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Abstract
The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission 
electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the 
resolution limit. Here, we explore whether we have to accept this or can progress further in this area. To do this, we use numerical 
simulations to see how much information we can obtain from a weak phase object at different electron doses. Starting from a model with 
four phase values, we compare Zernike phase contrast with measuring diffracted intensity under multiple random phase illuminations to solve 
the inverse problem. Our simulations have shown that diffraction-based methods perform better than the Zernike method, as we have found 
and addressed a normalization issue that, in some other studies, led to an overly optimistic representation of the Zernike setup. We further 
validated this using more realistic 2D objects and found that random phase illuminated diffraction can be up to five times more efficient than 
an ideal Zernike implementation. These findings suggest that diffraction-based methods could be a promising approach for imaging beam- 
sensitive materials and that current low-dose imaging methods are not yet at the quantum limit.
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Introduction
In this work, we aim to revisit the longstanding issue of phase 
reconstruction in transmission electron microscopy (TEM) 
(Drenth et al., 1975; Fienup, 1982; Coene et al., 1992; 
McCallum & Rodenburg, 1992, 1993; Rodenburg et al., 
1993) and examine it from the perspective of information 
transfer. In electron microscopy, we detect electron events 
that are quantum-mechanically linked to their wavefronts’ 
probability density (square modulus). The problem arises 
from the loss of the phase during the detection process, which 
significantly restricts the information obtainable from an elec
tron microscope experiment. This issue is particularly challen
ging in electron diffraction experiments, as it hinders the 
extraction of the projected periodic potential of a crystal. 
Moreover, it is also highly relevant in imaging non-periodic 
thin objects in TEM, where the object’s projected density in
formation is predominantly encoded in the phase profile im
parted on the coherent plane wave illumination. Recent 
attempts to apply diffraction-based imaging, e.g., to viruses 
(Zhou et al., 2020) or in single particle analysis (Pei et al., 
2023) show great potential and are accompanied by promising 
simulation studies (Pelz et al., 2017; Leidl et al., 2023; Mao 
et al., 2024).

We will use the toolset of parameter estimation, which has 
shed light on similar problems in TEM, like investigating point 
resolution in the presence of noise (Bettens et al., 1999), the 
advantage of a monochromator on the spatial resolution in 
TEM (den Dekker et al., 2001), determining the precision of 
measuring atomic positions from exit waves (De Backer 
et al., 2011), or even determining elemental concentrations 

from electron energy loss experiments (Verbeeck, 2024; 
Verbeeck & Van Aert, 2004). The issue of phase retrieval 
under dose-limited conditions has sparked significant debate 
within the scientific community. Egerton et al. conducted 
groundbreaking research to assess the instrument’s limitations 
(Egerton, 2007) and evaluated different commonly used TEM 
and scanning transmission electron microscopy (STEM) im
aging methods on beam-sensitive specimens (Egerton, 2013). 
In the following years, more theory was incorporated to assess 
the efficiency of phase retrieval by incorporating robust math
ematical concepts such as the Fischer Information (FI) and 
Cramér–Rao Lower Bound (CRLB) (Bouchet et al., 2021). 
Based on these mathematical concepts, Koppell & Kasevich 
(2021) constructed a function to assess the inherent frequency 
transfer of the imaging system. More recently, Dwyer and 
Paganin directly compared Zernike Phase Contrast (ZPC) 
and 4D-STEM with a phase-structured illumination. All this 
notable work has paved the way and opened the debate for 
a more comprehensive assessment of phase retrieval in the 
TEM, with the general conclusion that ZPC seemed the best 
method to maximize information transfer. Ultimately, this 
conclusion has put limits on the hope for ptychographic meth
ods to create a breakthrough in low-dose phase imaging 
(Fienup, 1982; Nellist et al., 1995; Faulkner & Rodenburg, 
2004; Maiden & Rodenburg, 2009; Parvizi et al., 2015; 
Yang et al., 2015). Here, we revisit this problem by conducting 
a series of numerical exercises. Furthermore, we will carefully 
consider the normalization conditions to enable a fair com
parison between image-based reconstruction using ZPC and 
phase retrieval through diffraction-based recording. We 
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demonstrate that at least under the idealized conditions con
sidered here, significant improvement over ZPC in low-dose 
phase imaging is possible with diffraction-based detection.

Setup
In the following section, we want to present this process as a 
type of game where the sample is imagined to contain a hidden 
message made up of N phase values, denoted as ϕi in Figure 1. 
We illuminate the sample with an electron wave and observe 
the outcome of this interaction on M ideal electron detectors, 
labeled as Ii in Figure 1. From this simple setup, two natural 
questions arise: 

• How many electrons do we need to fire onto the sample to 
obtain the secret message at the required precision and 
accuracy?

• How can the experiment be set up to achieve the best pre
cision and accuracy with the fewest electrons and, thus, 
the least beam damage?

These questions are fundamental in modern electron micros
copy, as the resolution of EM is in many practical cases limited 
by beam damage and not anymore by the instrument (Glaeser, 
1971; Chen et al., 2008; Müller-Caspary et al., 2019; Nakane 
et al., 2020; Chari & Stark, 2023; Pei et al., 2023; Küçükoğlu 
et al., 2024; Leidl et al., 2024). This means we must either 
learn new techniques to limit beam damage or utilize the 
most efficient imaging methods to maximize the use of the 
electron dose the sample can withstand (preferably a combin
ation of both).

In this paper, we will avoid all complications regarding the 
scattering that happens with the sample, details of imperfect 
optical systems (Gonsalves, 1982; Fienup, 1993), propagation 
effects (Liu et al., 2009; Robert et al., 2022), multiple scatter
ing in the sample (Maiden et al., 2012; Chen et al., 2020, 
2024; Ren et al., 2020), inelastic scattering (Yoshioka, 
1957; Muller & Silcox, 1995; Dwyer, 2005; Dwyer et al., 
2008; Allen et al., 2015; Brown et al., 2018; Beyer et al., 
2020; Robert et al., 2022; Diederichs et al., 2024), partial co
herence (Nellist & Rodenburg, 1994; Gureyev et al., 2006; 
Martin et al., 2006; Thibault & Menzel, 2013; Oxley 

& Dyck, 2020; Diederichs et al., 2024), and details of the al
gorithmic implementation (Fannjiang & Liao, 2012; Elser 
et al., 2018) to gain some clarity on how far we are from fun
damental limits.

We start with a conceptual exercise to estimate four hidden 
phases as sketched in Figure 1. We compare two typical set
ups: On the one hand, we use a Zernike Phase Plate (ZPP) 
for phase contrast imaging, which is commonly considered 
the golden standard in real space phase imaging and is used ex
tensively in, e.g., life science imaging (Zernike, 1942a, 1942b; 
Danev & Nagayama, 2001, 2008). The benefit of this method 
is that it results directly in an image of the sample with a con
trast that relates approximately linearly to the phase shift, 
which is proportional to the projected electrostatic potential 
of the thin sample in a TEM.

On the other hand, we can detect the scattered electrons in 
the diffraction plane as is commonly done to investigate sym
metries and periodicity in crystals. This pattern also encodes 
the information of the specimen albeit in a different way and 
requiring some inverse algorithm to link the recorded inten
sities to the projected sample potential we are interested in.

In either case, retrieving the absolute phase will be impos
sible as we have no unperturbed reference beam to compare. 
Due to this lack of a reference beam, only three of the four un
known phases are independent, somewhat simplifying the 
problem from N to (N − 1) unknowns represented as 
ϕN = −

􏽐N−1
1 ϕi.

Because either a translation or an inversion of the object 
leaves the diffraction intensities unchanged, we have a good 
chance of ending up with a wrong guess of the secret sample 
for the diffraction-based setup (Guizar-Sicairos & Fienup, 
2012; Tolimieri et al., 2012). A typical way to solve this is 
to oversample the diffraction plane (M > N), which stabilizes 
the solution at the expense of requiring more detector pixels. 
Another way to proceed is by introducing an amplitude 
(Allars et al., 2021; Abregana & Almoro, 2022; You et al., 
2023) or phase (Verbeeck et al., 2018; Vega Ibáñez et al., 
2023; Yu et al., 2023) modulator capable of encoding the elec
tron wavefront for Nconfig. sets of conditions. Here, we focus 
on pure phase modulation without delving into the details of 
how to create such a programmable phase modulator (Vega 
Ibáñez et al., 2023; Yu et al., 2023) and simply assume it to 
be perfect, as we did for ZPC.

Suppose we choose a number of Random Phase 
Illumination (RPI) conditions NRPI, and we solve the inverse 
problem by taking into account the NRPI independent meas
urements to resolve one unique estimate of the object phase. 
We now obtain some robustness against inversion and trans
lation since the extra configurations yield M × NRPI measure
ment points (far more than the N unknown phases we want 
to recover).

In order to implement this scheme, we use a nonlinear 
maximum-likelihood (ML) fitting algorithm with (N − 1) un
known phases and a likelihood function assuming Poisson 
counting noise that describes how likely it is that a given ex
perimental realization of M × NRPI diffraction intensities 
could have been produced when assuming a given set of 
(N − 1) sample phases (Cramer, 1946; Barlow, 1991). This it
erative nonlinear fitting process is significantly slower than the 
more common Gerchberg–Saxton (GS) (Gerchberg, 1972) al
gorithm but allows the correct treatment of the Poisson statis
tics and obtaining estimates for the connection between phase 
errors and the counting statistics through the use of the 

Fig. 1. Sketch of the setup. The aim is to measure the N phases of the 
unknown object by illuminating it with a coherent electron wave and 
detecting the arrival of electrons with an ideal detector consisting of M 
independent pixels. The left-side setup shows the configuration with an 
ideal ZPP, while the right-side setup describes the detection in the 
diffraction plane with a programmable phase input wave. We will 
compare the performance of both setups in terms of phase error on the 
estimate as a function of the amount of electrons we have available in the 
experiment.
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Cramér–Rao lower bound (Rao, 1945; Cramer, 1946). We 
can then use this to compare the behavior of the GS algorithm 
to ML prediction to convince ourselves that it approaches the 
same fundamental limit while providing a significant speed-up 
needed for realistic image sizes.

Recovering the Phase and Estimating its 
Precision
Our objective is to accurately determine the unknown phase 
from either a real-space or diffraction-space intensity record
ing. We will use the ZPC method for real space as a standard, 
and in the case of the diffraction experiment, we will need to 
solve the inversion problem. To do so, we will utilize param
eter estimation to understand its statistical properties and, lat
er, use a GS algorithm that can approach these while providing 
a significant numerical speed advantage.

Zernike Phase Contrast
In ZPC (Zernike, 1942a, 1942b), a phase plate is placed in the 
back focal plane of the objective aperture, which shifts only 
the low-frequency component of the wave by π/2. As a result, 
the image contrast now reveals the phase of the object. In 
Appendix A, we derive the relationship between phase and im
age contrast, paying attention to proper normalization (see 
equation (A.17)). This aspect has remained under-illuminated 
but will be critically important when studying the effect of 
counting noise:

ϕ(r) =
Iz(r) − 1 + 2C2 − 2C4

2C2 . (1) 

With IZ, the recorded intensity scaled such that if the ZPP were 
removed, there would be an average of 1 electron per pixel. 
The factor C = RkZ is given as the radius of the illumination 
disc R on the sample times the size of the central phase shifting 
area kZ in reciprocal units, and the formula is valid only for 
C ≤ 1/2 as we will lose low-frequency information for higher 
values of C. In the derivation, we assumed a Heavyside pi 
function for the phase profile, which gives the most faithful 
phase recovery (but may be harder to achieve in practice). 
The critical thing to note here is that this formula only agrees 
with the conventional ZPC for C = 1. However, in this case, 
the formula is not valid, as important low-frequency informa
tion would be missing across the illuminated area because the 
reference wave generated by the central Zernike phase discon
tinuity would not be homogeneous. Only if we admit to being 
interested in a subregion of the illuminated area can we re
cover the conventional formula at C = 1. It is important to 
stress here that, in such a case, we create a situation that can
not longer act as a fair comparison with the diffraction setup 
for the following reasons: 

• We are illuminating and damaging areas of the sample 
outside the field of view. We might need those areas later 
on.

• We use electrons outside the field of view which will help 
to create a reference beam inside the field of view. This ef
fectively creates a setup similar to an off-axis holography 
experiment (Lichte & Lehmann, 2007) and results in an 
unfair counting of the incoming amount of electrons 
that is needed per area. If such an external reference 
wave can be added at no penalty, then this option should 
also be offered to the diffraction setup, e.g., by assuming 

that part of the illuminated field of view is known to be 
constant or of no interest. This would lower the amount 
of unknowns and increase the precision as well.

• Even if the area of the sample around the region of interest 
can be considered uninteresting or sacrificial, the elec
trons hitting there can still cause damage inside the area 
of interest via delocalized inelastic scattering (Egerton, 
2012, 2017; Jannis et al., 2022; Velazco et al., 2022)

In order to recover all spatial frequencies within the illumi
nated area without creating an (unfair) implicit reference 
wave, we choose to take the optimal value of C = 1/2 for 
the remainder of this work. With that normalization in 
mind, we can estimate the standard deviation of the phase er
ror for Ne electrons as:

σϕ,Z,2D =
�����������������
1 − 2C2 + 2C4
√

2C2
�������������
Ne/(N − 1)

􏽰 →
C=1/2

���
10
√

2
�������������
Ne/(N − 1)

􏽰 , (2) 

which is 
���
10
√

≈ 3.16 times higher than what we would get as
suming the wrongly normalized conventional solution. Note 
that, for a 1D case, the normalization penalty is less severe:

σϕ,Z,1D =
����������������
1 − 2C + 2C2
√

2C2
�������������
Ne/(N − 1)

􏽰 →
C=1/2

��
2
√

2
�������������
Ne/(N − 1)

􏽰 . (3) 

To make matters more confusing, it turns out that when nu
merically implementing ZPC, this aliasing error is often 
made by wrongly assuming that illumination and sample are 
periodically repeated until infinity, resulting in a situation 
that exactly replicates the C = 1 case without even having 
the penalty of losing the low-frequency information. This sub
tle error that we discuss in more detail in Appendix B is likely 
why, in other numerical attempts, the counting noise effect is 
portrayed too optimistically (Koppell & Kasevich, 2021; 
Dwyer, 2023). To help overcome this situation, we include a 
numerical reference implementation with this paper 
(Verbeeck & Vega, 2024).

Inversion via Parameter Estimation
Estimating the parameters of a forward model is a simple 
method for determining the unknown phases from a recorded 
diffraction pattern (Aster et al., 2018). We can model the ob
ject as a discrete pure-phase object:

Si = eiϕi . (4) 

Then, we can describe the illumination over this object with a 
wave function:

Ψi = Aieiαi . (5) 

To allow for both amplitude and phase modulation, we can 
write the exit wave of the object as:

Ψi = Aiei(ϕi+αi). (6) 

Moreover, we record the diffraction intensities as follows:

Imodel,j = |F jΨi|
2. (7) 

With F j representing the Fourier transform operator, which 
projects the wave onto the back focal plane where the detec
tion process occurs. Now, we can define a maximum- 
likelihood estimator (MLE) based on the assumption that 
the detection in the diffraction plane is governed by counting 
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noise, and each detector pixel is assumed to be independent. 
We can write the log-likelihood l (Van den Bos, 1989) as:

l ≈ −
􏽘

j

Iexp ,j ln (Imodel,j) − Imodel,j
( 􏼁

. (8) 

With Iexp ,j and Imodel,j, the experimental and model intensities, 
respectively. We can now use a nonlinear fitting algorithm to 
find the estimates ϕ̃i of ϕi. The ML algorithm has the benefit 
of delivering estimates with the highest possible precision 
and without bias for a high number of observations 
(Den Dekker et al., 2005), assuming the model and the noise 
model are correct. In Appendix C, we derive the Jacobian for 
this model, which significantly speeds up the iterative optimiza
tion routine. Furthermore, we also do the derivation for the 
Fisher information matrix, which can be inverted to obtain the 
Cramér–Rao Lower Bound (CRLB) (Den Dekker et al., 2005).

σϕ,ML ≥ CRLB =
���������
Tr(F−1)
N − 1

􏽲

(9) 

With Tr(), the Trace operator, and F, the Fisher information ma
trix. We can further estimate the CRLB from a more fundamen
tal perspective. We detect in the reciprocal plane where, in 
principle, information related to the phase of the object is en
coded in both amplitude and phase in that plane. As a result, 
we can, at best, obtain an average of half of the information, 
as we have assumed no prior information about the object. 
We could, therefore, assume that the CRLB will be close to 
the following:

CRLB ≈
��
2
√

2
�������������
Ne/(N − 1)

􏽰 (10) 

This was given as well in equation (3) as the correction for the 
1D case in a ZPC system with C = 1/2. However, we will nu
merically test this idea further on.

The CRLB can predict the best possible precision that can be 
obtained under the given electron dose. This can then be com
pared to the actual outcome of a numerical experiment to 
evaluate whether we can attain the CRLB in practice. It can 
also serve to compare alternative algorithms like GS to evalu
ate how close this can approach this limit and check if bias is 
introduced.

Inversion via the Gerchberg–Saxton algorithm
The GS algorithm and its variations are iterative methods used 
to recover phase information from intensity measurements of 
a complex-valued wave function (Gerchberg, 1972; Yang 
et al., 1994; Zalevsky et al., 1996; Huang et al., 2020). 
In our case, starting from a set of intensity recordings 
in diffraction space Î = {I1, I2, . . . , INRPI }, and their corre
sponding known illumination patterns in real space 
Ψ̂ = {Ψ1, Ψ2, . . . , ΨNRPI }, we aim to retrieve the (N − 1) miss
ing phases of an object Ŝ. To do this, we can start by guessing 
our solution Ŝ⋆

0 as a set of N complex numbers with amplitude 
1 and random phases ϕi ∈ [ − π, π), illuminated by the 
complex-valued waves from each NRPI measurement in dif
fraction space. And, in general, for any given iteration:

φ̂⋆
out,i = F [Ŝ⋆

i Ψ̂]. (11) 

From this, we can impose the constraint of our recording in 
diffraction space and re-construct our guessed φ̂⋆

out,i+1 as:

φ̂⋆
out,i+1 =

φ̂⋆
out,i

‖φ̂⋆
out,i‖

��
Î

􏽰
× Phase φ̂⋆

out,i

􏼐 􏼑
, (12) 

where the Phase operator returns the phase of the given array, 
respectively. From this, we can back-propagate φ̂⋆

out,i+1 to real 
space and obtain a new estimate for the object:

Ŝ⋆
i+1 = Average F−1[φ̂⋆

out,i+1]Ψ̂†in
􏼐 􏼑

. (13) 

With Ψ̂†in being the complex conjugate of the transposed illu
mination pattern wave set. This process is then carried out it
eratively until a set number of iterations or a convergence 
condition is met.

It is important to note that in equation (13), the update 
takes the average update from each of the NRPI illuminating 
patterns. This helps reduce the typical twin and translational 
artifacts in the Fourier transform when NRPI > 1. For 
NRPI = 1, we will encounter a similar problem to that of 
ZPC, where oversampling is needed to solve all N phase values 
in our object.

Numerical Exercise for 4 Unknown Phases (1D)
An example of an outcome of this numerical experiment is giv
en in Figure 2 for NRPI = 16. We note a logarithmic behavior 
between phase errors as a function of the total number of elec
trons (as expected). Furthermore, for this 1D case, both RPI 
and ZPC perform similarly. This performance shows that 
the corrected error prediction for ZPC in equation (3) de
scribes the propagation of the counting noise to the estimated 

Fig. 2. Numerical simulation of the average RMS phase error as a 
function of total electron dose. The object is considered a random phase 
object with four unknown phase values and a limited phase range of 
±π/10 to stay within the linear approximation of the ZPC formula. The 
simulation is repeated 100 times for each electron budget with a 
different random object. Random phase illumination is done with 16 
random illumination patterns that stay the same throughout the 
simulation set. Note how ZPC and RPI’s results closely follow the 
predicted statistical error and show a similar noise performance up to 
about Ne = 104, where systematic errors due to the linearization of the 
ZPC formula start to show. Note also how ML RPI and GS RPI perform 
remarkably similarly, giving confidence in the GS approach for larger 
systems.
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phase quite well. For very high doses (above Ne = 104 here), 
the ZPC phase error does not decrease anymore; this is due 
to hitting the limit of the linearization of the ZPC formula 
(equation (A.16)), which also depends on the range of phase 
modulation δ by the sample (here ±π/10). We are, however, 
more interested in the low-dose performance. Both the ML 
and GS results are well predicted by the CRLB, showing 
that, on average, we approach the statistical limit for 100 re
peated experiments per electron dose value. It also shows 
that our rough estimate in equation (10) is reasonably accurate 
(in this case, it coincides with the ZPC corrected prediction) al
beit slightly higher than the actual CRLB that is based on the 
detailed model. The fact that GS attains the CRLB also gives 
confidence in this much faster algorithm, which will be needed 
for larger systems later. We investigated the role of NRPI in the 
number of random phase illuminations (not shown) and ob
served that from NRPI ≥ 2, we converge to the optimal phase 
error. This convergence confirms the theoretical prediction 
in (Fannjiang & Liao, 2012). Increasing NRPI leads only to 
faster convergence, which might benefit larger systems. 
However, from here on, we will assume NRPI = 16 unless 
otherwise noted. Furthermore, we found that convergence is 
best for random phases from a uniform distribution between 
0 and π. However, other phase modulation ranges for the illu
mination were tested with similar results, provided that the 
object’s phase range is fixed. Other phase patterns were at
tempted, such as illuminating with only 1 pixel at a random 
phase between −π/2 and +π/2 for each RPI configuration or 
using an orthogonal set of waves (e.g., a Hadamard (1893)
basis set), both of which also yielded good results.

Numerical Exercise for a Small 2D Case
Changing to a more common 2D configuration, we attempt a 
4 × 4 pixel phase object shown in Figure 3. The diffraction- 
based recording performs better than the corrected ZPC inten
sity, increasing dose efficiency by 5. Comparing ML RPI with 
GS RPI shows that GS attains the CRLB rather well, which 
gives faith in the algorithm as a faster alternative to ML, al
lowing for reconstructing larger objects in a reasonable time. 
The higher number of unknowns also stabilizes the statistical 
errors, and the observed behavior for 100 random weak phase 
object realizations results in an average behavior that closely 
follows the CRLB and ZPC error predictions. In this case, 
we barely start appreciating the systematic linearization error 
for the ZPC setup as the overall error has increased due to the 
higher number of unknowns, which shifts this point to higher 
doses.

A More Realistic 2D Object
Due to computational limitations, we have decided to use the GS 
algorithm for larger objects. As observed in previous examples 
the GS algorithm closely approximates the ML CRLB, in agree
ment with, e.g., Melnyk (2023). In Figure 4, we display the ob
served Root Mean Squared (RMS) phase error for a 64 × 64 
random phase object with a ±π/10 phase variation. Both meth
ods effectively retrieve the object at high electron doses, but the 
standard deviation of the phase error remains about 

��
5
√

higher 
for the correctly sampled ZPC case. We observe a similar sys
tematic error when Ne ≥ 107, which is expected at higher doses 
compared to the N = 4 1D case. This is because we have to es
timate approximately 1,000 times more phases, so the error 

requires a dose 1,000 times higher to have the same phase error 
in each pixel. On the low-dose end, we note a peculiar deviation 
from the error prediction for both ZPC and GS. This occurs be
cause, in both cases, the phase error is bounded. For ZPC, this 
occurs, e.g., when we get zero counts in a pixel. In that case, 
the phase is fixed at ϕi = −10/8 rad (for 2D), as is obvious 
from equation (1). Suppose we now calculate the standard devi
ation of a distribution which is a truncated normal distribution. 
In that case, we get an RMS value lower than expected from 
noise considerations only. This leads to a plateau at a very 
low dose. Note that this plateau does not mean we gained any
thing regarding information retrieval but is merely an effect of 
truncation. This effect is clearly visible in a ZPC image of the 
famous cameraman (Unknown, 1978) (see the top rows of 

Fig. 4. RMS phase error for a single 64 × 64 random phase object with 
π/10 phase range, illuminated with NRPI = 2, 16, 64. We note that ZPC 
and GS closely follow their predicted error behavior as a function of the 
total dose. We note a remarkable trend at low doses where the phase 
error shows a plateau depending on NRPI, which is a consequence of 
phase wrapping in the individual NRPI realizations.

Fig. 3. Numerical simulation of a 4 × 4 phase object encoding 100 
different realizations of random phase noise with a range of ±π/10 for 
each electron budget. The electron budget is divided over 16 random 
phase illumination patterns. Note the significant difference with ZPC due 
to the normalization correction and the close relation between the ML 
RPI and the much faster GS RPI.
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Fig. 5). When using the lowest dose, most pixels are stuck at the 
lowest value (−10/8 for the ZPC case), resulting in a low-phase 
error for an object with limited phase variation. However, these 
pixels do not contain much information about the object either.

The situation is more complex for the RPI measurements. 
For a GS implementation, we can think of RPI as a series of 
NRPI individual measurements. Each of these measurements 
will have only a fraction of the total dose and, therefore, 
show a higher error individually. The truncation described 
above now happens for each realization individually, leading 
to a phase error plateau lower by 

������
NRPI
√

for the low-dose 
cases. Naturally, this does not happen for the ML implemen
tation because there is only one model with N phases that 
are bound between −π and +π, and the N × NRPI detected in
tensities are correctly dealt with through the likelihood func
tion, which does not suffer from truncation issues. In order 
to get the most accurate recorded intensities, it is best to avoid 
working with dose levels that lead to this plateau. If we need to 
use GS for computational efficiency, we can do so by choosing 
NRPI = 2 for low-dose cases. Another option is to use ML and 
a higher value of NRPI to make full use of the available infor
mation. However, this will require longer computation time 
and does not lead to a significant error reduction. Note that 
the plateau is also misleading here, as it could lead to the as
sumption that the lower plateau level for higher NRPI is a de
sirable suppression of the noise. However, it is merely a 
truncation or phase-wrapping artifact that obfuscates the ac
tual signal.

When we examine the visual output of the retrieved phase 
for the cameraman object in Figure 5, we can clearly see 
some significant differences between ZPC and RPI. At the 
highest dose, both methods accurately retrieve all object de
tails. In the case of ZPC, the intensity is dispersed outside 
the illuminated region of interest, which makes it less effective 
than the diffraction-based method. We discovered that only 
62.5% of the intensity is within the region of interest, with 
the remaining 37.5% not contributing useful information 
from the object. At low doses (marked with a ⋆ in Fig. 5), 
the ZPC displays a flat phase of −10/8 rad wherever no elec
tron was detected. While this flat value may seem like low 
noise due to the absence of contrast variation, in reality, it in
dicates a lack of information in those areas. This is why we ob
serve a plateau in Figure 4 for ZPC. In the case of GS RPI, this 
effect also arises from phase wrapping of the noise, but it is less 
prominent, which is also visible in the figure indicated with a ⋆ 
in Figure 5 for RPI.

Furthermore, we also show the detected intensity for the 
ZPC case to demonstrate the normalization effect that was de
rived in this paper. Figure 6 shows the detected intensity of the 
random phase object of 64 × 64. As mentioned before, with 
correct oversampling of C = 1/2, we notice the intensity out
side of the illuminated area to be 37.5% of the total illumin
ation intensity. This effect occurs as a result of the phase 
discontinuity that is essential for ZPC to work but leads to a 
decrease in dose efficiency as only a fraction of all electrons 
take part in the actual formation of the central phase encoded 
part of the image and, even there, the contrast is lower. 
Omitting this oversampling by 2 in all directions will wrongly 
create an aliasing of the reference part of the wave, which will 
result in a seemingly 50/50 distribution between the object 
and the reference part of the wave. This distribution will result 
in much better counting statistics, but it is an aliasing artifact 
that cannot be reproduced in an actual experiment.

Discussion
Following the previous derivation and results, we can now ex
tract common features from these numerical exercises and dis
cuss the effect of each parameter on the reconstruction.

The Role of Dose
The role of dose clearly follows the expected 1/

�������
Ne/N
√

trend, 
albeit with different pre-factors for either ZPC or diffraction- 
based measurements. This trend shows that more electrons are 
obviously better and that the number of detector pixels M 
should be carefully balanced against the required sampling 
and desired field of view. We observe a deviating trend at a 
very low dose due to phase wrapping, which truncates the 
phase error and leads to a plateau in the error prediction. 
This plateau indicates a situation where noise is maximized, 
and it is unlikely that one would recover any meaningful signal 
in this range. We observed that this truncation effect is more 
severe for the GS RPI method as it acts on the NRPI individual 

Fig. 5. Comparison of ZPC and GS RPI phase retrieval as a function of 
dose on a more realistic 2D object. At high doses, both methods retrieve 
the object effectively. The top figures marked with a ⋆ do not adhere to 
the color bar scaling to aid visualization.
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experiments, while this does not appear for the ML RPI meth
od. This finding is significant, as it guides the experimenter to 
use a lower NRPI for very low-dose imaging to optimally dis
tribute the available dose among each phase configuration in 
the illumination. Ideally, ML RPI would always be used, but 
our current implementation is too slow to be practical on 
realistically sized objects. Further algorithm development in 
this direction would be useful. As a side note, we speculate 
that these effects also occur for ptychography with 
overlapping probes, as also here, one records multiple 
instances of the same part of the object with different phase en
coding (Li et al., 2014; O’Leary et al., 2020, 2021; Leidl et al., 
2024).

Is RPI the Best we can do?
In our study, we employed the RPI method to solve the issue of 
under-determination in the inverse problem, which helps elim
inate translation and point symmetry uncertainties (Fannjiang 
& Liao, 2012). Although this method provides a fivefold im
provement over ZPC, it raises the question of whether it 
would be more efficient to devise a new illumination scheme 
based on insights gained from previous experiments rather 
than recording 16 random phase illumination variants. We ex
plored variations of this approach, such as using the complex 
conjugate of the current phase estimate, employing orthogon
al basis sets like Hadamard and Fourier, and using only ±π 
phase illumination akin to a charge flipping algorithm 
(Fienup, 1982). However, these attempts yielded nearly iden
tical results to our simpler random phase illumination scheme.

It is intriguing to consider how we can efficiently encode a 
phase message using Ne electrons. Assuming that each elec
tron represents one bit of information, then Ne electrons could 

convey a message with 2Ne variations. If we distribute this 
across the N = (n × n) independent pixels, we get:

σϕ,binary =
2π

2
Ne

n2

. (14) 

This encoding would be significantly more efficient in terms of 
electron dose, but assumes that: 

• We know exactly when an electron is interacting with the 
sample in order to encode a zero bit when no detecting 
occurs.

• We have a way to control the phase of the incoming elec
tron wave precisely.

• We have a way to set up an experiment to find out if the 
modulo of the phase shift of the sample with respect to 
the local incoming phase of the wave is higher or lower 
than some value.

This scheme could be approached when multiple passes of the 
same electron through the sample can be configured as pro
posed in the quantum microscope (Kruit et al., 2016; 
Juffmann et al., 2017; Koppell et al., 2019; Turner et al., 
2021) and even further improvement is expected when using 
squeezed or entangled electron states (Koppell et al., 2022). 
The practical implementation of this seems currently highly 
challenging. Still, it is good to keep in mind that the results 
in this paper may differ from what is possible.

Technological Difficulties to Realize This
In this paper, we have looked at the fundamental counting 
noise limits and have assumed that we can create an ideal 
phase plate acting on the phase of the illuminating wave and 
an ideal but correctly normalized version of the ZPC that 
acts on the exit wave in the back focal plane. Several techno
logical obstacles have to be overcome in order to realize these 
ultimate predictions for the ZPC case: 

• The ideal Airy disc-like Zernike phase profile is difficult to 
realize.

• The ideal Zernike phase shift may differ from π/2 (see 
Beleggia, 2008).

• The ZPP profile should adapt in width to the illumination 
size to obtain the best performance while avoiding loss of 
low frequencies.

Also, for the RPI, several obstacles will hinder a straightfor
ward implementation: 

• A programmable phase plate has considerable limitations 
regarding the fill factor (Verbeeck et al., 2018; Vega 
Ibáñez et al., 2023; Yu et al., 2023), meaning that we 
also imprint amplitude modulation into the probe. 
However, this may or may not be beneficial in some cases 
(Allars et al., 2021; You et al., 2023). This could be over
come by scanning the amplitude and phase-modulated 
probe in ptychography style to illuminate all the areas of 
the sample with some overlap between the probe positions.

In both scenarios, charging problems, gradual drift, and con
tamination are potential issues.

Fig. 6. Example of a correctly sampled ZPC image of a random phase 
object of 64 × 64 zero-padded to 128 × 128 with Ne = 5 × 105. The 
central 64 × 64 area contains the actual phase-related image and 5/8 of 
the total dose with which the object was illuminated. The other 3/8 lands 
outside the central area and does not contribute to the desired 
information.
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A Note on Re-Normalization
In our paper, we have examined a sample as a collection of 
random phases without making any assumptions about the re
lationship between pixels or the probability of certain patterns 
occurring. In reality, the set of actual images is smaller than the 
total number of potential random phase formations. In other 
words, there is some underlying regularity in the sample. If 
we correctly describe this regularity, we can significantly 
gain in terms of signal-to-noise as this constitutes prior knowl
edge about the sample (Maiden et al., 2017, 2024; Schloz 
et al., 2020; Diederichs et al., 2024; Leidl et al., 2024). 
However, we need to be careful and compare similar situa
tions. For example, if we use regularization in an RPI setup, 
we should use the same assumptions in the case of ZPC. 
Failing to do so will inevitably lead to biased opinions, as 
was the case in compressed sensing (Donoho, 2006; Leary 
et al., 2013; Li et al., 2018), which also relies on regularization 
arguments. This makes it impossible to compare to a situation 
where normal sampling is applied unless the regularization 
prior is included (Van den Broek et al., 2019). For this reason, 
we will not discuss regularization here. However, significant 
gains can be achieved if such prior knowledge is available 
and valid (Diederichs et al., 2024).

Conclusion
We have demonstrated that there is a clear benefit in terms of 
counting statistics in recording multiple diffraction patterns 
over the more conventional ZPC imaging. We stress here 
that we have shown just one possible way of improving the 
dose efficiency of ZPC imaging without making claims on re
lated ptychographic or other diffraction-based setups. 
Nevertheless, breaking this limit for one case demonstrates 
that ZPC is not the ultimate limit, and this should invite fur
ther research. Note also that we have assumed the weak phase 
object approximation throughout, which is known to be a 
very limiting assumption in practice. We found the benefit in 
terms of dose efficiency to be a factor of 5, which would allow 
a very significant shifting of the beam damage boundaries that 
are hindering progress in, e.g., life sciences, but also in many 
materials science areas such as battery materials, polymer sci
ence, zeolites, perovskites, metal-organic frameworks and 
many more.

This improvement factor is mainly attributed to a subtle 
normalization issue that occurs in ZPC imaging. This issue 
makes ZPC less dose efficient, as it seems to be the case if 
we make a fair comparison where the sample is illuminated 
with exactly the same dose over exactly the same area of illu
mination. This paper avoids discussing actual implementation 
details, and it might well be possible to improve this benefit 
further if, e.g., the illumination can be updated to take into 
account information from the partial experiment that was 
already performed. Whether the gain from the diffraction- 
based recordings proposed here can also be obtained in 
practice remains to be seen, as many practical details will 
influence the actual dose efficiency. Nevertheless, there has 
been much promising progress in ptychography over the last 
few years, and it relies on diffraction-based detection, albeit 
with a different illumination scheme than the RPI suggested 
here.

One potential advantage of detecting in the diffraction 
plane while adjusting the phase of the probe is the potential 
for a simpler, smaller, and more cost-effective electron 

microscope specifically designed for life science imaging. In 
this scenario, the camera could have significantly fewer pixels, 
and the projector system could be completely removed (along 
with the image corrector), as long as some form of scanning 
system or phase plate can quickly alter the illumination. This 
discovery shows promise for affordable tabletop instruments 
that could expand the information we can gather from beam- 
sensitive nanoscale objects.
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APPENDIX A  
Zernike Contrast with Proper Normalization
Assume a circular area of illumination on a sample with radius R.

M(r) = Π
r

2R

􏼐 􏼑
. (A.1) 

With Π(x) the Heavyside Pi step function (or rect function) being 
one for |x| < 1

2. The sample transmission function can be approxi
mated as a phase object:

O(r) = eiϕ(r). (A.2) 

In the back focal plane of the sample, this will result in

Ψ(k) = M̃(k) ⊗ Õ(k) =
2J1(kR)

kR
⊗ Õ(k). (A.3) 

With ̃ designating the Fourier transformed function and J1 a 
Bessel function of the first kind. Typically, experimental realiza
tions of a ZPP in the TEM, such as the Volta Phase Plate, have an 
Airy-like smooth phase profile (Danev et al., 2014, 2017; Malac 
et al., 2021). However, to create an idealized ZPP, we assume a 
maximum passband frequency kmax, representing the ultimate 
spatial resolution, and a minimum frequency kZ, below which 
we introduce the required phase shift of π/2, modeled as a 
Heavyside Pi step function as well. A genuinely ideal ZPP will 
have kZ⟶0 and kmax⟶∞. However, we will see later that 
these parameters play an important role in normalization and 
are critical for discussing quantum information.

Z(k) = Π
k

2kmax

􏼒 􏼓

exp i
π
2
Π

k
2kz

􏼒 􏼓􏼔 􏼕

. (A.4) 

For kmax > kz and we can rewrite this as:

Z(k) = Π
k

2kmax

􏼒 􏼓

+ Π
k

2kz

􏼒 􏼓

(i − 1). (A.5) 

Applying this phase plate in the back focal plane leads to:

ΨZ(k) =
2J1(kR)

kR
⊗ Õ(k)

􏼔 􏼕

Z(k). (A.6) 

Transforming this back to the image plane, we get:

Ψ̃Z(r) = [M(r)O(r)] ⊗ Z̃(r). (A.7) 

We can rewrite the Fourier transform of the ZPP as:

Z̃(r) =
2J1(rkmax)

rkmax
+

2J1(rkz)
rkz

(i − 1). (A.8) 

The first term will lead to a replica of the object with a spatial 
resolution limit of 1/kmax. The second term, however, will create 
a blurred version of the illuminated patch M by a Bessel function 
of width RZ = 1/kZ. This will serve as a reference wave, reveal
ing the phase contrast when interfering with the first term. The 
blurring will take intensity from within the illuminated area out
side the illuminated area, which carries no useful information. 
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This is critical for consideration of the role of counting noise, as 
not all electrons will contribute to the desired ZPC signal. The 
blurring reduces the local intensity by a factor C, which can be 
estimated in the center of the image as:

C = ∫Rkz

0
2J1(k)

k
dk (A.9) 

= [πRkzH0(Rkz) − 2]J1(Rkz) (A.10) 

+Rkz[2 − πH1(Rkz)]J0(Rkz) (A.11) 

C ≈ Rkz, (A.12) 

with H0 and H1 Struve functions of zeroth and first order, re
spectively. The simplification in the last step is a very good ap
proximation when Rkz < 1. If we choose Rkz = R/Rz ≤ 1/2 
(required to recover all but the DC frequency, anything higher 
will lead to loss of low-frequency components) we can rewrite 
the exit wave for r ≤ R as

Ψ(r, r ≤ R, R/Rz

≤ 1/2) = O(r) + (i − 1)C2M(r)O(r). (A.13) 

With C ≈ R/Rz and M(r)O(r) the averaged exit wave inside the 
illuminated patch M caused by the convolution of the Heavyside 
and Airy pattern with ’radius’ R and Rz, respectively. This con
volution will re-scale this reference wave by a factor C2 because 
part of this wave now ends up outside the illumination patch in 
the image plane. Applying the weak phase approximation and 
assuming the phase of the object does not contain spatial fre
quency variations above kmax:

O(r) ≈ 1 + iϕ(r) (A.14) 

Ψ(r, r ≤ R, R/Rz ≤ 1/2) ≈ 1 + iϕ(r) + (i − 1)C2 (A.15) 

Iz(r, r ≤ R, R/Rz ≤ 1/2) ≈ Ψ(r, r ≤ R, C ≤ 1/2)
􏼌
􏼌

􏼌
􏼌2

≈ (1 − C2)2 + (ϕ(r) + C2)2

≈ 1 − 2C2 + 2C4 + 2C2ϕ(r)

+ ϕ(r)2

≈ 1 − 2C2 + 2C4 + 2C2ϕ(r)

+ . . . ,

(A.16) 

where we kept only linear terms in the phase. Iz(r, r ≤ R, C ≤ 
1/2) is the observed intensity in the image plane within the 
illuminated area. The average intensity within the illuminated 
patch is Iz(r, r ≤ R, C ≤ 1/2) ≈ 1 − 2C2 + 2C4. We can re
cover the phase from the intensity as:

ϕ(r, r ≤ R) ≈
Iz(r, r ≤ R) − 1 + 2C2 − 2C4

2C2 . (A.17) 

In a practical implementation, the intensity will be recorded on a 
pixelated camera, and we assume Iz to be scaled such that if the 
ZPP was removed, there would be an average of 1 electron per 

pixel. This allows us to estimate the standard deviation of the 
phase error as:

σϕ =
1

2
��������
Ne/n2

􏽰

�����������������
1 − 2C2 + 2C4
√

C2 (A.18) 

Where the last term is a correction term that takes care of the role 
of C, which depends on the parameters of both illumination size 
and scale of the phase shifting part of the phase plate.

Appendix B  
Numerical Implementation of Zernike Contrast
The consequence of the above considerations for a numerical 
implementation of a ZPP is that zero padding around the object 
is essential. Omitting this step will lead to an overly optimistic 
result on the quantum information content that a ZPC imple
mentation can obtain. Furthermore, this zero-padding step 
represents a situation where the object is periodically repeated 
until infinity and illuminated by an infinite plane wave. In gen
eral, we are not interested in perfectly periodic structures 
(otherwise, diffraction would be a far more logical choice), 
and even if we are, it is, in practice, impossible to make the il
lumination box exactly fit with periodic boundaries.

As the intensity recording involves a modulus squared, which 
relates to the autocorrelation in the image plane, proper zero 
padding is only guaranteed when there is at least padding 
with n/2 on all sides for an n × n illumination area. Padding 
more will worsen the counting statistics further; padding less 
will lead to an unphysical situation as it cannot be replicated 
in a real experiment (Fig. B.1).

We can use the crudest approximation of a ZPP in a numer
ical experiment by creating an M = m × m filter matrix in the 
discrete Fourier plane with all 1s and only the DC component 
in the top left corner equal to the complex i. We can decompose 
this filter into a sum of a matrix with all 1s and another matrix 
with all zeros except for the DC component, which we take as 
(i − 1). Fourier transforming this will lead to a sum of 2 matri
ces, one of which has only a DC component equal to 1 and the 
other of which is 1, and the other being a flat matrix with ele
ments (i − 1)/M. We can now simulate the action of this filter 
by convolving this real space representation of the Zernike filter 
kernel with an object. If we choose the object first to be the same 
size as the filter kernel (M = N) we get:

ΨZ(r) = O(r) + M
(i − 1)

M
〈O(r)〉 (B.1) 

ΨZ(r) = 1 + iϕ(r) + i − 1 (B.2) 

ΨZ(r) = i + iϕ(r) (B.3) 

IZ(r) = 1 + 2ϕ(r) + ϕ(r)2 (B.4) 

IZ(r) ≈ 1 + 2ϕ(r). (B.5) 

From which we can derive the phase unambiguously from the 
intensity:

ϕ(r) ≈
IZ − 1

2
. (B.6) 

12                                                                                                                                        Microscopy and Microanalysis, 2024, Vol. 00, No. 0
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/advance-article/doi/10.1093/m
am

/ozae125/7953286 by U
niversiteit Antw

erpen Bibliotheek user on 05 February 2025



And this looks exactly like we would expect from a ZPP. The 
standard deviation on the phase now becomes:

std(ϕ(r)) =
1

2
���������
Ne/M2

􏽰 . (B.7) 

This result is why ZPC is believed to outperform diffraction- 
based methods, e.g., in (Dwyer & Paganin, 2024).

If, on the other hand, we choose to limit the illumination of 
the object only to fill N = n × n pixels, we get a different result 
with C =

�������
N/M
√

, an oversampling factor:

ΨZ(r) = O(r) + C2(i − 1)〈O(r)〉 (B.8) 

ΨZ(r) = 1 + iϕ(r) + C2(i − 1) (B.9) 

ΨZ(r) = 1 − C2 + i(C2 + ϕ(r)) (B.10) 

IZ(r) = 1 − 2C2 + C4 + C4 + 2C2ϕ(r) + ϕ(r)2 (B.11) 

IZ(r) ≈ 1 − 2C2 + 2C4 + 2C2ϕ(r). (B.12) 

We can still derive the phase as follows:

ϕ(r) ≈
IZ − 1 + 2C2 − 2C4

2C2 . (B.13) 

Note that this is subtly different in several ways. If M ≥ 4N, 
the action of the averaging kernel now smears the object out 
over the whole matrix but does not cross the borders of that 
matrix and, therefore, does not cause aliasing. In physics 
terms, this means that the average wave, which will be used 
as a reference beam to reveal the phase, now only comes 
from the illuminated n × n patch and not from neighboring 
sample areas, which, in the case of N = M, are wrongly as
sumed to be periodic. Even if we can live with the fact that, 
for the averaging, it does not matter that the sample is perfect
ly periodic, we are still using electrons from neighboring areas 
(and they will cause damage there). On top of this, it will 
spread the averaged reference wave over a wider area in the 
image plane (here, m × m but only if m ≥ 2n). This area is lar
ger than the n × n illuminated image region of interest. 
Therefore, a significant fraction of electrons will end up in 
areas of the image plane where they do not bring information 
on the illuminated sample area.

Fig. B.1. Sketch of a numerical 2D implementation of ZPC imaging that avoids aliasing effects that would lead to errors in estimating the quantum 
efficiency of the ZPC imaging process.
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We are now in the position to estimate what fraction of the 
illumination contributes to the ZPC phase signal. Outside and 
inside the illuminated area, we get an average intensity of:

ĨZ,out ≈ 2C4 (B.14) 

ĨZ,in ≈ 1 − 2C2 + 2C4 (B.15) 

For an oversampling of C = 1/2, the average intensity is 
1 − 2/4 + 1/8 = 5/8 inside and 3/8 on the outside. All inten
sity is now spread over four times more area in real space 
than before, and only the central quarter will contain informa
tion on the sample phase. That central patch only contains 5/8 
of the illumination, but even that 5/8 contributes less than in 
the aliased (and therefore wrong) ZPC case because the 
strength of the averaged reference beam is also reduced. For 
1D, we have N = n, M = m, and C = 1/2. This would be 1/2 
inside and 1/2 outside, leading to half the intensity, which 
does not contribute to the area of interest.

The standard deviation on the phase now becomes:

std(ϕZ,aliased) =
1

2
�������
Ne/N
√ (B.16) 

std(ϕZ,2D)
std(ϕaliased)

=
�����������������
1 − 2C2 + 2C4
√

C2 (B.17) 

std(ϕZ,1D)
std(ϕaliased)

=
����������������
1 − 2C + 2C2
√

C
. (B.18) 

For the minimal required oversampling of C = 1/2, we get

std(ϕZ,2D)
std(ϕaliased)

=
���
10
√

(B.19) 

std(ϕZ,1D)
std(ϕaliased)

=
��
2
√
. (B.20) 

Identical to the real space derivation as it should be.

APPENDIX C  
Maximum-Likelihood Model under Poisson 
Noise
The parameter-dependent part of the log-likelihood for 
Poisson is given as:

l = −
􏽘N

l

(Iexp ,l ln (Imodel,l) − Imodel,l), (C.1) 

with Iexp ,l the experimental observation and Imodel,l, the model 
prediction is based on a set of detector pixel l parameters. 
The model is obtained as follows:

Ψi = Aiei(ϕi+αi) (C.2) 

Imodel,l = F lAiei(ϕi+αi)
􏼌
􏼌

􏼌
􏼌2 (C.3) 

Imodel,l =
􏽘

i

Aiei(ϕi+αi)e2πiri·kl

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2

=|Ψ̃l|
2. (C.4) 

We included the optional illumination function Aieiαi , allowing 
for both an amplitude and phase-modulated illumination pattern.

Differentiating the log-likelihood from the parameters of 
the model gives:

∂l
∂ϕi

= −
􏽘

l

Iexp ,l

Imodel,l
− 1

􏼒 􏼓
∂Imodel,l

∂ϕi
. (C.5) 

Differentiating the model intensities from the model parame
ters, we get the:

∂Imodel,l

∂ϕi
= −2AiReΨ̃ sin (ϕi + αi + rikl)

+ 2AiImΨ̃ cos (ϕi + αi + rikl).
(C.6) 

Suppose we constrain the last phase value ϕN to maintain an 
average phase of zero (the absolute phase has no meaning, 
and fitters do not like duplicate parameters). In that case, we 
need to take into account this dependent variable. So, we pro
ceed now with (N − 1) independent parameters:

∂Imodel,l

∂ϕi
= −2ReΨ̃l[Ai sin (ϕi + rikl + αi)

− AN sin (ϕn + rnkl + αn)]

+ 2ImΨ̃l[Ai cos (ϕi + rikl + αi)

− AN cos (ϕn + rnkl + αn)].

(C.7) 

Using this analytical derivative as a Jacobian input for the 
nonlinear fitter significantly speeds up the process and im
proves convergence. We can now derive the Fisher informa
tion matrix:

Fi,j = −E
∂2l

∂ϕi∂ϕj

􏼢 􏼣

(C.8) 

=
􏽘

l

∂
∂ϕj

Iexp ,l

Imodel,l
− 1

􏼒 􏼓
∂Imodel,l

∂ϕi

+
Iexp ,l

Imodel,l
− 1

􏼒 􏼓
∂Imodel,l

∂2ϕj∂ϕi

(C.9) 

= −
􏽘

j

1
Imodel,l

∂Imodel,l

∂ϕi

∂Imodel,l

∂ϕj
. (C.10) 

From this, we can obtain the (N − 1) × (N − 1) covariance 
matrix:

cov = F−1. (C.11) 

From which the diagonal elements represent the CRLB of the 
variance on the individual phase estimates ϕ̃i. This allows us 
to write a lower limit for the standard deviation on the esti
mated parameters as:

σML ≥
���������
Tr(cov)
N − 1

􏽲

(C.12) 
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