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Abstract

The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission
electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the
resolution limit. Here, we explore whether we have to accept this or can progress further in this area. To do this, we use numerical
simulations to see how much information we can obtain from a weak phase object at different electron doses. Starting from a model with
four phase values, we compare Zernike phase contrast with measuring diffracted intensity under multiple random phase illuminations to solve
the inverse problem. Our simulations have shown that diffraction-based methods perform better than the Zernike method, as we have found
and addressed a normalization issue that, in some other studies, led to an overly optimistic representation of the Zernike setup. We further
validated this using more realistic 2D objects and found that random phase illuminated diffraction can be up to five times more efficient than
an ideal Zernike implementation. These findings suggest that diffraction-based methods could be a promising approach for imaging beam-

sensitive materials and that current low-dose imaging methods are not yet at the quantum limit.
Key words: inverse problem, multiplex holography, phase plates, phase retrieval, ptychography, Zernike phase contrast

Introduction

In this work, we aim to revisit the longstanding issue of phase
reconstruction in transmission electron microscopy (TEM)
(Drenth et al., 1975; Fienup, 1982; Coene et al., 1992;
McCallum & Rodenburg, 1992, 1993; Rodenburg et al.,
1993) and examine it from the perspective of information
transfer. In electron microscopy, we detect electron events
that are quantum-mechanically linked to their wavefronts’
probability density (square modulus). The problem arises
from the loss of the phase during the detection process, which
significantly restricts the information obtainable from an elec-
tron microscope experiment. This issue is particularly challen-
ging in electron diffraction experiments, as it hinders the
extraction of the projected periodic potential of a crystal.
Moreover, it is also highly relevant in imaging non-periodic
thin objects in TEM, where the object’s projected density in-
formation is predominantly encoded in the phase profile im-
parted on the coherent plane wave illumination. Recent
attempts to apply diffraction-based imaging, e.g., to viruses
(Zhou et al., 2020) or in single particle analysis (Pei et al.,
2023) show great potential and are accompanied by promising
simulation studies (Pelz et al., 2017; Leidl et al., 2023; Mao
et al., 2024).

We will use the toolset of parameter estimation, which has
shed light on similar problems in TEM, like investigating point
resolution in the presence of noise (Bettens et al., 1999), the
advantage of a monochromator on the spatial resolution in
TEM (den Dekker et al., 2001), determining the precision of
measuring atomic positions from exit waves (De Backer
et al., 2011), or even determining elemental concentrations

from electron energy loss experiments (Verbeeck, 2024;
Verbeeck & Van Aert, 2004). The issue of phase retrieval
under dose-limited conditions has sparked significant debate
within the scientific community. Egerton et al. conducted
groundbreaking research to assess the instrument’s limitations
(Egerton, 2007) and evaluated different commonly used TEM
and scanning transmission electron microscopy (STEM) im-
aging methods on beam-sensitive specimens (Egerton, 2013).
In the following years, more theory was incorporated to assess
the efficiency of phase retrieval by incorporating robust math-
ematical concepts such as the Fischer Information (FI) and
Cramér-Rao Lower Bound (CRLB) (Bouchet et al., 2021).
Based on these mathematical concepts, Koppell & Kasevich
(2021) constructed a function to assess the inherent frequency
transfer of the imaging system. More recently, Dwyer and
Paganin directly compared Zernike Phase Contrast (ZPC)
and 4D-STEM with a phase-structured illumination. All this
notable work has paved the way and opened the debate for
a more comprehensive assessment of phase retrieval in the
TEM, with the general conclusion that ZPC seemed the best
method to maximize information transfer. Ultimately, this
conclusion has put limits on the hope for ptychographic meth-
ods to create a breakthrough in low-dose phase imaging
(Fienup, 1982; Nellist et al., 1995; Faulkner & Rodenburg,
2004; Maiden & Rodenburg, 2009; Parvizi et al., 2015;
Yangetal., 2015). Here, we revisit this problem by conducting
a series of numerical exercises. Furthermore, we will carefully
consider the normalization conditions to enable a fair com-
parison between image-based reconstruction using ZPC and
phase retrieval through diffraction-based recording. We
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Fig. 1. Sketch of the setup. The aim is to measure the N phases of the
unknown object by illuminating it with a coherent electron wave and
detecting the arrival of electrons with an ideal detector consisting of M
independent pixels. The left-side setup shows the configuration with an
ideal ZPP, while the right-side setup describes the detection in the
diffraction plane with a programmable phase input wave. We will
compare the performance of both setups in terms of phase error on the
estimate as a function of the amount of electrons we have available in the
experiment.

demonstrate that at least under the idealized conditions con-
sidered here, significant improvement over ZPC in low-dose
phase imaging is possible with diffraction-based detection.

Setup

In the following section, we want to present this process as a
type of game where the sample is imagined to contain a hidden
message made up of N phase values, denoted as ¢, in Figure 1.
We illuminate the sample with an electron wave and observe
the outcome of this interaction on M ideal electron detectors,
labeled as I; in Figure 1. From this simple setup, two natural
questions arise:

¢ How many electrons do we need to fire onto the sample to
obtain the secret message at the required precision and
accuracy?

e How can the experiment be set up to achieve the best pre-
cision and accuracy with the fewest electrons and, thus,
the least beam damage?

These questions are fundamental in modern electron micros-
copy, as the resolution of EM is in many practical cases limited
by beam damage and not anymore by the instrument (Glaeser,
1971; Chen et al., 2008; Miiller-Caspary et al., 2019; Nakane
et al., 2020; Chari & Stark, 2023; Pei et al., 2023; Kiiciitkoglu
et al., 2024; Leidl et al., 2024). This means we must either
learn new techniques to limit beam damage or utilize the
most efficient imaging methods to maximize the use of the
electron dose the sample can withstand (preferably a combin-
ation of both).

In this paper, we will avoid all complications regarding the
scattering that happens with the sample, details of imperfect
optical systems (Gonsalves, 1982; Fienup, 1993), propagation
effects (Liu et al., 2009; Robert et al., 2022), multiple scatter-
ing in the sample (Maiden et al., 2012; Chen et al., 2020,
2024; Ren et al., 2020), inelastic scattering (Yoshioka,
1957; Muller & Silcox, 1995; Dwyer, 2005; Dwyer et al.,
2008; Allen et al., 2015; Brown et al., 2018; Beyer et al.,
2020; Robert et al., 2022; Diederichs et al., 2024), partial co-
herence (Nellist & Rodenburg, 1994; Gureyev et al., 2006;
Martin et al., 2006; Thibault & Menzel, 2013; Oxley
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& Dyck, 2020; Diederichs et al., 2024), and details of the al-
gorithmic implementation (Fannjiang & Liao, 2012; Elser
et al., 2018) to gain some clarity on how far we are from fun-
damental limits.

We start with a conceptual exercise to estimate four hidden
phases as sketched in Figure 1. We compare two typical set-
ups: On the one hand, we use a Zernike Phase Plate (ZPP)
for phase contrast imaging, which is commonly considered
the golden standard in real space phase imaging and is used ex-
tensively in, e.g., life science imaging (Zernike, 1942a, 1942b;
Danev & Nagayama, 2001, 2008). The benefit of this method
is that it results directly in an image of the sample with a con-
trast that relates approximately linearly to the phase shift,
which is proportional to the projected electrostatic potential
of the thin sample in a TEM.

On the other hand, we can detect the scattered electrons in
the diffraction plane as is commonly done to investigate sym-
metries and periodicity in crystals. This pattern also encodes
the information of the specimen albeit in a different way and
requiring some inverse algorithm to link the recorded inten-
sities to the projected sample potential we are interested in.

In either case, retrieving the absolute phase will be impos-
sible as we have no unperturbed reference beam to compare.
Due to this lack of a reference beam, only three of the four un-
known phases are independent, somewhat simplifying the
problem from N to (N-—1) unknowns represented as
In==21" 4

Because either a translation or an inversion of the object
leaves the diffraction intensities unchanged, we have a good
chance of ending up with a wrong guess of the secret sample
for the diffraction-based setup (Guizar-Sicairos & Fienup,
2012; Tolimieri et al., 2012). A typical way to solve this is
to oversample the diffraction plane (M > N), which stabilizes
the solution at the expense of requiring more detector pixels.
Another way to proceed is by introducing an amplitude
(Allars et al., 2021; Abregana & Almoro, 2022; You et al.,
2023) or phase (Verbeeck et al., 2018; Vega Ibafez et al.,
2023; Yuetal., 2023) modulator capable of encoding the elec-
tron wavefront for Neonfig. sets of conditions. Here, we focus
on pure phase modulation without delving into the details of
how to create such a programmable phase modulator (Vega
Ibanez et al., 2023; Yu et al., 2023) and simply assume it to
be perfect, as we did for ZPC.

Suppose we choose a number of Random Phase
Illumination (RPI) conditions Ngpi, and we solve the inverse
problem by taking into account the Ngp; independent meas-
urements to resolve one unique estimate of the object phase.
We now obtain some robustness against inversion and trans-
lation since the extra configurations yield M x Nrp; measure-
ment points (far more than the N unknown phases we want
to recover).

In order to implement this scheme, we use a nonlinear
maximum-likelihood (ML) fitting algorithm with (N — 1) un-
known phases and a likelihood function assuming Poisson
counting noise that describes how likely it is that a given ex-
perimental realization of M X Ngp; diffraction intensities
could have been produced when assuming a given set of
(N — 1) sample phases (Cramer, 1946; Barlow, 1991). This it-
erative nonlinear fitting process is significantly slower than the
more common Gerchberg—Saxton (GS) (Gerchberg, 1972) al-
gorithm but allows the correct treatment of the Poisson statis-
tics and obtaining estimates for the connection between phase
errors and the counting statistics through the use of the
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Cramér-Rao lower bound (Rao, 1945; Cramer, 1946). We
can then use this to compare the behavior of the GS algorithm
to ML prediction to convince ourselves that it approaches the
same fundamental limit while providing a significant speed-up
needed for realistic image sizes.

Recovering the Phase and Estimating its
Precision

Our objective is to accurately determine the unknown phase
from either a real-space or diffraction-space intensity record-
ing. We will use the ZPC method for real space as a standard,
and in the case of the diffraction experiment, we will need to
solve the inversion problem. To do so, we will utilize param-
eter estimation to understand its statistical properties and, lat-
er, use a GS algorithm that can approach these while providing
a significant numerical speed advantage.

Zernike Phase Contrast

In ZPC (Zernike, 1942a, 1942b), a phase plate is placed in the
back focal plane of the objective aperture, which shifts only
the low-frequency component of the wave by z/2. As a result,
the image contrast now reveals the phase of the object. In
Appendix A, we derive the relationship between phase and im-
age contrast, paying attention to proper normalization (see
equation (A.17)). This aspect has remained under-illuminated
but will be critically important when studying the effect of
counting noise:

L(r)—1+2C*-2C*
o == - (1)

With I, the recorded intensity scaled such that if the ZPP were
removed, there would be an average of 1 electron per pixel.
The factor C= Rk is given as the radius of the illumination
disc R on the sample times the size of the central phase shifting
area kz in reciprocal units, and the formula is valid only for
C < 1/2 as we will lose low-frequency information for higher
values of C. In the derivation, we assumed a Heavyside pi
function for the phase profile, which gives the most faithful
phase recovery (but may be harder to achieve in practice).
The critical thing to note here is that this formula only agrees
with the conventional ZPC for C = 1. However, in this case,
the formula is not valid, as important low-frequency informa-
tion would be missing across the illuminated area because the
reference wave generated by the central Zernike phase discon-
tinuity would not be homogeneous. Only if we admit to being
interested in a subregion of the illuminated area can we re-
cover the conventional formula at C=1. It is important to
stress here that, in such a case, we create a situation that can-
not longer act as a fair comparison with the diffraction setup
for the following reasons:

e We are illuminating and damaging areas of the sample
outside the field of view. We might need those areas later
on.

* We use electrons outside the field of view which will help
to create a reference beam inside the field of view. This ef-
fectively creates a setup similar to an off-axis holography
experiment (Lichte & Lehmann, 2007) and results in an
unfair counting of the incoming amount of electrons
that is needed per area. If such an external reference
wave can be added at no penalty, then this option should
also be offered to the diffraction setup, e.g., by assuming

that part of the illuminated field of view is known to be
constant or of no interest. This would lower the amount
of unknowns and increase the precision as well.

e Evenif the area of the sample around the region of interest
can be considered uninteresting or sacrificial, the elec-
trons hitting there can still cause damage inside the area
of interest via delocalized inelastic scattering (Egerton,
2012, 2017; Jannis et al., 2022; Velazco et al., 2022)

In order to recover all spatial frequencies within the illumi-
nated area without creating an (unfair) implicit reference
wave, we choose to take the optimal value of C=1/2 for
the remainder of this work. With that normalization in
mind, we can estimate the standard deviation of the phase er-
ror for N, electrons as:

V1 -2C2+2C* C:_l)/z V10

2
2C2/N,/(N-1) 2J/N./(N-1) @

0¢,22D =

which is +/10 = 3.16 times higher than what we would get as-
suming the wrongly normalized conventional solution. Note
that, for a 1D case, the normalization penalty is less severe:

" _V1-2C+2C? c=172 V2
P T /NJIN=T) 2N/ (N=1)

To make matters more confusing, it turns out that when nu-
merically implementing ZPC, this aliasing error is often
made by wrongly assuming that illumination and sample are
periodically repeated until infinity, resulting in a situation
that exactly replicates the C=1 case without even having
the penalty of losing the low-frequency information. This sub-
tle error that we discuss in more detail in Appendix B is likely
why, in other numerical attempts, the counting noise effect is
portrayed too optimistically (Koppell & Kasevich, 2021;
Dwyer, 2023). To help overcome this situation, we include a
numerical reference implementation with this paper
(Verbeeck & Vega, 2024).

(3)

Inversion via Parameter Estimation

Estimating the parameters of a forward model is a simple
method for determining the unknown phases from a recorded
diffraction pattern (Aster et al., 2018). We can model the ob-
ject as a discrete pure-phase object:

S;=é (4)

Then, we can describe the illumination over this object with a
wave function:

¥Y; =A,-ei“f. (5)

To allow for both amplitude and phase modulation, we can
write the exit wave of the object as:

Y = A,-ei(""”’). (6)

Moreover, we record the diffraction intensities as follows:
2
Inoder; = | Fj¥il~. (7)

With F; representing the Fourier transform operator, which
projects the wave onto the back focal plane where the detec-
tion process occurs. Now, we can define a maximum-
likelihood estimator (MLE) based on the assumption that
the detection in the diffraction plane is governed by counting
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noise, and each detector pixel is assumed to be independent.
We can write the log-likelihood / (Van den Bos, 1989) as:

I~ - Z(Iexp o In (Imodel,f) - Imudel,f)' (8)
]

With Iexp j and Io4el j» the experimental and model intensities,
respectively. We can now use a nonlinear fitting algorithm to

find the estimates ¢, of ¢;. The ML algorithm has the benefit
of delivering estimates with the highest possible precision
and without bias for a high number of observations
(Den Dekker et al., 2005), assuming the model and the noise
model are correct. In Appendix C, we derive the Jacobian for
this model, which significantly speeds up the iterative optimiza-
tion routine. Furthermore, we also do the derivation for the
Fisher information matrix, which can be inverted to obtain the
Cramér-Rao Lower Bound (CRLB) (Den Dekker et al., 2005).

Tr(F1)
O'¢,ML Z CRLB = W (9)

With Tr(), the Trace operator, and F, the Fisher information ma-
trix. We can further estimate the CRLB from a more fundamen-
tal perspective. We detect in the reciprocal plane where, in
principle, information related to the phase of the object is en-
coded in both amplitude and phase in that plane. As a result,
we can, at best, obtain an average of half of the information,
as we have assumed no prior information about the object.
We could, therefore, assume that the CRLB will be close to
the following;:

CRLB N C (10)

2yN./(N-1)

This was given as well in equation (3) as the correction for the
1D case in a ZPC system with C = 1/2. However, we will nu-
merically test this idea further on.

The CRLB can predict the best possible precision that can be
obtained under the given electron dose. This can then be com-
pared to the actual outcome of a numerical experiment to
evaluate whether we can attain the CRLB in practice. It can
also serve to compare alternative algorithms like GS to evalu-
ate how close this can approach this limit and check if bias is
introduced.

Inversion via the Gerchberg-Saxton algorithm

The GS algorithm and its variations are iterative methods used
to recover phase information from intensity measurements of
a complex-valued wave function (Gerchberg, 1972; Yang
et al.,, 1994; Zalevsky et al., 1996; Huang et al., 2020).
In our case, starting from a set of intensity recordings
in diffraction space I={I, I, ..., Ing), and their corre-
sponding known illumination patterns in real space
Y={y,¥,, ..., YN ), We aim to retrieve the (N — 1) miss-
ing phases of an object S. To do this, we can start by guessing
our solution Sj as a set of N complex numbers with amplitude
1 and random phases ¢, € [ -z, #), illuminated by the
complex-valued waves from each Ngp; measurement in dif-
fraction space. And, in general, for any given iteration:

P =FISHYI. (11)
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Mean RMS phase error vs. dose (1D)
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Fig. 2. Numerical simulation of the average RMS phase error as a
function of total electron dose. The object is considered a random phase
object with four unknown phase values and a limited phase range of
+r/10 to stay within the linear approximation of the ZPC formula. The
simulation is repeated 100 times for each electron budget with a
different random object. Random phase illumination is done with 16
random illumination patterns that stay the same throughout the
simulation set. Note how ZPC and RPI's results closely follow the
predicted statistical error and show a similar noise performance up to
about N, = 10%, where systematic errors due to the linearization of the
ZPC formula start to show. Note also how ML RPI and GS RPI perform
remarkably similarly, giving confidence in the GS approach for larger
systems.

From this, we can impose the constraint of our recording in
. . PR .
diffraction space and re-construct our guessed ¢, ;. as:

. Pouwi /7 .

Wit =iV Tx Phase(93u), (12)
(pout,i

where the Phase operator returns the phase of the given array,

respectively. From this, we can back-propagate ¢* .., to real
space and obtain a new estimate for the object:

St = Average(F 7 [Py 1¥],)- (13)

With ‘i’; being the complex conjugate of the transposed illu-
mination pattern wave set. This process is then carried out it-
eratively until a set number of iterations or a convergence
condition is met.

It is important to note that in equation (13), the update
takes the average update from each of the Ngpy illuminating
patterns. This helps reduce the typical twin and translational
artifacts in the Fourier transform when Ngp;> 1. For
Nrpr =1, we will encounter a similar problem to that of
ZPC, where oversampling is needed to solve all N phase values
in our object.

Numerical Exercise for 4 Unknown Phases (1D)

An example of an outcome of this numerical experiment is giv-
en in Figure 2 for Ngp; = 16. We note a logarithmic behavior
between phase errors as a function of the total number of elec-
trons (as expected). Furthermore, for this 1D case, both RPI
and ZPC perform similarly. This performance shows that
the corrected error prediction for ZPC in equation (3) de-
scribes the propagation of the counting noise to the estimated
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phase quite well. For very high doses (above N, = 10* here),
the ZPC phase error does not decrease anymore; this is due
to hitting the limit of the linearization of the ZPC formula
(equation (A.16)), which also depends on the range of phase
modulation J by the sample (here +7/10). We are, however,
more interested in the low-dose performance. Both the ML
and GS results are well predicted by the CRLB, showing
that, on average, we approach the statistical limit for 100 re-
peated experiments per electron dose value. It also shows
that our rough estimate in equation (10) is reasonably accurate
(in this case, it coincides with the ZPC corrected prediction) al-
beit slightly higher than the actual CRLB that is based on the
detailed model. The fact that GS attains the CRLB also gives
confidence in this much faster algorithm, which will be needed
for larger systems later. We investigated the role of Ngpj in the
number of random phase illuminations (not shown) and ob-
served that from Ngp; > 2, we converge to the optimal phase
error. This convergence confirms the theoretical prediction
in (Fannjiang & Liao, 2012). Increasing Ngp leads only to
faster convergence, which might benefit larger systems.
However, from here on, we will assume Ngp; =16 unless
otherwise noted. Furthermore, we found that convergence is
best for random phases from a uniform distribution between
0 and 7. However, other phase modulation ranges for the illu-
mination were tested with similar results, provided that the
object’s phase range is fixed. Other phase patterns were at-
tempted, such as illuminating with only 1 pixel at a random
phase between —x/2 and +r/2 for each RPI configuration or
using an orthogonal set of waves (e.g., a Hadamard (1893)
basis set), both of which also yielded good results.

Numerical Exercise for a Small 2D Case

Changing to a more common 2D configuration, we attempt a
4 x 4 pixel phase object shown in Figure 3. The diffraction-
based recording performs better than the corrected ZPC inten-
sity, increasing dose efficiency by 5. Comparing ML RPI with
GS RPI shows that GS attains the CRLB rather well, which
gives faith in the algorithm as a faster alternative to ML, al-
lowing for reconstructing larger objects in a reasonable time.
The higher number of unknowns also stabilizes the statistical
errors, and the observed behavior for 100 random weak phase
object realizations results in an average behavior that closely
follows the CRLB and ZPC error predictions. In this case,
we barely start appreciating the systematic linearization error
for the ZPC setup as the overall error has increased due to the
higher number of unknowns, which shifts this point to higher
doses.

A More Realistic 2D Object

Due to computational limitations, we have decided to use the GS
algorithm for larger objects. As observed in previous examples
the GS algorithm closely approximates the ML CRLB, in agree-
ment with, e.g., Melnyk (2023). In Figure 4, we display the ob-
served Root Mean Squared (RMS) phase error for a 64 x 64
random phase object with a +7/10 phase variation. Both meth-
ods effectively retrieve the object at high electron doses, but the
standard deviation of the phase error remains about +/S higher
for the correctly sampled ZPC case. We observe a similar sys-
tematic error when N, > 107, which is expected at higher doses
compared to the N =4 1D case. This is because we have to es-
timate approximately 1,000 times more phases, so the error

Mean RMS phase error vs. dose (2D)

RMS phase error

¥ Zernike

—— Zernike prediction
¢ MLRPI
----- GS RPI 16 prediction
= GSRPI16
107 CRLE ML

----- corrected Zernike prediction

10* 102 10% 10* 10°
Electron budget

Fig. 3. Numerical simulation of a 4 x 4 phase object encoding 100
different realizations of random phase noise with a range of +z/10 for
each electron budget. The electron budget is divided over 16 random
phase illumination patterns. Note the significant difference with ZPC due
to the normalization correction and the close relation between the ML
RPI and the much faster GS RPI.

Mean RMS phase error vs. dose (2D)

g
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L
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Fig. 4. RMS phase error for a single 64 x 64 random phase object with
7/10 phase range, illuminated with Ngp =2, 16, 64. We note that ZPC
and GS closely follow their predicted error behavior as a function of the
total dose. We note a remarkable trend at low doses where the phase
error shows a plateau depending on Ngpj, Which is a consequence of
phase wrapping in the individual Ngp| realizations.

requires a dose 1,000 times higher to have the same phase error
in each pixel. On the low-dose end, we note a peculiar deviation
from the error prediction for both ZPC and GS. This occurs be-
cause, in both cases, the phase error is bounded. For ZPC, this
occurs, e.g., when we get zero counts in a pixel. In that case,
the phase is fixed at ¢, =—10/8 rad (for 2D), as is obvious
from equation (1). Suppose we now calculate the standard devi-
ation of a distribution which is a truncated normal distribution.
In that case, we get an RMS value lower than expected from
noise considerations only. This leads to a plateau at a very
low dose. Note that this plateau does not mean we gained any-
thing regarding information retrieval but is merely an effect of
truncation. This effect is clearly visible in a ZPC image of the
famous cameraman (Unknown, 1978) (see the top rows of
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Fig. 5). When using the lowest dose, most pixels are stuck at the
lowest value (—10/8 for the ZPC case), resulting in a low-phase
error for an object with limited phase variation. However, these
pixels do not contain much information about the object either.

The situation is more complex for the RPI measurements.
For a GS implementation, we can think of RPI as a series of
Ngpr individual measurements. Each of these measurements
will have only a fraction of the total dose and, therefore,
show a higher error individually. The truncation described
above now happens for each realization individually, leading
to a phase error plateau lower by +/Ngp; for the low-dose
cases. Naturally, this does not happen for the ML implemen-
tation because there is only one model with N phases that
are bound between —r and +x, and the N x Ngp; detected in-
tensities are correctly dealt with through the likelihood func-
tion, which does not suffer from truncation issues. In order
to get the most accurate recorded intensities, it is best to avoid
working with dose levels that lead to this plateau. If we need to
use GS for computational efficiency, we can do so by choosing
Nrpr = 2 for low-dose cases. Another option is to use ML and
a higher value of Ngpj to make full use of the available infor-
mation. However, this will require longer computation time
and does not lead to a significant error reduction. Note that
the plateau is also misleading here, as it could lead to the as-
sumption that the lower plateau level for higher Ngpy is a de-
sirable suppression of the noise. However, it is merely a
truncation or phase-wrapping artifact that obfuscates the ac-
tual signal.

When we examine the visual output of the retrieved phase
for the cameraman object in Figure 5, we can clearly see
some significant differences between ZPC and RPI. At the
highest dose, both methods accurately retrieve all object de-
tails. In the case of ZPC, the intensity is dispersed outside
the illuminated region of interest, which makes it less effective
than the diffraction-based method. We discovered that only
62.5% of the intensity is within the region of interest, with
the remaining 37.5% not contributing useful information
from the object. At low doses (marked with a % in Fig. 5),
the ZPC displays a flat phase of —10/8 rad wherever no elec-
tron was detected. While this flat value may seem like low
noise due to the absence of contrast variation, in reality, it in-
dicates a lack of information in those areas. This is why we ob-
serve a plateau in Figure 4 for ZPC. In the case of GS RP], this
effect also arises from phase wrapping of the noise, but it is less
prominent, which is also visible in the figure indicated with a x
in Figure 5 for RPIL

Furthermore, we also show the detected intensity for the
ZPC case to demonstrate the normalization effect that was de-
rived in this paper. Figure 6 shows the detected intensity of the
random phase object of 64 x 64. As mentioned before, with
correct oversampling of C = 1/2, we notice the intensity out-
side of the illuminated area to be 37.5% of the total illumin-
ation intensity. This effect occurs as a result of the phase
discontinuity that is essential for ZPC to work but leads to a
decrease in dose efficiency as only a fraction of all electrons
take part in the actual formation of the central phase encoded
part of the image and, even there, the contrast is lower.
Onmitting this oversampling by 2 in all directions will wrongly
create an aliasing of the reference part of the wave, which will
result in a seemingly 50/50 distribution between the object
and the reference part of the wave. This distribution will result
in much better counting statistics, but it is an aliasing artifact
that cannot be reproduced in an actual experiment.
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Fig. 5. Comparison of ZPC and GS RPI phase retrieval as a function of
dose on a more realistic 2D object. At high doses, both methods retrieve
the object effectively. The top figures marked with a x do not adhere to
the color bar scaling to aid visualization.

Discussion

Following the previous derivation and results, we can now ex-
tract common features from these numerical exercises and dis-
cuss the effect of each parameter on the reconstruction.

The Role of Dose

The role of dose clearly follows the expected 1//N,/N trend,
albeit with different pre-factors for either ZPC or diffraction-
based measurements. This trend shows that more electrons are
obviously better and that the number of detector pixels M
should be carefully balanced against the required sampling
and desired field of view. We observe a deviating trend at a
very low dose due to phase wrapping, which truncates the
phase error and leads to a plateau in the error prediction.
This plateau indicates a situation where noise is maximized,
and it is unlikely that one would recover any meaningful signal
in this range. We observed that this truncation effect is more
severe for the GS RPI method as it acts on the Ngpy individual

G20z Aeniga4 g0 uo Jasn yaaylolqig uadiemiuy 1181IsIaAIUN A 98ZES6//SZ L 8BZ0/WeW/SE0 L 0| /I0p/3|oIe-80uBApE/WEW/WOo2 dNo"dIwapeae//:sdiy Wol) papeojumMo(]



F. Vega Ibanez and J. Verbeeck

Zernike Intensity with N, = 5e+05
Reference counts = 3/8

Fig. 6. Example of a correctly sampled ZPC image of a random phase
object of 64 x 64 zero-padded to 128 x 128 with Ne =5 x 10°. The
central 64 x 64 area contains the actual phase-related image and 5/8 of
the total dose with which the object was illuminated. The other 3/8 lands
outside the central area and does not contribute to the desired
information.

experiments, while this does not appear for the ML RPI meth-
od. This finding is significant, as it guides the experimenter to
use a lower Ngpj for very low-dose imaging to optimally dis-
tribute the available dose among each phase configuration in
the illumination. Ideally, ML RPI would always be used, but
our current implementation is too slow to be practical on
realistically sized objects. Further algorithm development in
this direction would be useful. As a side note, we speculate
that these effects also occur for ptychography with
overlapping probes, as also here, one records multiple
instances of the same part of the object with different phase en-
coding (Lietal.,2014; O’Leary et al., 2020, 2021; Leidl et al.,
2024).

Is RPI the Best we can do?

In our study, we employed the RPI method to solve the issue of
under-determination in the inverse problem, which helps elim-
inate translation and point symmetry uncertainties (Fannjiang
& Liao, 2012). Although this method provides a fivefold im-
provement over ZPC, it raises the question of whether it
would be more efficient to devise a new illumination scheme
based on insights gained from previous experiments rather
than recording 16 random phase illumination variants. We ex-
plored variations of this approach, such as using the complex
conjugate of the current phase estimate, employing orthogon-
al basis sets like Hadamard and Fourier, and using only +=x
phase illumination akin to a charge flipping algorithm
(Fienup, 1982). However, these attempts yielded nearly iden-
tical results to our simpler random phase illumination scheme.

It is intriguing to consider how we can efficiently encode a
phase message using N, electrons. Assuming that each elec-
tron represents one bit of information, then N, electrons could

convey a message with 2N variations. If we distribute this
across the N = (n X n) independent pixels, we get:

2z

O¢.binary = N, *
2=

2

(14)

This encoding would be significantly more efficient in terms of
electron dose, but assumes that:

e We know exactly when an electron is interacting with the
sample in order to encode a zero bit when no detecting
occurs.

¢ We have a way to control the phase of the incoming elec-
tron wave precisely.

¢ We have a way to set up an experiment to find out if the
modulo of the phase shift of the sample with respect to
the local incoming phase of the wave is higher or lower
than some value.

This scheme could be approached when multiple passes of the
same electron through the sample can be configured as pro-
posed in the quantum microscope (Kruit et al., 2016;
Juffmann et al., 2017; Koppell et al., 2019; Turner et al.,
2021) and even further improvement is expected when using
squeezed or entangled electron states (Koppell et al., 2022).
The practical implementation of this seems currently highly
challenging. Still, it is good to keep in mind that the results
in this paper may differ from what is possible.

Technological Difficulties to Realize This

In this paper, we have looked at the fundamental counting
noise limits and have assumed that we can create an ideal
phase plate acting on the phase of the illuminating wave and
an ideal but correctly normalized version of the ZPC that
acts on the exit wave in the back focal plane. Several techno-
logical obstacles have to be overcome in order to realize these
ultimate predictions for the ZPC case:

e Theideal Airy disc-like Zernike phase profile is difficult to
realize.

¢ The ideal Zernike phase shift may differ from z/2 (see
Beleggia, 2008).

e The ZPP profile should adapt in width to the illumination
size to obtain the best performance while avoiding loss of
low frequencies.

Also, for the RPL, several obstacles will hinder a straightfor-
ward implementation:

¢ A programmable phase plate has considerable limitations
regarding the fill factor (Verbeeck et al., 2018; Vega
Ibafiez et al., 2023; Yu et al., 2023), meaning that we
also imprint amplitude modulation into the probe.
However, this may or may not be beneficial in some cases
(Allars et al., 2021; You et al., 2023). This could be over-
come by scanning the amplitude and phase-modulated
probe in ptychography style to illuminate all the areas of
the sample with some overlap between the probe positions.

In both scenarios, charging problems, gradual drift, and con-
tamination are potential issues.
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A Note on Re-Normalization

In our paper, we have examined a sample as a collection of
random phases without making any assumptions about the re-
lationship between pixels or the probability of certain patterns
occurring. In reality, the set of actual images is smaller than the
total number of potential random phase formations. In other
words, there is some underlying regularity in the sample. If
we correctly describe this regularity, we can significantly
gain in terms of signal-to-noise as this constitutes prior knowl-
edge about the sample (Maiden et al., 2017, 2024; Schloz
et al., 2020; Diederichs et al., 2024; Leidl et al., 2024).
However, we need to be careful and compare similar situa-
tions. For example, if we use regularization in an RPI setup,
we should use the same assumptions in the case of ZPC.
Failing to do so will inevitably lead to biased opinions, as
was the case in compressed sensing (Donoho, 2006; Leary
etal.,2013; Lietal., 2018), which also relies on regularization
arguments. This makes it impossible to compare to a situation
where normal sampling is applied unless the regularization
prior is included (Van den Broek et al., 2019). For this reason,
we will not discuss regularization here. However, significant
gains can be achieved if such prior knowledge is available
and valid (Diederichs et al., 2024).

Conclusion

We have demonstrated that there is a clear benefit in terms of
counting statistics in recording multiple diffraction patterns
over the more conventional ZPC imaging. We stress here
that we have shown just one possible way of improving the
dose efficiency of ZPC imaging without making claims on re-
lated ptychographic or other diffraction-based setups.
Nevertheless, breaking this limit for one case demonstrates
that ZPC is not the ultimate limit, and this should invite fur-
ther research. Note also that we have assumed the weak phase
object approximation throughout, which is known to be a
very limiting assumption in practice. We found the benefit in
terms of dose efficiency to be a factor of 5, which would allow
a very significant shifting of the beam damage boundaries that
are hindering progress in, e.g., life sciences, but also in many
materials science areas such as battery materials, polymer sci-
ence, zeolites, perovskites, metal-organic frameworks and
many more.

This improvement factor is mainly attributed to a subtle
normalization issue that occurs in ZPC imaging. This issue
makes ZPC less dose efficient, as it seems to be the case if
we make a fair comparison where the sample is illuminated
with exactly the same dose over exactly the same area of illu-
mination. This paper avoids discussing actual implementation
details, and it might well be possible to improve this benefit
further if, e.g., the illumination can be updated to take into
account information from the partial experiment that was
already performed. Whether the gain from the diffraction-
based recordings proposed here can also be obtained in
practice remains to be seen, as many practical details will
influence the actual dose efficiency. Nevertheless, there has
been much promising progress in ptychography over the last
few years, and it relies on diffraction-based detection, albeit
with a different illumination scheme than the RPI suggested
here.

One potential advantage of detecting in the diffraction
plane while adjusting the phase of the probe is the potential
for a simpler, smaller, and more cost-effective electron
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microscope specifically designed for life science imaging. In
this scenario, the camera could have significantly fewer pixels,
and the projector system could be completely removed (along
with the image corrector), as long as some form of scanning
system or phase plate can quickly alter the illumination. This
discovery shows promise for affordable tabletop instruments
that could expand the information we can gather from beam-
sensitive nanoscale objects.
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APPENDIX A
Zernike Contrast with Proper Normalization

Assume a circular area of illumination on a sample with radius R.
r
M(r) =n(ﬁ). (A1)

With I1(x) the Heavyside Pi step function (or rect function) being
one for |x| < 1. The sample transmission function can be approxi-
mated as a phase object:

O(r) = . (A.2)
In the back focal plane of the sample, this will result in
2]1(kR)
w9 = Mg @ Ol =T g o). (a3)

With ~ designating the Fourier transformed function and J; a
Bessel function of the first kind. Typically, experimental realiza-
tions of a ZPP in the TEM, such as the Volta Phase Plate, have an
Airy-like smooth phase profile (Danev et al., 2014, 2017; Malac
etal., 2021). However, to create an idealized ZPP, we assume a
maximum passband frequency knax, representing the ultimate
spatial resolution, and a minimum frequency kz, below which
we introduce the required phase shift of z/2, modeled as a
Heavyside Pi step function as well. A genuinely ideal ZPP will
have kz—0 and ky.x—>c0. However, we will see later that
these parameters play an important role in normalization and
are critical for discussing quantum information.

k T k
Z(k)=H<2kmax) eXP[l_H<2k >:| (A.4)
For kmax > k, and we can rewrite this as:
k k
Z(k)_H(m>+H<2k )( 1). (A.5)
Applying this phase plate in the back focal plane leads to:
2]1(kR ~
vt =[5 @ O |zt (A6)
Transforming this back to the image plane, we get:
Wz(r) = [M(r)O(r)] ® Z(r) (A7)
We can rewrite the Fourier transform of the ZPP as:
Z(r)=2]1§;kmax) 2]12’/{ ( 1) (AS)
TRmax 7

The first term will lead to a replica of the object with a spatial
resolution limit of 1/kmay. The second term, however, will create
a blurred version of the illuminated patch M by a Bessel function
of width Rz = 1/kz. This will serve as a reference wave, reveal-
ing the phase contrast when interfering with the first term. The
blurring will take intensity from within the illuminated area out-
side the illuminated area, which carries no useful information.
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This is critical for consideration of the role of counting noise, as
not all electrons will contribute to the desired ZPC signal. The
blurring reduces the local intensity by a factor C, which can be
estimated in the center of the image as:

c= R Z(k) dk (A.9)

= [xRk:Ho(Rk;) — 21]1(Rks) (A.10)
+Rk[2 — zH 1 (Rks)1Jo(RE.) (A.11)
C = Rk, (A.12)

with Hy and H; Struve functions of zeroth and first order, re-
spectively. The simplification in the last step is a very good ap-
proximation when Rk, < 1. If we choose Rk, =R/R, <1/2
(required to recover all but the DC frequency, anything higher
will lead to loss of low-frequency components) we can rewrite
the exit wave for » < R as

¥(r, » <R, R/R,

<1/2)=O(r) + (i — 1)C*M(r)O(x). (A.13)
With C ~ R/R, and M(r)O(r) the averaged exit wave inside the
illuminated patch M caused by the convolution of the Heavyside
and Airy pattern with ’radius’ R and R, respectively. This con-
volution will re-scale this reference wave by a factor C? because
part of this wave now ends up outside the illumination patch in
the image plane. Applying the weak phase approximation and
assuming the phase of the object does not contain spatial fre-
quency variations above kpax:

O(r) = 1 +ig(r) (A.14)

Y(r,r <R,R/R, <1/2) ~ 1 +ig(r) + (i—- 1)C*  (A.15)

L(r,r <R,R/R, <1/2) ~ |¥(r,r <R, C < 1/2>|2
~ (1= C*)? + (g(r) + C*)?
~1-2C%+2C*+2C%4(r)

+(r)?
~1-2C*+2C* +2C%(r)
+...,

(A.16)

where we kept only linear terms in the phase. I,(r,r <R, C <
1/2) is the observed intensity in the image plane within the
illuminated area. The average intensity within the illuminated
patch is I(r,7 <R, C<1/2)~1-2C>+2C* We can re-
cover the phase from the intensity as:

L(r,r <R)—1+2C*-2C*

#(, r <R) ~ o

(A.17)

In a practical implementation, the intensity will be recorded on a
pixelated camera, and we assume I, to be scaled such that if the
ZPP was removed, there would be an average of 1 electron per
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pixel. This allows us to estimate the standard deviation of the
phase error as:

1 JI-2C+2CF
o5 =
' 2N C?

(A.18)

Where the last term is a correction term that takes care of the role
of C, which depends on the parameters of both illumination size
and scale of the phase shifting part of the phase plate.

Appendix B
Numerical Implementation of Zernike Contrast

The consequence of the above considerations for a numerical
implementation of a ZPP is that zero padding around the object
is essential. Omitting this step will lead to an overly optimistic
result on the quantum information content that a ZPC imple-
mentation can obtain. Furthermore, this zero-padding step
represents a situation where the object is periodically repeated
until infinity and illuminated by an infinite plane wave. In gen-
eral, we are not interested in perfectly periodic structures
(otherwise, diffraction would be a far more logical choice),
and even if we are, it is, in practice, impossible to make the il-
lumination box exactly fit with periodic boundaries.

As the intensity recording involves a modulus squared, which
relates to the autocorrelation in the image plane, proper zero
padding is only guaranteed when there is at least padding
with 72/2 on all sides for an 7 x 7 illumination area. Padding
more will worsen the counting statistics further; padding less
will lead to an unphysical situation as it cannot be replicated
in a real experiment (Fig. B.1).

We can use the crudest approximation of a ZPP in a numer-
ical experiment by creating an M = m X m filter matrix in the
discrete Fourier plane with all 1s and only the DC component
in the top left corner equal to the complex i. We can decompose
this filter into a sum of a matrix with all 1s and another matrix
with all zeros except for the DC component, which we take as
(i — 1). Fourier transforming this will lead to a sum of 2 matri-
ces, one of which has only a DC component equal to 1 and the
other of which is 1, and the other being a flat matrix with ele-
ments (i — 1)/M. We can now simulate the action of this filter
by convolving this real space representation of the Zernike filter
kernel with an object. If we choose the object first to be the same
size as the filter kernel (M = N) we get:

(i-1)

¥z(r) = O(r) + M——(O(r)) (B.1)
Yyr)=1+ig(r) +i—1 (B.2)

Y (r) =i+ id(r) (B.3)

Iz(r) =1+ 24(r) + ¢(r)* (B.4)
Iz(r) % 1+ 24(x). (B.S5)

From which we can derive the phase unambiguously from the
intensity:

I,-1
h(r) ~ ZT (B.6)
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Fig. B.1. Sketch of a numerical 2D implementation of ZPC imaging that avoids aliasing effects that would lead to errors in estimating the quantum
efficiency of the ZPC imaging process.
And this looks exactly like we would expect from a ZPP. The =~ We can still derive the phase as follows:
standard deviation on the phase now becomes:
I; —1+2C2-2C*
1 é(r) ~ . (B.13)

std(g(r)) YNE
This result is why ZPC is believed to outperform diffraction-
based methods, e.g., in (Dwyer & Paganin, 2024).

If, on the other hand, we choose to limit the illumination of
the object only to fill N = z x n pixels, we get a different result
with C = 4/N/M, an oversampling factor:

(B.7)

Wz(r) = O(r) + C*(i = 1)(O(r)) (B.8)
Wy(r)=1+ig(r) + C2(i—1) (B.9)

Y, (r)=1-C? +i(C* + 4(r)) (B.10)
Iz(r)=1=2C> + C* + C* + 2C%4(r) + 4(r)* (B.11)
Iz(r) 1 -2C2 +2C* + 2C%4(x). (B.12)

2C2
Note that this is subtly different in several ways. If M > 4N,
the action of the averaging kernel now smears the object out
over the whole matrix but does not cross the borders of that
matrix and, therefore, does not cause aliasing. In physics
terms, this means that the average wave, which will be used
as a reference beam to reveal the phase, now only comes
from the illuminated 7 X # patch and not from neighboring
sample areas, which, in the case of N =M, are wrongly as-
sumed to be periodic. Even if we can live with the fact that,
for the averaging, it does not matter that the sample is perfect-
ly periodic, we are still using electrons from neighboring areas
(and they will cause damage there). On top of this, it will
spread the averaged reference wave over a wider area in the
image plane (here, 72 X m but only if 7 > 2n). This area is lar-
ger than the n X7 illuminated image region of interest.
Therefore, a significant fraction of electrons will end up in
areas of the image plane where they do not bring information
on the illuminated sample area.
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We are now in the position to estimate what fraction of the
illumination contributes to the ZPC phase signal. Outside and
inside the illuminated area, we get an average intensity of:

jZ,out ~ 2C4
Izin~1-2C*+2C*

(B.14)
(B.15)

For an oversampling of C=1/2, the average intensity is
1-2/4+1/8=15/8 inside and 3/8 on the outside. All inten-
sity is now spread over four times more area in real space
than before, and only the central quarter will contain informa-
tion on the sample phase. That central patch only contains 5/8
of the illumination, but even that 5/8 contributes less than in
the aliased (and therefore wrong) ZPC case because the
strength of the averaged reference beam is also reduced. For
1D, we have N=#n, M =m, and C=1/2. This would be 1/2
inside and 1/2 outside, leading to half the intensity, which
does not contribute to the area of interest.
The standard deviation on the phase now becomes:

1
Std(¢Z,a1iased) = m (B16)
std(¢z,p) _ JI-2CZ 1207
Std(¢aliased) a (:2 (B17)
Std(¢z’1D) B m
Std(¢aliased) B C . (B].S)

For the minimal required oversampling of C=1/2, we get

Std(¢Z,2D ) _ m

B.19
Std(¢aliased ) ( )

std(¢z,1p)
Wzl _
Std(¢aliased) f

Identical to the real space derivation as it should be.

(B.20)

ArpenDIX C
Maximum-Likelihood Model under Poisson
Noise
The parameter-dependent part of the log-likelihood for
Poisson is given as:

N

Z exp, lln model l) Im()del,l)s (Cl)
!

with I, ; the experimental observation and I,,,qel,s, the model
prediction is based on a set of detector pixel / parameters.
The model is obtained as follows:

Y, = Aiei(¢‘+a’) (CZ)

Imodel,l = ’flAiei(%Jrai)!z (CS)

Z Al_ei(¢l+ai)62n’ir;-kl
i

2

Im()del,l = =|\i—’l|2, (C4)
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We included the optional illumination function A;e'*, allowing
for both an amplitude and phase-modulated illumination pattern.

Differentiating the log-likelihood from the parameters of
the model gives:

I, oI,
a_l _ _ ( exp,] 1) odel,/ ) (C.5)
a¢i i Imodel,l a¢z

Differentiating the model intensities from the model parame-
ters, we get the:

aImudcll 3o
——— = -2ARe¥sin(d; + a; + ik
o, v T e

+ 2A,ImY cos (¢, + a; + 1;k)).

Suppose we constrain the last phase value ¢ to maintain an
average phase of zero (the absolute phase has no meaning,
and fitters do not like duplicate parameters). In that case, we
need to take into account this dependent variable. So, we pro-
ceed now with (N — 1) independent parameters:

ol -
% = —2Re¥|[A; sin (¢1 + T,‘kl + a;)
— Anssin (¢, + 1.k + ay)] (C.7)
+ 2Im¥)[A; cos (¢; + rik; + a;)
— Ancos (@, + k) + ay)].
Using this analytical derivative as a Jacobian input for the
nonlinear fitter significantly speeds up the process and im-
proves convergence. We can now derive the Fisher informa-

tion matrix:
Fij= —E|: il i| (C.8)

04,09

— Zi( exp,l 1) aImodel,l
i ¢ a¢t

fl mo del,/

(C.9)
Iexp,l aImodel,l
+ - 1 V3
Imodel,l d ¢ja¢i
__ 1 aImodel,l aImodel,l (C.10)

7 Imodel,l a¢i a¢j

From this, we can obtain the (N —1) x (N — 1) covariance

matrix:

COVZF_l- (Cll)

From which the diagonal elements represent the CRLB of the

variance on the individual phase estimates 4,. This allows us
to write a lower limit for the standard deviation on the esti-
mated parameters as:

Tr(cov)
N-1
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