the AHE in a system
with only nonmagnetic impurities has been already reported
in both the noncrossing [34] as the crossing regime [35].

Table I and Fig. 16 help us to figure out the story behind
the observed sign changes in this and previous sections. In

TABLE I. The signs of the different contributions to the AHE
are summarized. E = Ex̂ is perpendicular to the plane of the surface
magnetization (yz plane) and E = Eŷ is parallel to the plane of the
surface magnetization.

case the external electric field is exerted perpendicular to the
plane of the surface magnetization, all contributions to the
AHE have a positive sign, except the one produced by the
magnetic intrinsic skew scattering σ m.sk2

i j which, depending on
(m, θ ) can have a positive or negative sign. When the external
electric field is exerted parallel to the plane of the surface
magnetization, all contributions to the AHE have negative
sign, except those arising from the magnetic side-jump and
the magnetic intrinsic skew scattering. In the first case (i.e.,
the electric field is along x̂), σ m.sk2

yx has a negative sign only
within 0 � θ � π

3 , as also shown in Fig. 7. However, since
this negative value is insignificant compared to the sum of
the positive terms, the anomalous Hall conductivity always
has a persistent positive sign against (m, θ ), if E = Ex̂.
Regarding the second case (i.e., the electric field is along ŷ),
all involved mechanisms contribute to the AHE with negative

(a)

(b)

FIG. 16. All contributions to the AHE (solid lines and the total
conductivity (dashed line), plotted against θ . In (a), m = 1.6, nim =
ninm = 1, ηm

1 = ηnm
1 = 0.8 and in (b), m = 2, nim = ninm = 1, ηm

1 =
ηnm

1 = 1.
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sign except the magnetic side-jump and the magnetic intrinsic
skew scattering. Accordingly, depending on the value of m,
θ , ηm

1 , and ηnm
1 , the anomalous Hall conductivity can have a

negative or positive sign. In order to produce an anomalous
Hall current with persistent sign against any change in θ , m,
ηnm

1 , and ηn
1, either the sum of the terms with negative sign or

the sum of the terms with positive sign should dominate the
AHE.

An example is shown in Fig. 16. In panel (a), the significant
positive component σ m.sk2

xy is large enough to overwhelm the
sum of the negative contributions and finally imposes a sign
change in σ AHE

xy via tuning θ around π
4 . Though, if we just

increase m from m = 1.6 [in panel (a)] to m = 2 [in panel
(b)] and keep the other variables unchanged, the relative
importance of σ m.sk2

xy weakens and eventually leads to the
appearance of the AHE with a persistent negative sign, as
shown in panel (b) of this figure.

IV. SUMMARY

In this work, the anomalous Hall conductivity of a 3D TI is
investigated systematically using the semiclassical Boltzmann
approach along with a modified relaxation time scheme, in
terms of the Fermi level (εF ) and the band gap (2M), the
spatial orientation of the surface magnetization θ (an ori-
entation perpendicular to the surface corresponds to θ = 0,
an orientation in the ŷ direction to θ = π

2 ) and also the
concentration of magnetic and nonmagnetic impurities. There
are three contributions to the AHE, namely, the intrinsic
effect (arising from a nonzero Berry curvature), the side-jump
effect and the skew scattering effect. They are competing to
dominate the anomalous hall conductivity of the system. In
this work by applying a fully analytical method we investigate
how the spatial orientation of the surface magnetization and
also the value of m = εF /M influence the transport of the
massive Dirac fermions on the surface of a 3D TI, doped with
static point like, randomly placed, magnetic and nonmagnetic
impurities. Since the contribution of nonmagnetic impurities
to the AHE has been investigated by others before [34],
here we mainly focus on the effect of magnetic impurities to
the AHE. Concerning the side-jump contribution, by tuning
the surface magnetization near the surface of the TI and
also putting the Fermi level just above the bottom of the
conduction band, one can turn off and on the total side-
jump contribution in the presence of both kinds of impurities.
Next, the contributions coming from conventional and intrin-
sic skew scattering are investigated. In contrary to the total
magnetic side-jump contribution, which vanishes in a fully
metallic regime, the conductivity corresponding to magnetic
conventional skew scattering surprisingly gets its maximal
value in this regime. However, similar to the side-jump mag-
netic contribution, it disappears in a system with in-plane
magnetization. In the presence of nonmagnetic impurities, the
total contribution of the conventional skew scattering is still
isotropic, and in the metallic regime it reaches a significant
value if the magnetization is out of plane. In addition, the
skew scattering effect contributes to the AHE through an
additional correction, called the intrinsic term. Our results

show that, despite the previous conventional contribution, this
contribution does not vanish at θ = π

2 . Besides, this intrinsic
contribution disappears at the fully metallic regime, just like
the side-jump contribution. Remarkably, by applying an exter-
nal electric field perpendicular to the in-plane component of
the magnetization, and tuning θ around θ = π

3 , one can turn
off this term. Therefore, by considering all these observations,
we come to the conclusion that in the metallic regime (or the
gapless regime) the conventional skew scattering dominates
the AHE in a system with a low concentration of magnetic
impurities. Out of this very dilute regime, by tuning θ around
π
2 and m around 1 and also exerting an external electric field
perpendicular to the in-plane component of the magnetization,
the AHE gets its maximal reachable value. If the extrinsic and
intrinsic terms both contribute to the AHE with comparable
sizes (the intermediate regime), one can observe a sign change
in the anomalous Hall conductivity not only via tuning the
Fermi level or the spatial orientation of the surface magneti-
zation, but surprisingly also via tuning the concentration of
the impurities, for a certain range of the other parameters.
Let us highlight that the nonmonotonic behavior of the found
AHE, which perfectly distinguishes it from the longitudinal
conductivity, manifest itself in the found sign change. Besides,
this sign change of the AHE does not occur in the absence of
the magnetic impurities.
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APPENDIX A: LONGITUDINAL MAGNETIC
MEAN FREE PATHS λm.s

i

To calculate the current density of the system J =
−e

∑
k vk fk, we need to find the following three terms in the

velocity of the electrons vk = v0k + van
k + vs j

k and also the
following five terms in the distribution function of the Dirac
fermions fk = f 0 + gs

k + ga1
k + ga2

k + gad
k . These terms in the

velocity of the electrons are calculated in the main text of
this work. The next step is to calculate the equilibrium dis-
tribution function of the Dirac fermions. As the dynamics of
these fermions during scattering off nonmagnetic impurities
is isotropic, it can be treated by the widely used relaxation
time scheme and therefore we do not include the nonmagnetic
case in the following discussion. Here we go through the
details of the calculation of all introduced corrections in
the conductivity of the system that arise from scattering by
magnetic impurities. Based on Eq. (25), in order to find gp

k,
first the associated mean free paths λ

p
i have to be calculated.

In this section, we first clarify the procedure to obtain λm.s
i .

In Appendix B, Appendix C and finally in Appendix D,
we go through the calculation of λm.ad

i , λm.sk1
i , and λm.sk2

i ,
respectively.

To find the longitudinal conductivity of the system, we
need to find the distribution function of the electrons dur-
ing their conventional scattering off magnetic impurities.
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According to Eqs. (25) and (26), we arrive at

v0k · x̂i =
∑

k′
w

(2.m)
kk′

[
λm.s

i (k) − λm.s
i (k′)

]
, (A1)

where w
(2.m)
kk′ is transition rate of magnetic scatterings. Replacing the mean free path with its Fourier expansion λm.s

i (k, θ ) =∑∞
n=1[λ0

i (k) + λm.s,c
i,n(k) cos nφk + λm.s,s

i,n (k) sin nφk] leads to

v0k · x̂i =
∑

k′

∞∑
n=1

w
(2.m)
kk′

(
λm.s,c

i,n [cos nφk − cos nφk′ ] + λm.s,s
i,n [sin nφk − sin nφk′]

)
, (A2)

where x̂1 = x̂ and x̂2 = ŷ. Before continuing our discussion, note that conservation of the number of particles imposes

N =
∑

k

f 0
k =

∑
k

(
f 0
k + gs

k + gad
k + ga1

k + ga2
k

)
. (A3)

Therefore
∑

k (gs
k + gad.

k + ga1
k + ga2

k ) = 0, and hence all the constant terms in the Fourier expansions are zero. After some
calculations, we obtain

λm.s
i (k, θ ) = αm.s,0

i + (
αm.s,c

i + δi,1
)

cos φk + (
αm.s,s

i + δi,2
)

sin φk

2(βk cos φk + 1)
(
γ 2

k cos 2θ + 1
) λm.s

0 , (A4)

where βk = γk

√
1−γ 2

k sin 2θ

γ 2
k cos 2θ+1

, αm.s,0
i = γk

√
1 − γ 2

k sin 2θ
λ

m.s,c
i,1

λm.s
0

, αm.s,c
i = (1 − γ 2

k )(2 sin2 θ − 1)
λ

m.s,c
i,1

λm.s
0

, αm.s,s
i = (γ 2

k − 1)
λ

m.s,s
i,1

λm.s
0

and

λm.s
0 = 4h̄3v3

F

√
1−γ 2

k

nimJ2S2
mεk

. As it is clear from the equations above, λm.s,c
i,1 and λm.s,s

i,1 are the only two required Fourier coefficients of
λm.s

i , as the other higher-order Fourier coefficients (n > 1) are a function of these two primary coefficients. These crucial Fourier
coefficients can be obtained straightforwardly as follows:

πλm.s,c
i,1 −

∫ 2π

0

αm.s,0
i + (

αm.s,c
i + δi,1

)
cos φk + (

αm.s,s
i + δi,2

)
sin φk

2(βk cos φk + 1)
(
γ 2

k cos 2θ + 1
) λm.s

0 cos φkdφk = 0,

πλm.s,s
i,1 −

∫ 2π

0

αm.s,0
i + (

αm.s,c
i + δi,1

)
cos φk + (

αm.s,s
i + δi,2

)
sin φk

2(βk cos φk + 1)
(
γ 2

k cos 2θ + 1
) λm.s

0 sin φkdφk = 0. (A5)

After solving the above set of integral equations, we arrive at

λm.s,c
1,1 = 4 h̄3v3

F

nimJ2S2
mεk

√
1 − γ 2

k

1 + �k + (
1 + �kγ

2
k

)
cos 2θ

, λm.s,s
1,1 = 0, (A6)

λm.s,c
2,1 = 0, λm.s,s

2,1 = 4 h̄3v3
F

nimJ2S2
mεk

√
1 − γ 2

k

1 − γ 2
k + (1 + �k )

(
1 + γ 2

k cos 2θ
) , (A7)

where � = (1 − γ 2
k (1−γ 2

k ) sin2 2θ

(1+γ 2
k cos 2θ )2 )

1/2
. Putting the found nonzero Fourier coefficient λm.s,c

1,1 and λm.s,s
2,1 in Eq. (A4) gives

λm.s
1 =

Ak cos φk + γk sin 2θ

√
1 − γ 2

k

[1 + βk cos φk]
[
1 + γ 2

k cos 2θ
][

A + [1 − γ 2
k

]
cos 2θ ]

λm.s
0

2
, (A8)

λm.s
2 = (1 + �k ) sin φk

[1 + βk cos φk]
[
1 + Ak − γ 2

k

] λm.s
0

2
, (A9)

where Ak = (1 + �k )(1 + γ 2
k cos 2θ ). Therefore the resultant correction to the distribution function of the electrons due to the

conventional scattering of electrons from magnetic impurities is

gm.s
k = eE

⎡
⎣ Ak cos φk + γk sin 2θ

√
1−γ 2

k

[1+βk cos φk]
[
1+γ 2

k cos 2θ
][

Ak + [
1 − γ 2

k

]
cos 2θ

] λm.s
0

2
cos χ + (1 + �k ) sin φk

[1 + βk cos φk]
[
1 + Ak − γ 2

k

] λm.s
0

2
sin χ

⎤
⎦∂εk f 0.

(A10)

APPENDIX B: SIDE-JUMP-ASSOCIATED MEAN FREE PATHS λm.ad
i

As it was indicated in the main text, electrons during scattering off magnetic impurities undergo a side jump which changes
the velocity of the electrons and also their distribution function. This leads to the following two corrections to the conductivity:
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σ
m.s j
i j and σ m.ad

i j . Since we have already found the associated distribution function gm.s
k , we needn’t to calculate σ

m.s j
i j , thus

in this section, we just present the details of calculating σ m.ad
i j . As before, we ignore the side jump of the electrons during

their skew scattering. As we did to calculate gm.ad
k , we replace λm.ad

i in Eq. (27) with their Fourier expansions λm.ad
i (k, θ ) =∑∞

n=1[λm.ad,c
i,n cos nφk + λm.ad,s

i,n sin nφk]. By assuming that the external electric field is exerted along x̂i, Eq. (27) is converted into

vm.s j
k · x̂i =

∑
k′

∞∑
n=1

w
(2.m)
kk′

(
λm.ad,c

i,n [cos nφk − cos nφk′ ] + λm.ad,s
i,n [sin nφk − sin nφk′]

)
. (B1)

Using the already found functions vm.s j
k in Eq. (35), we arrive at

λm.ad
i (k, θ ) = αm.ad,0

i + [
αm.ad,c

i − δi,2
]

cos φk + (
αm.ad,s

i + [2 − cos 2θ ] δi,1
)

sin φk

2[βk cos φk + 1]
[
γ 2

k cos 2θ + 1
] λm.ad

0 , (B2)

where αm.ad,0
i = γk

√
1 − γ 2

k sin 2θ
λm.ad,c

i,1

λm.ad
0

, αm.ad,c
i = (1 − γ 2

k )(2 sin2 θ − 1)
λm.ad,c

i,1

λm.ad
0

, αm.ad,s
i = (γ 2

k − 1)
λm.ad,s

i,1

λm.ad
0

, and λm.ad
0 =

h̄vF
2εk

γk

√
1 − γ 2

k . Finally we have to solve the set of equations

πλm.ad,c
i,1 −

∫ 2π

0

αm.ad,0
i + [

αm.ad,c
i − δi,2

]
cos φk + (

αm.ad,s
i + [2 − cos 2θ ] δi,1

)
sin φk

2[βk cos φk + 1]
[
γ 2

k cos 2θ + 1
] λm.ad

0 cos φk dφk = 0

πλm.ad,s
i,1 −

∫ 2π

0

αm.ad,0
i + [

αm.ad,c
i − δi,2

]
cos φk + (

αm.ad,s
i + [2 − cos 2θ ] δi,1

)
sin φk

2[βk cos φk + 1]
[
γ 2

k cos 2θ + 1
] λm.ad

0 sin φk dφk = 0. (B3)

Their solution is

λm.ad,s
1,1 =

[√
1 − β2

k − 1
]
[cos 2θ − 2]

β2
k

[
1 + γ 2

k cos 2θ
] + [√

1 − β2
k − 1

][
γ 2

k − 1
]λm.ad

0 , λm.ad,c
1,1 = 0, (B4)

λm.ad,c
2,1 = − 1[[√

1 − β2
k − β2

k

]
γ 2

k + 1
]

cos 2θ − β2
k +

√
1 − β2

k + βkγk

√
1 − γ 2

k sin 2θ + 1
λm.ad

0 , λm.ad,s
2,1 = 0. (B5)

Inserting λm.ad,s
1,1 and λm.ad,c

2,1 in Eq. (B2) leads to

λm.ad
1 (k, θ ) = (2 − cos 2θ ) sin φk(

1 + γ 2
k cos 2θ + β−1

k

[√
1 − β2

k − 1
][

γ 2
k − 1

])
[1 + βk cos φk]

λm.ad
0 , (B6)

λm.ad
2 (k, θ ) = −

γk

√
1 − γ 2

k sin 2θ + ck cos φk

2[1 + βk cos φk]
[
1 + γ 2

k cos 2θ
][

ck + (
1 − γ 2

k

)
cos 2θ

]λm.ad
0 , (B7)

where ck = (1 − β2
k +

√
1 − β2

k )(1 + γ 2
k cos 2θ ) + βkγk

√
1 − γ 2

k sin 2θ .
Finally, the associated correction to the distribution function of the electrons arising from the side jump can be written as,

based on Eq. (25),

gm.ad
k = eEλm.ad

0 ∂εk f 0

[1 + βk cos φk]

⎡
⎣ (2 − cos 2θ ) sin φk cos χ(

1 + γ 2
k cos 2θ + β−1

k

[√
1 − β2

k − 1
][

γ 2
k − 1

]] ) −
γk

√
1 − γ 2

k sin 2θ + ck cos φk

2
[
1 + γ 2

k cos 2θ
][

ck + (
1 − γ 2

k

)
cos 2θ

] sin χ

⎤
⎦.

(B8)

APPENDIX C: CONVENTIONAL SKEW SCATTERING ASSOCIATED MEAN FREE PATH λm.sk1
i

The conventional and intrinsic skew scattering contribute to the conductivity of the system via changing the distribution
function of the electrons, as the velocity of the electrons does not change, in contrary to the side-jump effect. Based on Eq. (21),

gm.a1
k =

∑
k′ w

(2.m)
kk′ gm.a1

k′ + ∑
k′ w

(3a.m)
kk′

(
gm.s

k′ − gm.s
k

)
∑

k′ w
(2.m)
kk′

. (C1)
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Since gm.s
k has been already found, we just need to find gm.a1

k . By using Eq. (50), it can be straightforwardly proven that∑
k′ w

(3a.m)
kk′ = 0. Therefore Eq. (C2) can be rewritten in terms of the mean free paths as

λm.a1
i (k, θ ) =

∑
k′ w

(3a.m)
kk′ λm.s

i (k′, θ ) + ∑
k′ w

(2.m)
kk′ λm.a1

i (k′, θ )∑
k′ w

(2.m)
kk′

. (C2)

Using the Fourier expansions of these mean free paths λm.a1
i (k, θ ) = ∑∞

n=1[λm.a1,c
i,n(k) cos nφk + λm.a1,s

i,n (k) sin nφk] leads to

λm.a1
i (k, θ ) = αm.a1,0

i + [
αm.a1,c

i − δi,2
JSm cos θ k2

2εk
λm.s,s

i,1

]
cos φk + [

αm.a1,s
i + δi,1

JSm cos θ k2

2εk
λm.s,c

i,1

]
sin φk

2
(
1 + γ 2

k cos 2θ
)
(1 + βk cos φk]

, (C3)

where αm.a1,0
i = γk

√
1 − γ 2

k sin 2θ λm.a1,c
i,1 , αm.a1,c

i = (1 − γ 2
k )(2 sin2 θ − 1)λm.a1,c

i,1 , αm.a1,s
i = (γ 2

k − 1)λm.a1,s
i,1 . Four unknown cru-

cial Fourier coefficients λm.a1,c
i,1 and λm.a1,s

i,1 can be found through solving a set of equations such Eqs. (A5) and (B3). After solving
this set of equations, we arrive at

λm.a1,s
1,1 = h̄vF

JnimSm

2
(
1 − γ 2

k

)√
1 − γ 2

k cos θ[
1 + �k + cos 2θ + γ 2

k �k cos 2θ
][

2 + �k + γ 2
k �k cos 2θ − 2γ 2 sin2 θ

] , (C4)

λm.a1,c
2,1 = h̄vF

JnimSm

4(1 − �k )
√

1 − γ 2
k

(
1 + γ 2

k cos 2θ
)

cos θ[
γ 2

k (�k + 1) cos 2θ − γ 2
k + �k + 2

][
γ 2

k (�k cos 4θ + �k − 2) + 2(�k − 1) cos 2θ
] , (C5)

and λm.a1,c
1,1 = λm.a1,s

2,1 = 0. Inserting the resultant nonzero Fourier coefficients in Eq. (C3), one obtains the mean free paths of the
electrons during magnetic conventional skew scattering:

λm.a1
1 (k, θ ) = − h̄vF

JSmnim

(1 + �k ) cos θ sin φk[(
�kγ

2
k + 1

)
cos 2θ + �k + 1

]
[pk + pkβk cos φk]

, (C6)

λm.a1
2 (k, θ ) = h̄vF

JSmnim

cos θ
{[

(4 − 4�k ) cos 2θ + (2�k − 3)γ 2
k + (2�k − 1)γ 2

k cos 4θ
]

cos φk + Bk
}

[
1 + γ 2

k cos 2θ
] [

�kγ
2
k cos 4θ + (2�k − 2) cos 2θ + (�k − 2)γ 2

k

]
[pk + pkβ cos φk]

, (C7)

pk = {γ 2[(�k + 1) cos 2θ − 1] + �k + 2}(1 − γ 2
k )−3/2, Bk = 2(1 − γ 2

k )−1/2γk (�k − 1)(1 + γ 2
k cos 2θ ) sin 2θ .

Finally, the associated correction to the distribution function of the electrons arising from the side jump can be written, based
on Eq. (25), as

gm.a1
k = αm.a1

([
(4 − 4�k ) cos 2θ − 2γ 2

k + (2�k − 1)γ 2
k (cos 4θ + 1)

]
cos φk + Bk(

1 + γ 2
k cos 2θ

) (
�kγ

2
k cos 4θ + (2�k − 2) cos 2θ + (�k − 2)γ 2

k

) sin χ − (1 + �k ) sin φk cos χ(
�kγ

2
k + 1

)
cos 2θ + �k + 1

)
,

(C8)

with αm.a1 = eE∂εk f 0

pk+pkβk cos φk

h̄vF
JSmnim

.

APPENDIX D: INTRINSIC SKEW SCATTERING ASSOCIATED MEAN FREE PATH λm.a2
i

Like the conventional skew scattering, this contribution to the skew scattering just alters the distribution function of the
electrons and leaves the velocity of the electrons unchanged. Using Eq. (23), which connects the conventional magnetic scattering
of electrons to their intrinsic magnetic skew scattering, we arrive at∑

k′
w

(4m)
kk′

[
λm.s

i (k) − λm.s
i (k′)

] +
∑

k′
w

(2.m)
kk′

[
λm.a2

i (k) − λm.a2
i (k′)

] = 0, (D1)

which after rewriting gives

λm.a2
i =

∑
k′ w

(2.m)
kk′ λm.a2

i (k′) + w
(4.m)
kk′

[
λm.s

i (k′) − λm.s
i (k)

]
∑

k′ w
(2.m)
kk′

. (D2)

Applying the Fourier expansions of the mean free paths λm.a2
i as λm.a2

i (k) = ∑∞
n=1[λm.a2,c

i,n cos nφk + λm.a2,s
i,n sin nφk] leads to

λm.a2
i =

∑
k′,n w

(2.m)
kk′

[
λm.a2,c

i,n cos nφk′ + λm.a2,s
i,n sin nφk′

] + ∑
k′ w

(4.m)
kk′

[
λm.s

i (k′) − λm.s
i (k)

]
∑

k′ w
(2.m)
kk′

. (D3)
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Using the already found w
(2.m)
kk′ , w

(4.m)
kk′ and λm.s

i (k′), we arrive at

λm.a2
i = ([

γ 3
k − γk

](
[2 cos 2θ + 1]λm.s.c

i,1 sin φk − λm.s.s
i,1 [cos 2θ + 2] cos φk

) − γ 2
k

√
1 − γ 2

k λm.s.s
i,1 sin 2θ

)
αm.a2

1

+ (
1
2

[
γ 2

k − 1
]
λm.a2.s

i,1 sin φk + 1
2

[
γ 2

k − 1
]
λm.a2.c

i,1 cos 2θ cos φk + 1
2γk

√
1 − γ 2

k λm.a2.c
i,1 sin 2θ

)
αm.a2

0

− 4 λm.s
i γk

√
1 − γ 2

k sin φk sin 2θ αm.a2
1 , (D4)

where αm.a2
0 = 1

γ 2
k cos 2θ+γk

√
1−γ 2

k sin 2θ cos φk+1
, and αm.a2

1 = nimJ2S2
m

8h̄2v2
F

1

γ 2
k cos 2θ+γk

√
1−γ 2

k sin 2θ cos φk+1
. These two crucial nonzero Fourier

coefficients λm.s,c
1,1 and λm.s,s

2,1 are given in Eqs. (A6) and (A7). Four unknown crucial Fourier coefficients λm.a2,c
i,1 and λm.a2,s

i,1 can be
obtained by solving a set of equations as we did in Eq. (A5) or (B3). After solving this set of equations, we arrive at

λm.a2.s
1,1

[
h̄vF

εk

]
= 8(γk − �kγk )

(
γ 4

k (�k − 2)(�k + 1) + γ 2
k (�k − 1)

(
γ 2

k �k + 1
)

cos 4θ − ξk cos 2θ + γ 2
k + 2�2

k + �k − 2
)

�k

√
1 − γ 2

k

([
γ 2

k �k + 1
]

cos 2θ + �k + 1
)(

(cos 2θ [�k − 1] − sin2 2θ )γ 2
k + �k − 1

) ,

(D5)

λm.a2.c
2,1

[
h̄vF

εk

]
=

16γk

√
1 − γ 2

k [�k − 1]
(−γ 2

k cos 4θ + [2γ 2
k + 1] cos 2θ + 2γ 2

k + 2
)

(
γ 2

k (�k + 1) cos 2θ − γ 2
k + �k + 2

)(
γ 2

k (�k cos 4θ + �k − 2) + 2(�k − 1) cos 2θ
) , (D6)

where ξk = γ 2
k (�k[γ 2

k − 4�k + 1] + 4) − 2�k and λm.a2.c
1,1 = λm.a2.s

2,1 = 0. We can express the correction to the distribution
function of the electrons due to the magnetic intrinsic skew scattering as

gm.a2
k = ([

γ 3
k − γk

](
[2 cos 2θ + 1]λm.s.c

1,1 sin φk − λm.s.s
1,1 [cos 2θ + 2] cos φk

) − γ 2
k

√
1 − γ 2

k λm.s.s
1,1 sin 2θ

)
αm.a2

2

+ (
1
2

[
γ 2

k − 1
]
λm.a2.s

1,1 sin φk + 1
2

[
γ 2

k − 1
]
λm.a2.c

1,1 cos 2θ cos φk + 1
2γk

√
1 − γ 2

k λm.a2.c
1,1 sin 2θ

)
αm.a2

3

− 4 λm.s
1 γk

√
1 − γ 2

k sin φk sin 2θ αm.a2
2

+ ([
γ 3

k − γk
](

[2 cos 2θ + 1]λm.s.c
2,1 sin φk − λm.s.s

2,1 [cos 2θ + 2] cos φk
) − γ 2

k

√
1 − γ 2

k λm.s.s
2,1 sin 2θ

)
αm.a2

4

+ (
1
2

[
γ 2

k − 1
]
λm.a2.s

2,1 sin φk + 1
2

[
γ 2

k − 1
]
λm.a2.c

2,1 cos 2θ cos φk + 1
2γk

√
1 − γ 2

k λm.a2.c
2,1 sin 2θ

)
αm.a2

5

− 4 λm.s
2 γk

√
1 − γ 2

k sin φk sin 2θ αm.a2
4 , (D7)

αm.a2
2 = eE∂εk f 0αm.a2

1 cos χ , αm.a2
3 = eE∂εk f 0αm.a2

0 cos χ , αm.a2
4 = eE∂εk f 0αm.a2

1 sin χ , αm.a2
5 = eE∂εk f 0αm.a2

0 sin χ .
As we already proved λm.s,s

1,1 = 0 and λm.s,c
2,1 = 0, finally we can write the final expression for the correction to the distribution

function of the electrons as

gm.a2
k = sin φk

([
γ 3

k − γk
]
[2 cos 2θ + 1]λm.s.c

1,1 αm.a2
2 + 1

2

[
γ 2

k − 1
]
λm.a2.s

1,1 αm.a2
3 − 4 λm.s

1 γk

√
1 − γ 2

k sin 2θ αm.a2
2

)
+ 1

2

[
γ 2

k − 1
]
λm.a2.c

1,1 cos 2θ αm.a2
3 cos φk + 1

2γk

√
1 − γ 2

k λm.a2.c
1,1 sin 2θαm.a2

3

+ sin φk
([

γ 3
k − γk

]
[2 cos 2θ + 1]λm.s.c

2,1 αm.a2
4 + 1

2

[
γ 2

k − 1
]
λm.a2.s

2,1 αm.a2
5 − 4 λm.s

2 γk

√
1 − γ 2

k sin 2θ αm.a2
4

)
+ (

λm.s.s
2,1 [cos 2θ + 2]

[
γk − γ 3

k

]
αm.a2

4 + 1
2αm.a2

5

[
γ 2

k − 1
]
λm.a2.c

2,1 cos 2θ
)

cos φk

− 1
2γk

√
1 − γ 2

k sin 2θ
(

2αm.a2
4 γkλ

m.s.s
2,1 − λm.a2.c

2,1 αm.a2
5

)
. (D8)
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