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Spin-waves (magnons) are among the prime candidates for building fast yet energy-efficient plat-
forms for information transport and computing. We here demonstrate theoretically and in state-of-
the-art micromagnetic simulation the effects that strategically-injected spin-polarized current can
have on controlling magnonic transport. We reveal analytically that the Zhang-Li spin-transfer-
torque induced by applied current is analogous to the Dzyaloshinskii-Moriya interaction for scat-
tering the magnons in the linear regime, to then provide a generalized Snell’s law that describes
the spin-wave propagation across regions with different current densities. We validate the latter in
numerical simulations of realistic systems, and exemplify how these findings may help advance the
design of spin-wave logic and neuromorphic computing devices.

I. INTRODUCTION

The development of neuromorphic computing hard-
ware has attracted significant attention in recent years
as such platforms are capable of performing complex
information processing tasks, such as classification and
pattern recognition of various types of data, from e-
commerce to scientific content1–3. A central challenge of
this research is the requirement of highly interconnected
systems, inspired by the biological concepts of the hu-
man brain. Interestingly, wave-based physical systems
have been demonstrated to operate as recurrent neural
networks4–6, where interference patterns in the propa-
gating substrate can realize an all-to-all interconnection
between points of the substrate that mimic the action
of artificial neurons by scattering and recombining input
waves in order to extract their information.

Similar to other wave phenomena in physics, spin-
waves (magnons) travel through space accompanied by
a transfer of energy, which if precisely controlled can
lead to fast information transport and computing appli-
cations in the nanometric to micrometric scale7,8. Spin-
waves are readily demonstrated as a promising platform
for performing logic operations9,10 and the recent the-
oretical advances in wave-based computation can pave
the way for spintronic hardware in the field of artificial
intelligence11. However, even though extensive research
has been carried out in recent years, the precise manip-
ulation of spin waves in nanostructures has not been en-
tirely mastered and needs to be advanced for the benefit
of functional magnonic devices.

One manner of manipulating the spin textures in mag-
netic materials is by the application of spin-polarized
(SP) currents, having (part of the) spins of the mov-
ing electrons aligned. The interaction of a SP current
with the localized magnetic moments results in a torque
on the magnetization, dubbed a Zhang-Li spin-transfer-

FIG. 1. Schematic illustration of a SW facing a non-

uniform distribution of the SP current. The SW (in
red) is induced by the input antenna on the left side and
propagates along the magnetic film. Voltage electrodes induce
the distributed spin current density (j) which can be tuned
to control the SW propagation.

torque (STT)12. Being able to affect the orientation of
the magnetization, STT has become nearly unavoidable
in the design of spintronic nanodevices13. The effect and
applicability of the STT was demonstrated in racetrack
memory concepts, where the position of local magnetic
structures, such as domain walls and skyrmions, is con-
trolled by in-plane currents14,15. Moreover, not only do
spin currents modify the equilibrium magnetic state, they
can also significantly influence the propagation of spin
waves (SWs). For instance, in Ref. 16 the authors de-
rived the dispersion relation of SWs in a ferromagnet
subjected to a uniform spin current. The applied cur-
rent introduces a term proportional to the wavevector k
in the spin-wave dispersion relation. The nonreciprocity
in the dispersion relation for waves with a k vector in
the same or the opposite direction as the current flow
causes Doppler shift17, as first validated experimentally
by Vlaminck and Bailleul18.
A similar nonreciprocal term in the dispersion rela-
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tion can also be induced by an electric field19 or by
the antisymmetric exchange interaction, also known as
Dzyaloshinskii-Moriya interaction (DMI)20. Analogously
to the Doppler shift induced by the currents, a frequency
shift has been measured in ferromagnetic materials pos-
sessing DMI21. For heterochiral ferromagnets (i.e., with
spatially varying DMI), the reciprocal term causes a non-
trivial refraction of spin waves at interfaces between re-
gions with different DMI, as described by a generalized
Snell’s law in Ref. 22. In this regard, the equivalency in
the dispersion relations of SWs in the presence of DMI
and spin current suggests that a spatially varying current
density (as illustrated in Fig. 1) can be used to manipu-
late the propagation of SWs. In this work, we detail the
effect of a SP current on controlling the propagation of
spin-waves. We show that the Zhang-Li STT induced by
in-plane current has analogous effect to DMI for confin-
ing and controlling the propagation direction of magnons
in the linear regime. We proceed to derive a Snell’s law
to describe the scattering of spin-waves between regions
with different current densities, and validate it by ad-
vanced simulations including solving Poisson’s equation
within the micromagnetic framework. Finally, we present
selected tailored examples to illustrate how strategically
applied current can be employed to advance logic and
neuromorphic computing devices based on spin-waves.
The paper is organized as follows. In Sec. II, we present

the micromagnetic model for ferromagnetic films sub-
jected to an applied spin-polarized current. We then
introduce the Poisson solver employed for accurately cal-
culating the interaction of SWs with nonuniform current
distributions and delineate the SW dispersion relation
under SP current, detailing the effect of the spin cur-
rent on controlling the propagation direction of SWs.
In Sec. III we analytically demonstrate the generalized
Snell’s law that describes the SW propagation across
regions with different current densities and validate it
by numerical simulations that involve solving Poisson’s
equation within the micromagnetic framework. Sec-
tion IV showcases potential applications, exemplified by
the numerical reproduction of a multichannel SW selec-
tor and an artificial neural network hardware designed
for proof-of-concept classification tasks. Our results are
summarized in Sec. V.

II. THEORETICAL FRAMEWORK AND

FUNDAMENTALS OF SPIN-WAVE

PROPAGATION UNDER APPLIED CURRENT

A. Micromagnetic model

Within the micromagnetic framework, we describe the
magnetization of a thin extended ferromagnetic film by

considering the vector field M⃗(r) = Msm⃗(r) with con-

stant magnetization modulus |M⃗ | = Ms and the normal-
ized magnetization direction m⃗(r) at each point r ∈ R
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of the film23. The dynamics of the magnetization is gov-
erned by the Landau-Lifshitz-Gilbert (LLG) equation

˙⃗m = −γm⃗× H⃗eff + αm⃗× ˙⃗m+ τ⃗STT, (1)

where γ is the gyromagnetic ratio, α the dimension-

less damping factor, and H⃗eff the effective field, which
can be derived from the free energy E[m⃗] by taking the
functional derivative with respect to the magnetization:

H⃗eff = −δE/δM⃗ .
We extend the LLG equation by adding the

torque τ⃗STT which includes the adiabatic and non-
adiabatic STT terms derived by Zhang and Li12:

τ⃗STT = m⃗× (m⃗× (u · ∇)m⃗) + βm⃗× (u · ∇)m⃗, (2)

where

u = − µBP

eMs(1 + β2)
j. (3)

Here, ∇ is the two-dimensional differential operator, β
is a dimensionless constant that represents the degree
of non-adiabaticity, e the elementary charge and µB the
Bohr magneton. The polarization P is a property of the
ferromagnet and does not depend on the magnetization.
Although u has the units of velocity, we refer to it as cur-
rent since it is proportional to the SP current density j.
Note that the most prominent effect of the STT is best
understood by assuming small dissipation terms (α ≈ 0
and β ≈ 0). In that case it is easy to prove that the
solution of the LLG equation is given by m⃗(r − ut; t) if
m⃗(r; t) is the solution in absence of the STT. Put differ-
ently, adding the STT shifts the solution with a velocity
u24. For instance, due to the STT, relaxed local struc-
tures such as domain walls and skyrmions will move with
a velocity v = u when the current is switched on. Ac-
cordingly, a SW packet traveling in the film will gain an
additional velocity equal to u. This insight will help the
intuitive understanding of the results further presented
in this paper, where we detail the effect of a non-uniform
static current u(r) on the propagation of SWs.
The dynamics of the magnetization depends strongly

on the characteristics of the magnetic film, incorporated
in the free energy functional. In this paper, we take into
account the contribution of exchange interaction and Zee-
man energy due to applied bias magnetic field:

E[m⃗] =

∫∫

[

A(∇m⃗)2 − H⃗ · m⃗
]

dxdy, (4)

with exchange stiffness A > 0 and bias field H⃗. In our
calculations, we consider SWs in the exchange regime and
therefore neglect dipolar interactions. The effect of such
interactions on our results will be discussed in Sec. IVB
for a specific case.

B. Current distribution

To simulate the SW system in the presence of the spin
current, we employ the micromagnetic simulation pack-
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age Mumax325,26 on a thin ferromagnetic film. To pre-
cisely calculate the interaction of SWs with the nonuni-
form current distributions, we implemented a Poisson
solver in the micromagnetic simulations, where a cus-
tom module has been added to the simulation package
Mumax3. Considering a set of contact, micromagnetic
cells where an applied voltage U is fixed, the general-
ized Poisson equation ∇ · (σ[m⃗] · ∇Φ) = 0 is solved using
a conjugate gradient method, for the considered geome-
tries, from where the current density j = −σ[m⃗] · ∇Φ is
calculated. The electric potential Φ satisfies the Poisson
equation with the boundary conditions Φ|contact = U .
Moreover, since the relaxation of the current paths oc-
curs on a short time scale compared to the dynamics of
the magnetization, j can be calculated self-consistently
based on the anisotropic magnetoresistance (AMR) ef-
fect, where the conductivity tensor σ[m⃗] depends on the
magnetization and it is written as27

σ[m⃗] = σ0



1 − 6a

6 + a





m2
x − 1

3 mxmy mxmz

mymx m2
y − 1
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mzmx mzmy m2
z − 1

3







 ,

(5)
where σ0 is the material conductivity and a the AMR
ratio.

C. Spin-wave dispersion under applied current

To calculate the SW dispersion under applied cur-
rent, we consider a ferromagnetic (field-polarized) ground
state magnetization in which the magnetization is aligned

with the bias field H⃗. To study small deviations from the
ground state it is useful to construct the right-handed

coordinate system (êa, êb, ê0) with ê0 ∥ H⃗. The effective
field in this coordinate system becomes

H⃗eff(r, t) =





2A
Ms

∇2ma(r, t)
2A
Ms

∇2mb(r, t)
2A
Ms

∇2m0(r, t) +H0



 , (6)

where m⃗ = (ma,mb,m0) andH = (0, 0, H0). Here and in
the next section, we focus on first order deviations from
the ground state and consider the SW solution asm0 ≈ 1,
ma = A0e

i(k·r−ωt)−µt and mb = iA0e
i(k·r−ωt)−µt, where

A0 ≪ 1 represents the SW amplitude; ω is the SW an-
gular frequency; k is the wave vector, and µ represents
the damping of the SW. Substituting that into the LLG
equation [Eq. (1)], with STT term given by Eq. (2) and
effective field from Eq. (6), yields the dispersion relation
(see supplementary material28)

ω =
γH0

1 + α2

(

1 + ξ2k2
)

+
1 + αβ

1 + α2
u · k, (7)

and damping parameter

µ = αω − βu · k, (8)

where we define the length scale ξ =
√

2A/H0Ms. Note
that the damping µ of the SW decreases if the wave vec-
tor k is parallel to the electron flow u. Consequently, the
attenuation length of a spin wave can be increased by
applying a current opposite to the propagation direction,
as predicted earlier by Seo et al.

29.

1. Propagation direction

The dispersion relation consists out of circular isofre-
quencies in k-space, which are shifted away from the ori-
gin due to the current. The center of the circular isofre-
quency is given by

k0 = − 1 + αβ

2γH0ξ2
u, (9)

and the radius by

kg = |k− k0| =
√

1 + α2

γH0ξ2
(ω − ω0), (10)

with the minimal frequency ω0 = γH0(1− ξ2k20).
The propagation velocity v of a wave packet is given

by the gradient of the frequency in k-space:

v = ∇kω =
2γH0ξ

2

1 + α2
k+

1 + αβ

1 + α2
u =

2γH0ξ
2

1 + α2
(k− k0),

(11)
where kg = k−k0 defines the propagation direction. The
velocity of the wave packet can be separated as

v∥ =
γH0ξ

2

1 + α2
2k +

1 + αβ

1 + α2
u∥, v⊥ =

1 + αβ

1 + α2
u⊥, (12)

where ∥ and ⊥ denote the component parallel and per-
pendicular to the wave vector respectively. Notice that,
in general, the propagation direction is not parallel to
the wave vector k, and the SW can be deflected in the
presence of applied current.

III. GENERALIZED SNELL’S LAW FOR SPIN

WAVES IN PRESENCE OF NONUNIFORM

CURRENT DISTRIBUTION

Let us now examine the propagation of SWs when ex-
periencing nonuniform current distributions. For sim-
plicity, we start with the example of a SW propagating
between two regions with different current densities j, i.e.
j(x ≤ 0) = 0 and j(x > 0) = j0ŷ. It is well known that
SWs reflect at material boundaries, where the momen-
tum parallel to the interface should be conserved. In the
case of SP current, the change in current density is equiv-
alent to an interface, and the momentum perpendicular
to ∇j, i.e., k · τ̂ ≡ |k − (k · ∇̂j)∇̂j|, with τ̂ the vec-
tor tangent to the interface, should be conserved. In our
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FIG. 2. Generalized Snell’s law for SW refraction. (a-
d) Snapshots of the simulated spin-wave propagation across a
sharp interface (at x = 0) where the current density changes
from 0 to j = j0ŷ, for different incident angles ϕ1. White ar-
rows indicate the propagation direction following the general-
ized Snell’s law [Eq. (13)]. In these simulations we considered
SW frequency f = 4 GHz, bias field H0 = 0.1 T applied along
+x̂ direction, j = 2× 1012 Am−2ŷ, α = 0.001 and β = 0.002.
The SW wavelength at zero current is λ ≈ 160 nm.

simple example that corresponds to k
(1)
y = k

(2)
y , where

the indices 1 and 2 refer to the incident and refracted
waves respectively. If the propagation direction is par-
allel to the k vector, the well-known Snell’s law applies:
k(1) sin(ϕ1) = k(2) sin(ϕ2), with ϕ1 and ϕ2 the incident
and refracted angles respectively. However, since in our
case the dispersion relation is asymmetric, the Snell’s law
has to be adjusted as follows

k(1)g sin(ϕ1) + k
(1)
0 · τ̂ = k(2)g sin(ϕ2) + k

(2)
0 · τ̂ , (13)

where the angles ϕi are taken with respect to ∇̂j (i.e., the
direction normal to the interface). Similarly, generalized
Snell’s laws for the refraction of SWs at domain walls and
heterochiral interfaces were derived in Refs. 30 and 22.
To further verify our calculations, we simulate a SW

system in the presence of the spin current to calculate
the SW refraction when propagating between two regions
with different current densities. The SW beams are cre-
ated by a sinusoidal oscillating field h = h0 sin(ωt)ẑ ap-
plied in a narrow rectangular region (input antenna, see
Fig. 2 (a)), where the field amplitude h0 has a Gaussian

profile in the transverse direction and f = ω/2π is the
oscillation frequency.
For the simulations, we consider a 20 nm thick

magnetic film with saturation magnetization Ms =
0.7 MAm−1 and exchange stiffness A = 10 pJm−1, corre-
sponding to Permalloy (Ni80Fe20) thin films, as such films
are readily demonstrated as a suitable platform for study-
ing the effects of spin-polarized current on the spin tex-
ture7,18. In this section, for a better comparison with the
analytical results, we assume a low damping constant of
α = 0.00131, as we are primarily interested in describing
the spin wave propagation direction rather than its am-
plitude. A more realistic, higher damping constant will
be considered in the next section when discussing specific
applications. The in-plane bias field is set to H = H0x̂,
with H0 = 0.1 T and we consider h0 = 0.01H0. The sys-
tem is discretized into cells of size 10×10×20 nm3. The
polarization rate of the spin current is set as P = 0.5, and
the electrical conductivity as σ0 = 4× 106 (Ωm)−1.18 In
this section, we neglect AMR effects. Fig. 2 (a-d) shows
snapshots of the simulated SW propagation across the
interface where the current density sharply changes, for
different incident angles ϕ1. White arrows denote the
SW trajectories predicted by our Eq. (13), which are in
excellent agreement with the micromagnetic simulations.
Notice that the STT induced by the spin current can
either deflect or confine the SWs. The critical incident
angle ϕ∗ above which the SW can not propagate for a
given applied current, i.e., the SW undergoes total in-
ternal reflection, is obtained from our Snell’s law by im-
posing that the refracted wave is parallel to the interface
(ϕ2 = ±π/2), as

ϕ∗ = ± arcsin

(

±k
(2)
g + (k

(2)
0 − k

(1)
0 ) · τ̂

k
(1)
g

)

. (14)

Note that due to the asymmetric dispersion relation, the
refraction is not symmetric for positive and negative in-
cident angles. This is seen in the results for ϕ1 = 60◦

and ϕ1 = −60◦ in Fig. 2 (a,d), where only for the second
case the total reflection of the SW is achieved.

A. Nonuniform current distribution

In practice, the current applied into the magnetic film
will not exhibit a step-like distribution as considered in
our previous example, but will spread continuously in
the material obeying Poisson’s equation32. To precisely
calculate the interaction of SWs with such nonuniform
current distributions, we implemented a Poisson solver
as described in Sec. II B. Fig. 3 (a) shows a snapshot
of the simulated SW propagation across the nonuniform
spin current density created between shown finite volt-
age contacts at the sample edges. Notice that the SW
is pertinently deflected while crossing the region where
current is applied, to finally reach a shifted propagation
direction upon leaving the area pierced by current. Al-
though both the direction and magnitude of the current
continuously change as the SW propagates, our general-
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ized Snell’s law still applies locally - the SW facing a local
gradient in current density ∇j is effectively analogous to
the earlier interface example. Therefore, the SW trajec-
tory in the presence of a given current distribution j(x, y)
can be solved numerically by iterating the following

xn+1 = xn + dr cos(ϕn+1),

yn+1 = yn + dr sin(ϕn+1),
(15)

where xn and yn represent the position coordinates along
the trajectory, at the nth iteration; dr is the spatial step
size (which here we choose to be the size of a micro-
magnetic cell), and ϕn+1 = ϕ2(x

n, yn, ϕn) + θnj is the
propagating angle with respect to the x direction, with
θnj the angle between ∇̂j|xn,yn and +x̂. Here, ϕ2 is ob-
tained by applying Eq. (13) locally, between (xn, yn) and
(xn + dr cosϕn, yn + dr sinϕn), with ϕ1 = ϕn − θnj the
angle of incidence with respect to the local current gra-
dient.
White arrows in Fig. 3 (a) indicate the SW trajectory

calculated by iterating Eq. (15) as the SW propagates in
the current distribution. The predicted trajectory is in
very good agreement with the simulation, demonstrating
the general applicability of Eq. (13) even for nonuniform
current distributions. Fig. 3 (b) shows the contour plot of
the applied current density, where isolines can be seen as
interfaces where the SW is refracted. The factor ∆k⊥ =

(k
(2)
0 − k

(1)
0 ) · τ̂ quantifies the change in the propagation

direction of the SW and is shown along the SW trajectory
as black arrows in Fig. 3 (b). Note that the deflection in
trajectory is more pronounced in the regions where the
current gradient is sharper.

IV. SELECTED APPLICATIONS

A. Multichannel SW selector

Performing logic operations with SWs generally re-
quires combining different input waves that interfere with
each other to generate a desired logic output state7. The
ability to guide SWs through nanochannels is therefore
vital to the development of more complex SW-based cir-
cuitry. In this regard, spin currents can be used to pre-
cisely guide the SW in such devices, for example, to se-
lectively “write” SWs in one of multiple nanotracks or
logic gates in a larger microprocessor. We exemplify here
such an application by simulating a multichannel SW se-
lector, illustrated in Fig. 4 (a). In this section, we con-
sider the magnetic parameters for a 20 nm thick Ni80Fe20
film, same as in the previous section, but with the damp-
ing constant α = 7 × 10−3 stemming from experimental
results on Permalloy.7 The in-plane bias field is set to
H0 = 0.1 T, with antenna’s excitation field h0 = 0.1H0,
and the AMR ratio set to 1%.
The input SWs are generated in a channel on the left-

hand side of the sample and propagate across a region

FIG. 3. SWs under nonuniform current distribution.
(a) Snapshots of the SW propagating across a nonuniform cur-
rent distribution induced between the voltage contacts (gray
regions). White arrows indicate the SW trajectory calculated
by iterating Eq. (13) locally along the current gradient in the
propagation direction. Parameters are the same as in Fig. 2.
(b) Contour plot of the spin current density considered in
(a). The shown isolines should be seen as interfaces where
the SW is sequentially refracted during propagation. ∆k⊥

(black arrows) shows the accompanying change in the propa-
gation direction (see text).

where the spin current is applied. By tuning the magni-
tude or direction of the applied current one can precisely
deflect the SWs towards one of the output channels on
the right side of the sample, as shown in Figs. 4 (b, c).
Likewise, a frequency selector can be implemented con-
sidering the fact that SWs with different frequencies ex-
perience different deflections under the same applied cur-
rent and can therefore be isolated into separate output
channels.
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FIG. 4. Guiding SWs for logic and neuromorphic computing. (a) A multichannel SW selector demonstrated based on
one input and two output channels. Voltage leads induce the spin current in the central region of the sample. (b-c) Snapshots
of SW propagation simulated for the setup shown in (a). By changing magnitude or direction of the applied current one can
guide the SW towards the desired output channel. (d) Scheme of the envisioned neural network hardware. The (18) input
SWs are created on the left and propagate across the matrix of 80 voltage contacts (grey dots) of 100 nm in diameter each. (e)
SP-current profile induced by the applied voltage that best performs the desired operation. (f-g) Snapshots of SW simulations
after training the neural network. The voltage (current) pattern was trained to focus the waves of two different frequencies to
the desired outputs. The bar charts show the normalized intensities at the output locations integrated over 10 ns. In these
simulations, we considered SW frequencies f = 3.2 GHz (b, c, f) and f = 3.4 GHz (g), and magnetic parameters for a 20 nm
tick NiFe film (see text).

B. Neuromorphic computing

Finally, we demonstrate the use of SP current for the
design of neural-network hardware, based on SW prop-
agation, where weights and interconnections of the net-
work are realized by a pattern of the spin currents applied
to the propagating substrate. Fig. 4 (d) illustrates the

envisioned device, where we consider magnetic parame-
ters for a 20 nm tick NiFe film, as reported in the previous
section. The input signal is created on the left and prop-
agates across a region with a matrix of 80 voltage con-
tacts (gray dots in Fig. 4 (d)) of 100 nm in diameter each.
The read-out is taken from the two output antennas on
the right side. An arbitrarily powered voltage matrix in-
duces a distribution of the spin currents in the substrate
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Ms A α P References
(MA/m) (pJ/m) (×10−3) (Ωm)−1

Ni80Fe20 0.7 10 7 0.5 [ 7,18]
CoFeB 1.3 15 4 0.65 [ 7,33]
CoFeAlB 1.0 9 3 [ 34]

TABLE I. Material properties of representative low-damping,
metallic magnetic materials that can host spin waves and are
therefore candidates for the proposed control of SWs by SP
current.

that interacts with the input SWs. Training the neural
network is equivalent to finding the current pattern that
realizes the desired input-output mapping, for example,
to classify different input signals by focusing them in dif-
ferent outputs. As suggested in Refs. 4 and 11, a back-
propagation machine learning algorithm can be used for
training a similar SW-based network, which can perform
tasks such as vowel recognition and frequency classifica-
tion. Here, we demonstrate that a simple Monte Carlo
(MC) algorithm can perform the same task of training
the neural network for simple classification problems. In
our example, we perform a frequency-recognition oper-
ation, where we consider input SWs with frequencies
f = 3.2 and 3.4 GHz. The neural network is trained to
focus the SWs with 3.2 GHz to the output O1 and SWs
with 3.4 GHz to the output O2 (see Figs. 4 (f, g)). The
voltage at each contact is randomly initialized in one of
the three values: Ui = −u0, 0 or +u0, with u0 = 0.05 V,
and a Metropolis algorithm is implemented by chang-
ing the voltage of one of the contacts at every MC step
(see supplemental material28). The finally trained con-
figuration (resulting in the current distribution shown in
Fig. 4 (e)) is able to focus SWs of each frequency to the
desired outputs as shown by the bar charts in Figs. 4 (f,
g), and can therefore perform the classification operation.

1. Role of material parameters

To identify the role of different material parameters
in the current-induced SW scattering, and consequently
in the proposed applications, let us consider the case
of an SW propagating across two regions with differ-
ent current densities, as in Fig. 2. In this scenario, for
an incident angle ϕ1 = 0 and making use of Eqs. (13)
and (3), the refraction angle of the SW is given by

ϕ2 = sin−1

(

1+αβ√
(1+αβ)2+η2

)

, where η = 4eγ
µB

Ak
Pj

. There-

fore, the current-induced SW scattering is maximized
when η is minimized. In other words, the SW scatter-
ing is maximized in materials with small exchange stiff-
ness A and for SWs with small wavenumber k, as well as
by increasing the SP current, represented by the polar-
ization P and applied current density j. In Table I we
show material properties of representative low-damping,
metallic magnetic materials that can host spin waves and

are therefore convenient candidates for the proposed con-
trol of SWs by SP current.

2. Effect of Oersted and demagnetizing fields

When nonuniform current is applied into the sample,
it inevitably induces an Oersted field. The Oersted field
can be calculated from the current density by applying
the Biot–Savart law35. In our calculations for the neu-
romorphic application, the resultant Oersted field inside
the network presented magnitudes smaller than 1 mT, as
shown in Fig. 5 (b) for a single pair of voltage contacts.
Such magnetostatic field is much smaller than the consid-
ered bias field (100 mT). Therefore, the induced Oersted
field is not expected to significantly affect the operation
of the considered system. To corroborate that, we calcu-
lated the Oersted field from the current distribution in
Fig. 4 (e) and verified that the network functionality re-
mains unchanged with Oersted field included, as shown
in Fig. 5 (c,d).
On the other hand, the demagnetizing field is gener-

ated by the magnetization of the sample. Unlike the
Oersted field, the demagnetizing field points in-plane and
can shift the SW dispersion relation. Nonetheless, by in-
cluding the demagnetizing contribution in the training
process, one can obtain the current profile that performs
the desired classification operation for that scenario. In
the supplementary material28, we show that the proposed
network can indeed perform a similar frequency classifi-
cation in the presence of a demagnetizing field.
One should note that the proposed neuromorphic ap-

plication can be generalized for arbitrary scenarios, as
long as all the relevant magnetic interactions are consid-
ered during the training process of the neural network.
Moreover, the here proposed fully electronic control en-
ables facilitated reconfiguration and the much-desired
scalability of the neural network to perform different
tasks within the same integrated circuit.

3. Joule heating and energy dissipation

Another immediate consequence of applying current
to the magnetic system is the Joule heating. As the in-
crease of temperature can induce noise and energy dissi-
pation, it might be detrimental for any conceptualized
device. Therefore, here we discuss the Joule heating
and energy dissipation due to current distribution in our
system. The variation of the temperature distribution
T (r, t) in the material as a function of position r and time
t can be obtained by numerically solving the heat equa-
tion36 (see supplementary material28). Fig. 5 (e) shows
the variation in the temperature distribution obtained in
the simulations, for a single pair of voltage contacts, af-
ter a five-nanosecond current pulse in the 20 nm thick
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FIG. 5. Effect of Oersted field and Joule heating on

device operation. (a) Current distribution induced by a
single pair of contacts in a 20 nm thick Ni80Fe20 thin film, as
considered in the neuromorphic application. The total cur-
rent flowing between the two contacts is set to 4 mA. (b)
Oersted field induced by the current density in (a). (c-d)
Spin wave intensity (zoomed in near the output contacts) in-
tegrated over 10 ns when propagating through the network,
with current density as in Fig. 4 (e) and respective Oer-
sted field included, for SW frequencies f = 3.2 GHz (c) and
f = 3.4 GHz (d). Note that the functionality of the network
remains unchanged, as indicated by the percentage of the sig-
nal that passes through each output (white dashed boxes).
(e) Temperature distribution induced by the current density
in (a) after a five-nanosecond current pulse, obtained by nu-
merically solving the heat equation for the considered system.

Ni80Fe20 film, where we considered the material param-
eters of Permalloy at room temperature36. The regions
of highest temperature are located between the contacts,
where the current density is highest, while the rest of
the sample experiences much smaller thermal effects. In
Fig. S2 in the supplementary material28, we show the
maximum temperature variation in the magnetic film as
a function of current pulse duration, for different magni-
tudes of the applied current between the pair of contacts.
Note that our calculations do not consider the presence
of a substrate, which can reduce the temperature in the
magnetic film due to heat dissipation36.

Since the SWs can propagate with high group veloc-
ities, of the order of a micrometer per nanosecond in
the Ni80Fe20 films18, and they can be excited at room
temperature in such material, the temperature increase
during the proposed neuromorphic computations (which

takes few nanoseconds to operate) is not expected to
invalidate the basic operation of the network. More-
over, the Joule heating can be reduced by decreasing
the wavenumber (frequency) of the operating SWs, as
explained in what follows.

The power dissipation P of the isolated pair of electri-
cal contacts is obtained by integrating the Joule heating
term Q = j2/σ0 over the sample volume, from where
we obtain P = 0.01 to 0.2 mW (pJ/ns) for a range of
applied currents from I = 1 to 4 mA. The power dissipa-
tion of the network is therefore scaled with the number
of switched-on contacts. In fact, as discussed previously
in this section, the induced deflection in the SW tra-
jectories depends on the ratio between the applied cur-
rent and the SW wavenumber. Therefore, by reducing
the wavenumber of the operating SWs, similar comput-
ing operations can be performed with lower applied cur-
rent, and consequently lower Joule heating and power
dissipation, as shown in Fig. S5 in the supplementary
material28. Hence, for the considered current densities,
the proposed device presents similar dissipation as low-
power neural networks implemented with both CMOS
and beyond-CMOS devices, where energy consumption
is of the order of E = 10−11 J per operation11.

V. CONCLUSIONS

We have demonstrated the use of non-uniform spin-
polarized current for the manipulation of spin-waves. We
showed that the spin-transfer torque induced by the ap-
plied current has an effect analogous to DMI for confining
spin-waves and controlling their propagation direction in
the linear regime, and derived a generalized Snell’s law
that describes the scattering of spin-waves between re-
gions with different current densities. Finally, we im-
plemented the calculation of the current distribution in
micromagnetic simulations by solving the Poisson’s equa-
tion within the simulation package mumax3 (to be made
available in the upcoming release of mumax4), in order
to (i) validate the derived Snell’s law and (ii) demon-
strate how strategically applied current distributions can
be employed in magnonic logic and neuromorphic com-
puting devices, thereby advancing the prospects of spin-
tronic hardware and artificial intelligence. Remarkably,
our findings underscore the potential for task reprogram-
ming within the same material, thereby offering a level
of versatility unattainable with traditional material en-
gineering methods. This progress serves as a significant
stride forward in spintronics, hinting at the potential for
improvements in the adaptability of spintronic hardware
and in the realm of artificial intelligence systems.
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anoff, M. Kläui, J. Sinova, and K. Everschor-Sitte, “Mag-
netic skyrmion as a nonlinear resistive element: a potential
building block for reservoir computing,” Physical Review
Applied 9, 014034 (2018).

28 “See supplemental material at [url will be inserted by pub-
lisher] for the calculation of spin-wave dispersion relation
under spin-polarized current; monte carlo training of the
spin-wave-based neural network; calculation of joule heat-
ing, energy dissipation, as well as the effect of demagnetiz-
ing field in the proposed spin-wave device,” .

29 S.-M. Seo, K.-J. Lee, H. Yang, and T. Ono, “Current-
induced control of spin-wave attenuation,” Physical review
letters 102, 147202 (2009).

30 W. Yu, J. Lan, R. Wu, and J. Xiao, “Magnetic Snell’s
law and spin-wave fiber with Dzyaloshinskii-Moriya inter-
action,” Physical Review B 94, 140410(R) (2016).



10

31 A. Papp, W. Porod, A. I. Csurgay, and G. Csaba,
“Nanoscale spectrum analyzer based on spin-wave inter-
ference,” Scientific Reports 7, 1–9 (2017).

32 D. J. Griffiths, “Introduction to electrodynamics,” (2005).
33 S. X. Huang, T. Y. Chen, and C. L. Chien, “Spin polar-

ization of amorphous cofeb determined by point-contact
andreev reflection,” Applied Physics Letters 92, 242509
(2008).

34 A. Conca, T. Nakano, T. Meyer, Y. Ando, and B. Hille-
brands, “Cofealb alloy with low damping and low magne-

tization as a candidate for spin transfer torque switching,”
Journal of Applied Physics 122, 073902 (2017).

35 John David Jackson, Classical electrodynamics (John Wi-
ley & Sons, 2021).

36 H. Fangohr, D. S. Chernyshenko, M. Franchin, T. Fis-
chbacher, and G. Meier, “Joule heating in nanowires,”
Physical Review B 84, 054437 (2011).


