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Abstract. An analysis of the structural and dynamical properties of small
size three-dimensional clusters of classical charged particles confined in a
spherical parabolic trap is presented. The ground state and the lowest metastable
configurations are identified for Coulomb clusters consisting ofN = 4–100
particles. The eigenmode frequencies are investigated both for clusters with
Coulomb and screened Coulomb interparticle interaction. The breathing mode
frequency is analytically determined and is found to be the highest energy
eigenmode and independent of the number of particles for the case of Coulomb
inter-particle interaction.
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1. Introduction

In 1934, Eugene Wigner predicted that a liquid to solid phase transition should occur in a
three-dimensional (3D) electron gas at low temperature and density due to strong Coulomb
repulsion [1]. This phase transition became known as Wigner crystallization and the solid phase
as Wigner or Coulomb crystals. Wigner crystallization and properties of Coulomb crystals
have been studied for decades in such a variety of systems as electron gas trapped on top of
liquid helium [2], electrons trapped in quantum well structures [3], strongly coupled radio-
frequency (rf) dusty plasmas [4], vortex clusters in an isotropic superfluid [5], laser-cooled
trapped ion systems [6, 7], dusty plasmas [8], etc. Formation of ordered clusters with nested
shells is expected to occur in expanding neutral plasmas [9, 10].

It is well known that an infinite Coulomb gas at low temperature self organizes in a
body centered cubic lattice. Simulations have shown that the phase transition from order to
a liquid state occurs at a well-defined temperature ofT ' 1/173 in units ofq2/aWS (where
q is the charge andaWS is the Wigner–Seitz radius, defined as 4/3πa3

WS = 1/ρ, with ρ the
density). The situation is more complex for finite Coulomb crystals as shown by the pioneering
works of Schiffer and co-workers. Numerical simulations have shown that the properties of
a Coulomb crystal will depend both on the size and shape of the ion plasma, because of the
importance of surface effects [11]–[15]. Finite clouds of ions show ordered structures with a
different form of ordering. For instance, with a harmonic (and isotropic) confining potential
that is representative for ion traps, cold particles form a cloud with a well-defined surface,
constant macroscopic density, with well-defined concentric shells in the interior [11]. The
surface layer and each (equally spaced) shell contain ions in a pattern of equilateral triangles.
The triangles in the different shells cannot align perfectly; the pattern is reminiscent of the
‘hexatic’ ordering in liquid crystals. Such ordering of trapped ions has been observed both
in computer simulations [15] and in the laboratory [16]. Ion clouds can also be confined
in rf traps [17]. While the average confining field is a harmonic well, the particles undergo
micromotion. The micromotion can also be viewed as due to some effective temperature. As
long as those micromotions are small they do not have any influence on the configurations.

The first experimental investigation of spherical 3D dust plasma crystals consisting of
micrometre-sized polymer particles was carried out recently [18]. It was found that small 3D
strongly coupled charged particles in a spherical confining potential arrange themselves in a
nested shell structure. In a subsequent publication on the same system [19] the sensitivity of
the structural properties of the clusters to the type of interparticle forces was explored. By
means of experiments, computer simulations, and theoretical analysis, they found that the
number of shells are independent of the shielding while the shell occupation numbers are
sensitive to screening which could be quantitatively explained by an isotropic Yukawa inter-
particle interaction potential. The large size of the dust particles allows direct observation by
simple video microscopy because dynamical processes occur on typical frequency scales of a
few Hertz, quite unlike strongly coupled colloidal suspensions [20], where particle motion is
heavily damped. Therefore, this system is ideally suited for studying the static and dynamics of
strongly coupled matter with ‘atomic resolution’. As mentioned by Arpet al [18] there are many
directions of research with dusty plasmas, among them the dependence of phase transitions on
system size, the formation of bcc order in the bulk of larger crystals, the role of fluctuations
close to a phase transition or the exploration of elastic properties through fundamental types of
vibrations.
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In this paper, we address the case of small Coulomb clusters confined by a parabolic
potential and interacting through a Coulomb or a screened Coulomb potential. Finite size effects
are much more pronounced in this case with e.g. the occurrence of magic number configurations.
One of the purposes of the present work is to elucidate the structural differences between the
ground state (GS) and the lowest energy metastable state (MS). At high temperatures, transitions
between different stable states occur. One of the most visited states during the dynamics is, of
course, this lowest energy MS. We found that large clusters have a huge number of MS states
with energies that are very close to each other. The latter fact strongly dilutes the weight of
the lowest energy MS in the dynamics of the system. Here, we will limit ourselves to small
clusters. Our investigation will be helpful in understanding the melting processes in small finite
size Wigner crystals, both in theoretical [21] and experimental works. In contrast, previous
investigations mostly concentrated on systems with a large number of particles(N > 500)
[14, 18, 22, 23] or on static properties of the GS configurations [24]–[26]. In our report, the static
and dynamic properties of MS for systems ranging fromN = 4 to 100 particles are presented
for the first time. To investigate the microscopic order in the particle configuration, we calculate
the spherical Voronoi number associated with a specific polygon around a given particle. In
this way we are able to obtain the number of nearest neighbors of each particle belonging to a
specific shell. We show that for the same number of particles, the GS and MS configurations are
in many cases structurally different; and we will classify those differences.

We present for the first time the eigenmode frequencies for the GS and the lowest energy
MS. All the eigenmode frequencies which are independent of the number of particles are
determined analytically. We show that the breathing mode frequency is an upper bound to
the eigenmode frequency spectrum in systems interacting through a Coulomb potential. We
found an approximate correlation between clusters with maximum (minimum) lowest nonzero
eigenfrequency and the peak (minimum) in the second derivative of the binding energy with
respect to N indicating the most stable (least stable) clusters. From this analysis, magic clusters
are identified.

The paper is organized as follows. In the next section our model system and the
methodology used to find stable configurations, eigenmode frequencies and their associated
eigenvectors are given. In section 2, we deal with a system of classical particles interacting
through a Coulomb interparticle potential. We investigate the static properties and present a
Mendeleev-type table containing information about the structure of the GS. In addition the
lowest energy MS configuration is determined and the three lowest nonzero frequencies for the
MS and the GS configurations. In section 4, we investigate in more detail the dynamics of the
previous systems. The eigenfrequencies and eigenvectors are determined both for Coulomb and
screened Coulomb interparticle potential. Finally, in section 5, we present our conclusions.

2. Model and numerical approach

We study a 3D model system ofN equally charged particles in a parabolic confinement potential
and interacting through a repulsive potential. The Hamiltonian of the system is given by

H =

N∑
i =1

1
2mω0(x2

i + y2
i + z2

i ) +
N∑

j >i

q2

ε

exp(−|r i − r j |/λ)

|r i − r j |
, (1)
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where m is the mass of the particle,r i = (xi , yi , zi ) is the position of thei th particle,
ω0 is the frequency characterizing the confinement potential andλ is the screening
length of the interparticle interaction potential. We can rewrite the Hamiltonian (1) in
dimensionless form

H =

N∑
i =1

(x2
i + y2

i + z2
i ) +

N∑
j >i

exp(−κ|r i − r j |)

|r i − r j |
, (2)

if we express the coordinates, energy, temperature and time, respectively, in the following units
r0 = (q2/εγ )1/3, E0 = γ r 2

0 , T0 = E0k
−1
B andt0 =

√
2/ω0, whereγ = mω2

0/2. The dimensionless
inverse screening length,κ = r0/λ, is a measure of the range of the inter-particle interaction
potential. All the results will be given in dimensionless units. It is clear from equation (2)
that the GS is only a function of the number of charged particlesN and the dimensionless
screening lengthκ. To obtain the stable configurations we use the Monte Carlo simulation
technique supplemented with the Newton method in order to speed up the computer program
and to increase the accuracy of the found energy value (see [27] for details). By implementing
a large number of different simulations starting from different random initial configurations
we are confident that we found the GS configuration and the first MS as long as the number
of particlesN is not too large. Depending on the total number of particles, between several
hundred to several thousand random initial configurations were generated.

The eigenfrequencies are the square root of the eigenvalues of the dynamical matrix

Hαβ,i j =
∂2H

∂rα,i ∂rβ, j

∣∣∣
rα,i =r n

α,i

, (3)

where{r n
α,i ; α = x, y, z; i = 1, . . . , N} are the positions of the particles in a stable configuration.

3. Fundamental characteristics of the GS and first MS

Any study of Wigner crystals without the knowledge of the details of the particles arrangements
must of necessity be of a superficial nature. The particles of which Wigner crystals are composed
are arranged in a highly regular way. It is this regularity, together with the attendant symmetry
forced by the external confinement potential, that characterizes the crystalline state of finite
systems. We present in tableA.1 (see appendix), static and dynamic characteristics of the GS
and the lowest energy MS for systems of particles interacting through a Coulomb potential and
confined by an isotropic parabolic confinement. We considered systems ranging fromN = 4 up
to 100 particles. The main purpose of this table is to compile the most important crystallographic
characteristics, which may be of general use to experimentalists and theoreticians. TableA.1
lists, from left to right, the number of particles in the system, its energy per particle, its
configuration, the radius of the shells, the width of the shells, the value of the three nonzero
lowest eigenfrequencies, and the number of particles per shell with ‘x’ nearest neighbors, as
obtained by our Voronoi analysis. Except forN = 4–12 particles, which have only one stable
state, tableA.1 also lists the first MS.

The number of shells in the system depends on the total number of particles and in general
the number of shells increases with the number of particles. From the third column of tableA.1
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we can see that the GS configuration of systems up to 12 particles consists of a single shell.
Those configurations in fact form 3D regular polygons. FromN = 13 to 60 the arrangement of
particles in the GS configuration forms two shells except for the clusters withN = 58 and 59
particles, which respectively have the configurations (1, 12, 45) and (1, 12, 46), i.e. they form
a two shell configuration with one extra particle in the center. The two shell configuration of
the GS ofN = 60 particles is unusual since it has less shells than the GS configuration of the
N = 58 and 59 systems. This is a consequence of the fact thatN = 60 has the highly symmetric
configuration (12, 48) with a commensurate arrangement of the two shells resulting in a higher
stability which is expressed in a large lowest (nonzero) eigenfrequency. For 61< N 6 100 we
have a three shell configuration as GS. We can formulate filling rules for the shells when the
system is in the GS. For example, the maximum number of particles accommodated in systems
with a single shell is 12 for the GS configuration. For larger systems, the extra particles form
new shells in the system. Initially, for example for the caseN = 13, the extra particle is placed
in the center of the cluster. The number 12 also appears as an upper limit to the number of
particles for the inner shell of the two-shell GS configuration. This can be seen when we go
from N = 57 toN = 58 andN = 60 toN = 61. Similarly, we observe that 48 is the upper limit
for the number of particles in the second shell for systems having two shells as observed for
N = 60.

From the third column of tableA.1, i.e. the column listing the configurations, it is clear
that the GS and MS state configurations can differ in the number of shells or in the number of
particles in each shell. For example, the system withN = 9 particles has the GS configuration
with a single shell while its MS configuration has a two shell structure; the system withN = 21
particles has a different number of particles in the shell of its GS and MS configurations,
respectively equal to 20 and 19. On the other hand, there are other systems, where the structural
difference between GS and MS configurations is not related to a difference in the number of
shells or in the number of particles per shell. This is the case for the systems:N = 17, 23,
24, 27, 28, 31–33, 35–39, 41–49, 52–54, 57, 59 and all systems larger thanN = 60 particles
with the exception of the systemsN = 80, 82 and 91. Among the latter systems, some of them
have structural differences between the GS and MS configurations due to differences in the
number of particles per shell with ‘x’ nearest neighbors. This is the case for the systems:
N = 23, 59, 73, 74, 76, 77, 83, 86, 87, 90, 97, 99 and 100. The latter fact is documented in the
last five columns of tableA.1. For example, for the GS configuration of theN = 59 system,
the number of particlesN(x) in the third shell that has ‘x’ nearest neighbors isN(3) = 0,
N(4) = 0, N(5) = 12, N(6) = 34 andN(7) = 0 and for the MS configuration it isN(3) = 0,
N(4) = 0, N(5) = 15,N(6) = 28 andN(7) = 3. As an example, we show in figures1(a) and (b)
the particles on the outermost shell of the GS and MS configurations of the system withN = 59
particles. From figure1(a) we can clearly identify particles with five and six nearest neighbors
as indicated in tableA.1. From figure1(b), we can see the three particles, in black, each having
seven nearest neighbors. We notice that the particles in black are relatively close to each other
while the other particles with five and six nearest neighbors are distributed through the rest
of the cluster. While for this latter system the particle packing in the third shell differs in the
GS and MS configurations, for the system withN = 86 particles, the structural difference is
found to occur in the second shell. There, the arrangement of particles for the GS configuration
is N(5) = 12 andN(6) = 9 while for the MS configuration it isN(4) = 1, N(5) = 10 and
N(6) = 10.
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Figure 1. Particle arrangement on the outermost shell for the GS (a) and lowest
energy MS state (b) configurations of the system withN = 59 particles. In order
to improve visualization bounds between neighboring particles are drawn except
for the seven coordinated particles in (b) which are drawn in black color.

The present results for the GS energy and the corresponding configuration agrees with
those recently found in [25]. In the later work, the results forN = 87 were missing. In [26],
the metastable configurations were given forN = 2 up toN = 22. There are a few differences
with our results. TheN = 9 andN = 19 clusters were found not to exhibit a MS while in our
work we found a MS.

An interesting concept in the description of a finite size Wigner crystal is that of the width
of the shell—in general the bigger the system, the larger the shell width is (see fifth column of
tableA.1). In fact large systems have a more compact internal structure while in small clusters
particles accommodate themselves in shells with well-defined radius. Without taking this fact
into account it would not be possible to understand the basic effects which come into play in
different finite size Wigner crystals.

Figure2 shows the dependence of the energy difference between the first MS and the GS
configuration as function of the total number of particles when the configurations have different
(black open squares) or the same (red squares) number of particles per shell. For small systems,
N 6 56, the energy difference indicated by the black open squares is larger than those of the
red squares except in the case ofN = 29 particles. It shows that the transition which involves
changing the number of particles per shell has higher energy than the one which differs only
by the arrangement of particles in a shell. As the number of particles increases the energy
difference between the two types of configurations diminishes. This is a consequence of the fact
that in larger systems the distance between particles belonging to distinct shells is small, since
the shell’s width is large and then, of course, the energy cost to move one particle from one shell
to another will also be small. Note that the overall energy differenceE2 − E1 decreases with
increasing system size. Thus for large systems the ground and the lowest energy metastable
configurations differ themselves by slight changes in the position of particles belonging to
the same shell. The larger the system, the larger the number of particles in the outer shell
and the larger the width of the shells. Consequently, as shown in figure3, which displays
the number of MS for clusters betweenN = 4 up to 100 particles, a larger system has many
more stable configurations than a small one. ForN > 20 the number of stable states increases
exponentially. ForN beyond 60 we are not 100% sure that we found all MSs because of the
finite computational time.
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Figure 2. Energy difference between the first MS and the GS as function of
the number of particlesN when the configurations have different (black open
squares) or the same (red squares) numbers of particles per shell.

Figure 3. Number of stable states, i.e. the GS and MS state configurations, found
for systems ranging fromN = 4 up to 100 particles.

Two-dimensional systems of repulsive particles most efficiently self organize in a simple
lattice of triangles. Such 6-fold coordinated triangular lattices [28] cannot be wrapped on a
sphere surface without the introduction of extra defects. The topological characteristic of the
arrangement of particles on the surface of a sphere can be characterized by their topological or
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Figure 4. The number of particles in the outermost shell,N(x), havingx nearest
neighbors in this shell, as function of the total number of particles for the GS
(a) and the lowest energy MS (b) configuration.

disclination charge,q, which is the departure of their coordination numberc from the preferred
coordination number 6 (q = 6− c). A classic theorem by Euler [29, 30] shows that the total
disclination charge of any triangulation of the sphere must be 12. As the number of particles
on the sphere grows, isolated chargeq = 1 topological defects are predicted to produce too
much strain [31], although this does not contradict Euler’s theorem since the total defect charge
is still 12. In order to explain the periodic table in terms of rigid spheres, nearly 100 years
ago Thomson [32] attempted to determine the minimum energy configuration of repulsive
particles lying on the surface of a sphere. Similar problems pervade in a wide range of fields
such as multi-electron bubbles in superfluid helium [33], virus morphology [34] and protein
s-layers [35, 36].

We determined the number of nearest neighbors for each particle in the outermost
shell for systems ranging fromN = 4 to N = 100. Similar results were given in [25] for
N = 2 → 22 and in [26] for N = 2 → 160 which were limited to the GS configuration.
The results are displayed in the last five columns of tableA.1. Figures4(a) and (b) display
respectively for the GS and the lowest energy MS configurations the dependence ofN(x) on
the total number of particles for the outermost shell. Notice that the MS and GS configurations
for systems larger thanN = 11 particles share the same properties concerning the arrangement
of particles on the shell. The number of particles with five nearest neighbors saturates around
12 while the number of particles with six nearest neighbors increases linearly with the total
number of particles. Both the GS and the MS configuration have in their outer shell a total defect
charge equal to 12. For example, the outermost shell of the GS configuration withN = 97 has
a total charge defect equal to 12 since the defect chargeq = −2 associated with the two 7-
fold-coordinated defects is canceled by the chargeq = +2 due to the excess of two defects of
5-fold-coordination. On the other hand, particles with three nearest neighbors are only possible
in the GS configuration of systems withN = 4 and 5 particles which do not exhibit any MS
configuration. It is also seen in both the MS and GS configurations that mostly in small size
systems, particles in the outermost shell can have a small number of particles with only three or
four nearest neighbors.
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Figure 5. Eigenfrequency in unitsω0/
√

2 of the normal modes for the GS
configuration of the pure Coulomb system as function of the particle numberN.
The second highest frequency is indicated by red ticks.

4. Normal modes

Here, we discuss the excitation spectrum corresponding to the GS configuration of systems
of isotropically confined particles interacting both through a Coulomb and screened Coulomb
interparticle potential. This spectrum is shown in figure5 for the Coulomb interacting system,
as function of the number of particles forN ranging from 4 to 100. The eigenfrequency
in this figure is in units ofω0/

√
2. Notice that there are three eigenfrequencies which are

independent ofN: (i) for any axial symmetric confinement potential the system as a whole
can rotate, which gives a 3-fold degenerate eigenmode vibration with frequencyω = 0.
Figure 6(a) shows the eigenvectors associated with this mode for the system withN = 12
particles. (ii) There is a 3-fold degenerate vibration of the center of mass with frequency
ω =

√
2 = 1.4142. This is an expression of Kohn’s theorem for a finite size system. Figure6(b)

displays the eigenvectors associated with this mode for the system withN = 12. (iii) The third
eigenfrequency corresponds to a vibration of the mean square radiusR2

=
∑

i (x
2
i + y2

i + z2
i )

with frequencyω =
√

6 = 2.4495. This mode is called a breathing mode and is illustrated in
figure6(c) for the system withN = 12 particles. Such a mode was also obtained from the cold
fluid theory [37], where there it was referred to as the monopole mode. The breathing mode
frequency is the highest frequency mode and is independent of the number of particles (figure5).
This is in contrast to 2D confined systems of particles interacting through a Coulomb potential
where the breathing mode frequency is not the highest frequency mode. The present situation is
similar to the case of logarithmic interacting particles [38], confined by a 2D parabolic potential
where also the breathing mode has the highest frequency. This is not very surprising because
the Coulomb interaction of charged particles in a 2D world is logarithmic. In fact [38] showed
that if Earnshaw’s theorem [39] is valid for a given system then the largest radial restoring
force will come solely from the external confinement potential. Consequently the breathing
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Figure 6. Visualization of the cluster structure and oscillation mode for the
system withN = 12 particles. (a), (b) and (c) show respectively the eigenvectors
of the rotational, center of mass and breathing modes. The arrows represent
the eigenvectors, and the arrow’s length is proportional to the amplitude of
oscillation of the associated particle.

Figure 7. Eigenfrequency (in units ofω0/
√

2) of the normal modes for the
GS configuration as function of the total number of particles for a systems of
screened Coulomb potential with screening parameterκ = 0.6.

mode, in which motion of particles is mainly against the confinement potential, will have the
largest frequency of oscillation. In this case the addition of particles in the system is only able
to enhance slightly the breathing-like modes. In fact we can see (figure5) that the value of
the second largest frequency increases with the number of particlesN and then approaches
the value of the breathing mode frequency. However as expected by Earnshaw’s theorem, the
second largest eigenfrequency does not overtake the value of the breathing mode frequency.

Contrary to ion crystals, where particles interact via a pure Coulomb force, the
microparticles in a dusty plasma are expected to interact through a Yukawa type pair potential.
A typical value for the screening parameter isκ = 0.6 [19]. The eigenfrequency spectrum
of the GS configuration of a Yukawa system with screening parameterκ = 0.6 and particle
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Figure 8. Eigenvectors of the normal mode of largest frequency for the screened
Coulomb systems (κ = 0.6) with (a) N = 30 and (b) 50 particles. Particles
in the external and internal shells are represented respectively by black and
red balls. The arrows represent the eigenvectors of the specific normal mode,
and the arrow’s length is proportional to the amplitude of oscillation of the
associated particle. Bonds are drawn between first neighboring particles to
improve visualization.

number varying fromN = 4 up to 80 is shown in figure7. For screened interaction (κ 6= 0), the
frequency of the rotational and center of mass mode are unaffected since they do not involve a
relative particle motion. In contrast, the frequency of the breathing mode will depend onκ and
N and is not necessarily the highest frequency mode. The breathing mode is indicated in figure7
(black arrow). We can see that forN > 22 there starts to appear frequencies with larger values
than the breathing mode frequency. With increasingκ, the radial positionr i of the particles in the
isotropic confinement well is reduced, the clusters become smaller due to the reduced Coulomb
repulsion. With reduced distance, the curvature of the Debye–Hückel potential increases more
strongly than the confinement potential force, which in turn leads to the observed increase of
the mode frequency (compare figure 5, forκ = 0, and figure 7, forκ = 0.6). As the number of
particles increases eventually some of those modes obtain larger frequency than the breathing
mode frequency (see figure7). We show in figures8(a) and (b), respectively the eigenvectors of
the normal mode of largest eigenfrequencies for the systems withN = 30 and 50 particles.
These modes are characterized by (i) a radial oscillation of particles in the internal shell,
(ii) the closest particle in the external shell to a given particle in the internal shell also oscillates
radially but out of phase with the oscillation of particles in the internal shell, and (iii) the rest of
the particles in the external shell have a smaller amplitude of oscillation which is mainly directed
tangentially to the shell surface. Such a motion involves a strong change of interparticle distance
between some pairs of particles belonging to the internal and external shells, which results in
strong restoring forces and thus a high frequency of the mode. Such normal modes were studied
experimentally in 2D finite screened Coulomb clusters [40]. In that case the mode of highest
frequency is also dominated by a strong relative motion of particles and turned out to be no
longer the breathing mode frequency.
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Following [27, 41], the value of the center of mass mode can be obtained analytically.
The Hamiltonian equation of motion yields

v̇xi = −2xi +
∑
j j 6=i

(
κ +

1

r i j

)
xi j

r 2
i j

e−κr i j , (4)

wherexi j = xi − x j andr i j = |Er i − Er j |
2. We have the same for ˙vyi andv̇zi and. The displacement

of the center of massRx =
∑

i xi along thex-direction satisfies the differential equation

d2Rx

dt2
=

∑
i

v̇xi = −2Rx, (5)

and the same forRy andRz. We conclude that the eigenfrequencies of the center of mass along
the directionsx, y andz are all equal tow =

√
2 . This frequency is independent of the number

of charged particles and of the inter-particle potential.
The breathing mode frequency can be obtained as follows. The mean square radius

R2
=

∑
i (x

2
i + y2

i + y2
i ) satisfies the following differential equation

d2R2

dt2
= 2T −

N∑
i =1

(x2
i + y2

i + z2
i ) + 2

∑
j >i

(
κ +

1

r i j

)
e−kri j , (6)

with T =
∑

i (ẋ
2
i + ẏ2

i + ż2
i ) the total kinetic energy. For the particular caseκ = 0 the former

equation reduces to

d2R2

dt2
= −6R2 + 2(T + H), (7)

where nowH is the Hamiltonian for the particular case under study. Thus the frequency of the
breathing mode for systems of isotropically confined particles interacting through a Coulomb
interparticle potential isω =

√
6 and is independent of the number of particles.

Recently, dynamical properties of Coulomb clusters were studied experimentally in which
a selective excitation of modes was performed [42, 43]. The experimental technique was applied
to 2D clusters and should be extended to 3D [42]. In such systems a normal-mode analysis can
become one of the key diagnostics for determining the particle charge and shielding effects.
The first step in this direction is the characterization of the normal modes. Beside the three well
known oscillation modes, i.e. rotational mode, center of mass mode and breathing mode, we
call to attention the presence of another frequency, shown by the red data in figure5, which
is slightly smaller than the breathing mode frequency. This normal mode appears for systems
having more than a single shell with one particle in the center (N > 23 particles). In order to
characterize this mode we computed the averaged radial deviation of the eigenvectors, which
characterizes the radial oscillation of the particles. This quantity is defined as

δr =

N∑
i =1

Er i .Evi

|Er i |.|Evi |
, (8)

whereEr i and Evi are respectively the position vector and the eigenvector of thei th particle.
Since δr is normalized, its maximum (minimum) value isδr = 1(−1) and occurs when the
vectorsEr i and Evi are parallel (antiparallel) for all particles. Results are shown in figure9,
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Figure 9. Averaged radial deviation of the eigenvectorsδr calculated in the
internal region of the cluster (red squares) and in the external shell (blue dots)
as function ofN. In the inset, the average length of the radial component of
the eigenvector are displayed for both the internal region (red squares) and the
external shell (blue dots).

for δr computed for the external shell (blue dots) and for the region enclosed by the external
shell (red squares). The oscillations of the particles in the center of the cluster are mainly along
the radial direction (δr ≈ 1). Note that the oscillation of particles in the external shell exhibits
two different behaviors. For small size systems(N < 40), δr is small and particles oscillate
mainly parallel to the shell while for larger systems (N > 50),δr is larger and particles oscillate
mainly perpendicular to the shell. The simple determination of the direction of oscillation of
particles is not enough to provide a satisfactory outline of this oscillation mode. To characterize
the oscillation mode it is equally important to know the relative motion between particles as well
as their amplitude of oscillation. Note that the value ofδr has an opposite sign when calculated
in the distinct regions. This fact shows that the oscillation performed by particles in the internal
region is out of phase with the oscillation of particles on the external shell. The length of the
eigenvectors is proportional to the amplitude of oscillation of the particles. The average of the
eigenvector’s length is shown in the inset of figure9 when calculated in the internal region (red
squares) and in the external shell (blue dots). We can conclude that particles in the internal
region oscillate with larger amplitude than particles on the external shell.

Schweigert and Peeters [27] showed that for 2D systems normal mode analysis is an
efficient tool to predict the stability of the cluster. This confirmed the existence of magic clusters
in 2D systems: magic clusters were shown to have large values of the first nonzero frequency
while non-stable clusters were found to have small values. In order to test if the lowest nonzero
eigenfrequencies give similar information concerning the stability of 3D clusters, we computed
for the first time the normal modes of 3D isotropic systems. Figure10 displays the value of
the first nonzero frequencies (blue square, left axis) for systems varying fromN = 4 to 100
particles.
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Figure 10. (a) and (b) display the first nonzero frequency (left axis and blue
square) and the second derivative of the binding energy (right axis and red circle)
as function of the number of particles.

The stability of 3D clusters was investigated previously through the calculation of the
second derivative of the binding energy with respect toN in [26, 44], which is defined
[45] by

1E = E(N + 1) + E(N − 1) − 2E(N), (9)

whereE(N) is the GS energy of aN-particle cluster. The binding energy (red dots, right axis) as
function of the total number of particles for systems ranging fromN = 4 up to 100 particles is
shown in figure10. The GS configuration of systems withN = 4, 6, 10, 12, 19, 32, 38, 56 [44]
andN = 81, 94 [26] were classified as magic clusters. We can see that for those systems there
is a pronounced peak in the value of1E. From figure10we can see that in many situations the
maxima and minima in the value of1E and those in the first nonzero eigenfrequency coincide
for small systems with only a single shell (N < 22). Those systems are indicated by arrows on
the top of figure10(a). On the other hand, such coincidences in the maxima and minima is not
that evident for larger systems. Furthermore, the system withN = 13 can also be identified as
a magic number cluster based on our normal mode analysis. However, it was not classified as
a magic cluster in [26, 44]. In fact not all magic clusters can be revealed by the analysis of the
binding energy, especially when there are two magic clusters with similar structure but differing
only by one single particle. In other words, the energy difference of the system withN = 13
particles is negative due to a pronounced decrease of energy found in the magic cluster with
N = 12 particles.
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In order to understand why there is correspondence between a peak in1E and a high
first non-zero eigenfrequency for 3D clusters with a single shell, and no correspondence
for larger 3D clusters, it is important to consider typical eigenmodes corresponding to these
eigenfrequencies. Figure11shows in sequence from (a) to (h) the eigenvectors associated to the
lowest nonzero frequency for the systems withN = 6, 12, 13, 23, 28, 29, 36 and 60 particles.
Those systems were chosen because they have different numbers of particles in the inner shell.
In the external shell the 4-, 5-, and 6-fold particles are represented respectively by gray, black
and orange balls. Particles in the inner shell are indicated by red balls. The arrows indicate
the direction of oscillation while their lengths are proportional to the amplitude of oscillation
of each associated particle. For the systems withN = 6 and 12 particles (figures11(a) and (b))
we notice that their eigenvectors are mainly directed tangentially to the surface of the shell of the
cluster. We call this sort of mode an intra-shell motion. The large value of the eigenfrequencies
for the systems withN = 6 and 12 particles indicates that these magic clusters have large
mechanical resistance against intra-shell diffusion. The eigenfrequency of the system with
N = 13 particles isω = 0.5966 which is comparable to the eigenfrequency of the system with
N = 12 particles. Figure11(c) displays the eigenvectors for the first nonzero frequency of the
system withN = 13 particles, which is similar to the mode of the system withN = 12 particles,
i.e. an intra-shell motion. This fact is not surprising since the system withN = 13 particles has
exactly the same arrangement of particles as for the system withN = 12 but with one extra
particle in the center. This confirms why the system withN = 13 particles is also a magic
cluster. For small systems, i.e. the ones with only one shell, we found that the normal mode
corresponding to the lowest nonzero frequency corresponds to an intra-shell motion. However,
for larger clusters the situation is more complex. Figures11(d)–(h) display the eigenvectors,
respectively, for the systems withN = 23, 28, 29, 36 and 60 particles. Notice that particles
in the external as well as in the inner shell have oscillation amplitudes different from zero. A
careful look at the eigenvectors associated with particles in the inner shell shows that they have
a rotational motion while the motion of the particles in the external shell corresponds to an intra-
shell diffusion of the particles. Thus the normal mode of lowest frequency for larger systems is
a mixed mode, i.e. a combination of rotation and diffusion, respectively played by particles in
the inner and external shells.

With this information we can understand why there is a correspondence between a peak
in 1E and a high first nonzero eigenfrequency for 3D clusters with a single shell, and no
correspondence anymore for larger 3D clusters. This is not a surprise since in 3D systems the
total energy can be reduced via two different processes, i.e. the arrangement of particles in the
shells or between shells. The shell of the cluster can be thought of as a quasi 2D system. Then
one expects that by a symmetric triangular arrangement of particles in the shell the energy can be
reduced. Such arrangement in the shell may increase the resistance of the cluster against intra-
shell diffusion but has nothing to do with the resistance against inter-shell motion. With this
picture the cluster should then remain with a small first nonzero frequency for the rotation mode,
even if the total energy is small due to a more symmetric triangular arrangement in the shell.
The fact that the motion corresponding to the first nonzero frequency is a mixed one is the main
reason of the disagreement found between the maxima and minima of1E and the first nonzero
frequency for large systems. This picture is different from the one found in a 2D Wigner crystal
since in that situation the normal mode corresponding to the first nonzero frequency is always
an inter-shell rotation mode, i.e. there are no mixed modes. Furthermore, magic clusters are the
ones where particles arrange themselves in a more triangular arrangement. This arrangement
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Figure 11. Visualization of the cluster structure and oscillation mode. For the
external shell 4-, 5- and 6-fold particles are represented, respectively, by gray,
black, and orange balls. Particles in the internal shell are represented by red
balls. The arrows represent the eigenvectors associated with the lowest nonzero
frequency, and the arrow’s length is proportional to the amplitude of oscillation
of the associated particle.
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increases the value of the first nonzero frequency and decreases the total energy of 2D systems.
That is why in 2D systems the magic clusters were successfully identified both via a normal
mode analysis and energy calculations [45, 27]. We can conclude that in 3D systems the energy
difference and the normal mode analysis give complementary information.

5. Summary and conclusions

We presented the results of a detailed numerical simulation of the configuration of the GS
and the lowest energy MS configuration, and the spectrum of normal modes of classical 3D
clusters with isotropic parabolic confinement. The confined particles interact through a repulsive
potential such as Coulomb or screened Coulomb interparticle potential. For small systems the
structural differences between the GS and MS configuration are mostly due to a different number
of shells or different number of particles per shell. As the total number of particles increases the
energy difference between GS and MS configuration decreases and the structural difference
between them are often due to a different arrangement of the same number of particles in the
shells.

The eigenmode frequencies are investigated both for Coulomb and screened Coulomb
interparticle potential. Both small and larger systems satisfy Euler’s theorem and the total
topological charge defect is 12. For larger systems the appearance of negative defect charge
(7-fold correlation defect) is compensated by an excess of positive charge due to defects
with 5-fold coordination number. The breathing and the center of mass mode frequencies are
analytically determined and both are independent of the number of particles. The breathing
mode has the highest frequency value for the case of a Coulomb interparticle interaction
potential system while this is no longer true for systems of confined particles interacting through
a Yukawa potential. In fact the breathing mode has the highest frequency both for 2D and 3D
parabolic confined systems when the interparticle interacting potential is given by the solution
of the Poisson equation. In the present work, the Coulomb interaction is the solution of the
Poisson equation while for a 2D system its solution is a logarithmic potential. We found a
satisfactory relation between the appearance of maximum and minimum in the lowest nonzero
eigenfrequency and in the second derivative of the binding energy as function ofN for small
clusters (N < 23) which indicates the most and least stable clusters. Such correspondence is not
seen in larger clusters due to the fact that there the normal mode of the first nonzero frequency
becomes a mixed mode with a rotational and intra-shell motion component.
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Table A.1. From left to right: the number of particles in the system, its energy
per particle, its configuration, the radius of the shell(r ), the width of the shell
(1(r )), the value of the three nonzero lowest eigenfrequencies (fi , i = 1, 2, 3),
and the number of particles per shell withx nearest neighbors wherex varies
from 3 to 7.

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

2 0.7500000 2 0.5000 0.0000 1.4142 1.4142 1.4142 – – – – –
3 1.3103707 3 0.6609 0.0000 1.4142 1.4142 1.4142 – – – – –
4 1.7858262 4 0.7715 0.0000 1.2247 1.2247 1.4142 4 – – – –
5 2.2451872 5 0.8651 0.0181 0.6226 0.6226 1.3954 2 3 – – –
6 2.6540390 6 0.9406 0.0000 0.8517 0.8517 0.8517 – 6 – – –
7 3.0641858 7 1.0106 0.0277 0.1472 0.1472 0.9726 – 5 2 – –
8 3.4434094 8 1.0714 0.0000 0.3916 0.3916 0.5842 – 4 4 – –
9 3.8097820 9 1.1269 0.0126 0.3185 0.3185 0.7584 – 3 6 – –

3.8425262 1,8 0.0000 – 0.2235 0.3348 0.3348 – – – – –
1.2004 0.0000 – 4 4 – –

10 4.1649900 10 1.1783 0.0131 0.2467 0.2467 0.7600 – 2 8 – –
4.1869791 1,9 0.0000 – 0.2719 0.2719 0.5719 – – – – –

1.2453 0.0060 – 3 6 – –
11 4.5132754 11 1.2265 0.0353 0.2243 0.2409 0.5546 – 2 8 1 –

4.5231515 1,10 0.0000 – 0.2116 0.2116 0.6566 – – – – –
1.2878 0.0070 – 2 8 – –

12 4.8389665 12 1.2700 0.0000 0.6655 0.6655 0.6655 – – 12 – –
4.8543111 1,11 0.0178 – 0.1992 0.2149 0.4765 – – – – –

1.3286 0.0166 – 2 8 1 –
13 5.1667983 1,12 0.0000 – 0.5966 0.5966 0.5966 – – – – –

1.3659 0.0000 – – 12 – –
5.1718595 13 1.3130 0.0333 0.1311 0.1915 0.3391 – 1 10 2 –

14 5.4859154 1,13 0.0071 – 0.1176 0.1703 0.3059 – – – – –
1.4033 0.0195 – 1 10 2 –

5.4894163 14 1.3527 0.0000 0.3624 0.3624 0.4466 – – 12 2 –
15 5.7920942 1,14 0.0000 – 0.3289 0.3289 0.4074 – – – – –

1.4383 0.0154 – – 12 2 –
5.8011249 15 1.3906 0.0000 0.2582 0.2688 0.2688 – – 12 3 –

16 6.0934213 1,15 0.0000 – 0.2414 0.2414 0.2437 – – – – –
1.4719 0.0134 – – 12 3 –

6.1056214 16 1.4266 0.0000 0.3342 0.3495 0.3495 – – 12 4 –
17 6.3886098 1,16 0.0000 – 0.3175 0.3175 0.3175 – – – – –

1.5042 0.0139 – – 12 4 –
6.3889747 1,16 0.0000 0.0195 0.2426 0.2426 0.3619 – – – – –

1.5042 0.0000 – – 12 4 –

Appendix. Static and dynamic properties of the GS and MS configurations
of coulombic clusters
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

18 6.6788303 1,17 0.0000 – 0.1791 0.1791 0.1823 – – – – –
1.5353 0.0012 – – 12 5 –

6.6974417 18 1.4941 0.0352 0.2416 0.2416 0.3803 – 2 8 8 –
19 6.9641459 1,18 0.0000 – 0.2221 0.2221 0.3532 – – – – –

1.5654 0.0122 – 2 8 8 –
6.9878240 19 1.5261 0.0405 0.0227 0.2542 0.3329 – – 12 7 –

20 7.2471808 1,19 0.0002 – 0.0345 0.2372 0.3101 – – – – –
1.5946 0.0176 – – 12 7 –

7.2514451 2,18 0.5400 0.0504 0.1052 0.1593 0.2511 – – – – –
1.6285 0.1090 – 2 8 8 –

21 7.5223777 1,20 0.0000 – 0.1869 0.1869 0.4160 – – – – –
1.6226 0.0108 – – 12 8 –

7.5270457 2,19 0.5403 0.0621 0.1475 0.2144 0.2345 – – – – –
1.6557 0.1041 – – 12 7 –

22 7.7954689 1,21 0.0007 – 0.0712 0.0870 0.1565 – – – – –
1.6499 0.0182 – 1 10 10 –

7.7964445 2,20 0.5321 0.0007 0.0094 0.0845 0.2349 – – – – –
1.6821 0.1052 – – 12 8 –

23 8.0635754 2,21 0.5302 0.0000 0.0389 0.0627 0.1642 – – – – –
1.7077 0.0927 – – 12 9 –

8.0635791 2,21 0.5303 0.0385 0.0901 0.0901 0.1692 – – – – –
1.7077 0.1076 – 1 10 10 –

24 8.3268028 2,22 0.5260 0.0130 0.0842 0.1271 0.2047 – – – – –
1.7326 0.0808 – – 12 10 –

8.3272196 2,22 0.5263 0.0000 0.0331 0.1201 0.1572 – – – – –
1.7327 0.0854 – – 12 10 –

25 8.5883607 2,23 0.5262 0.0000 0.1138 0.1138 0.2948 – – – – –
1.7570 0.0978 – – 12 11 –

8.5889178 3,22 0.6958 0.0000 0.2054 0.2200 0.2200 – – – – –
1.7849 0.1226 – – 12 10 –

26 8.8442362 2,24 0.5241 0.0000 0.1934 0.1964 0.1964 – – – – –
1.7805 0.0575 – – 12 12 –

8.8459235 3,23 0.6931 0.0195 0.1214 0.2303 0.2364 – – – – –
1.8081 0.1219 – – 12 11 –

27 9.0973346 3,24 0.6898 0.0166 0.0632 0.1058 0.2364 – – – – –
1.8305 0.1045 – – 12 12 –

9.0974154 3,24 0.6895 0.0170 0.0683 0.1827 0.2391 – – – – –
1.8305 0.0999 – – 12 12 –

28 9.3483678 3,25 0.6889 0.0027 0.0765 0.1710 0.2133 – – – – –
1.8525 0.1150 – – 12 13 –

9.3483829 3,25 0.6889 0.0215 0.1162 0.1361 0.2040 – – – – –
1.8525 0.1289 – – 12 13 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

29 9.5954351 4,25 0.7987 0.0268 0.1203 0.1684 0.2458 4 – – – –
1.8992 0.1110 – – 12 13 –

9.5957698 3,26 0.6872 0.0055 0.0435 0.1723 0.1923 – – – – –
1.8740 0.0964 – – 12 14 –

30 9.8389647 4,26 0.7961 0.0311 0.0559 0.1627 0.1825 4 – – – –
1.9198 0.1109 – – 12 14 –

9.8395917 3,27 0.6841 0.0037 0.1424 0.1549 0.2055 – – – – –
1.8950 0.1052 – – 12 15 –

31 10.0795110 4,27 0.7926 0.0124 0.1114 0.1742 0.1847 4 – – – –
1.9399 0.1098 – – 12 15 –

10.0795174 4,27 0.7927 0.0208 0.0959 0.1931 0.1978 4 – – – –
1.9399 0.1165 – – 12 15 –

32 10.3186788 4,28 0.7935 0.0000 0.2282 0.2282 0.2282 4 – – – –
1.9596 0.0882 – – 12 16 –

10.3190407 4,28 0.7912 0.0025 0.0908 0.1390 0.1828 4 – – – –
1.9597 0.1232 – – 12 16 –

33 10.5565871 4,29 0.7914 0.0215 0.1059 0.1059 0.1714 4 – – – –
1.9791 0.1304 – – 12 17 –

10.5566443 4,29 0.7908 0.0092 0.0625 0.0997 0.1105 4 – – – –
1.9791 0.1208 – – 12 17 –

34 10.7908419 4,30 0.7901 0.0000 0.0505 0.1399 0.1589 4 – – – –
1.9980 0.1052 – – 12 18 –

10.7914888 5,29 0.8867 0.0677 0.0303 0.1531 0.1568 2 3 – – –
2.0200 0.1253 – – 12 17 –

35 11.0227310 5,30 0.8859 0.0821 0.0413 0.1399 0.1672 2 3 – – –
2.0381 0.1467 – – 12 18 –

11.0227585 5,30 0.8849 0.0820 0.0582 0.0719 0.0872 2 3 – – –
2.0383 0.1448 – – 12 18 –

36 11.2519226 6,30 0.9582 0.0000 0.0882 0.0882 0.2117 – 6 – – –
2.0775 0.1018 – – 12 18 –

11.2519406 6,30 0.9576 0.0197 0.0748 0.0816 0.1126 – 6 – – –
2.0775 0.1020 – – 12 18 –

37 11.4787472 6,31 0.9585 0.0324 0.2319 0.2334 0.2334 – 6 – – –
2.0947 0.1150 – – 12 19 –

11.4789060 6,31 0.9571 0.0480 0.0905 0.1492 0.2089 – 6 – – –
2.0948 0.1228 – – 12 19 –

38 11.7029516 6,32 0.9549 0.0000 0.1089 0.1490 0.1490 – 6 – – –
2.1119 0.1166 – – 12 20 –

11.7029615 6,32 0.9546 0.0000 0.1070 0.1070 0.1070 – 6 – – –
2.1119 0.0903 – – 12 20 –

39 11.9283228 6,33 0.9549 0.0348 0.0621 0.1103 0.1316 – 6 – – –
2.1289 0.1186 – – 13 19 1

11.9283233 6,33 0.9553 0.0387 0.0838 0.1437 0.1514 – 6 – –
2.1288 0.1041 – – 13 19 1
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

40 12.1501629 6,34 0.9547 0.0253 0.0812 0.1198 0.1450 – 6 – – –
2.1453 0.1282 – – 12 22 –

12.1513063 7,33 1.0280 0.1387 0.1032 0.1362 0.1663 – 5 2 – –
2.1641 0.1124 – – 12 21 –

41 12.3707915 6,35 0.9538 0.0178 0.0751 0.0929 0.1339 – 6 – – –
2.1618 0.1222 – – 12 23 –

12.3708003 6,35 0.9538 0.0095 0.0458 0.0954 0.1453 – 6 – – –
2.1618 0.1276 – – 12 23 –

42 12.5891393 7,35 1.0260 0.1218 0.1071 0.1321 0.1577 – 5 2 – –
2.1961 0.1298 – – 12 23 –

12.5891687 7,35 1.0264 0.1280 0.0601 0.1383 0.1617 – 5 2 – –
2.1961 0.1393 – – 12 23 –

43 12.8055452 7,36 1.0252 0.0985 0.0498 0.1312 0.1877 – 5 2 – –
2.2119 0.1171 – – 12 24 –

12.8056408 7,36 1.0250 0.0903 0.1145 0.1300 0.1969 – 5 2 – –
2.2119 0.1261 – – 12 24 –

44 13.0200779 8,36 1.0845 0.0370 0.1116 0.1178 0.1310 – 4 4 – –
2.2454 0.1386 – – 12 24 –

13.0200965 8,36 1.0848 0.0083 0.0529 0.1265 0.1412 – 4 4 – –
2.2454 0.1302 – – 12 24 –

45 13.2329012 8,37 1.0845 0.0851 0.0758 0.1030 0.1208 – 4 4 – –
2.2603 0.1240 – – 12 25 –

13.2330752 8,37 1.0842 0.0472 0.1234 0.1454 0.1675 – 4 4 – –
2.2604 0.1555 – – 12 25 –

46 13.4446015 8,38 1.0842 0.0826 0.0131 0.1450 0.1803 – 4 4 – –
2.2751 0.1129 – – 12 26 –

13.4446625 8,38 1.0833 0.0554 0.0649 0.1418 0.1447 – 4 4 – –
2.2752 0.1694 – – 12 26 –

47 13.6544585 9,38 1.1391 0.1064 0.1185 0.1987 0.2025 – 3 6 – –
2.3066 0.1061 – – 12 26 –

13.6544883 9,38 1.1380 0.0960 0.0441 0.1211 0.1443 – 3 6 – –
2.3067 0.1277 – – 12 26 –

48 13.8627620 9,39 1.1379 0.0892 0.1156 0.1582 0.1682 – 3 6 – –
2.3210 0.1235 – – 12 27 –

13.8629342 9,39 1.1372 0.0055 0.1039 0.1165 0.1165 – 3 6 – –
2.3212 0.1094 – – 12 27 –

49 14.0699199 9,40 1.1371 0.0840 0.1137 0.1292 0.1552 – 3 6 – –
2.3351 0.1277 – – 12 28 –

14.0701384 9,40 1.1364 0.0457 0.0651 0.0651 0.0983 – 3 6 – –
2.3352 0.1305 – – 12 28 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

50 14.2757285 9,41 1.1372 0.0529 0.1438 0.1438 0.2186 – 3 6 – –
2.3490 0.1302 – – 12 29 –

14.2759561 10,40 1.1876 0.1061 0.0891 0.0925 0.0989 – 2 8 – –
2.3652 0.1101 – – 12 28 –

51 14.4801010 10,41 1.1877 0.0859 0.0676 0.0910 0.2202 – 2 8 – –
2.3788 0.1292 – – 12 29 –

14.4807038 9,42 1.1363 0.0654 0.0759 0.1018 0.1526 – 3 6 – –
2.3629 0.1382 – – 12 30 –

52 14.6831926 10,42 1.1875 0.0787 0.0140 0.1687 0.2052 – 2 8 – –
2.3922 0.1268 – – 12 30 –

14.6833601 10,42 1.1871 0.0747 0.0535 0.0851 0.1067 – 2 8 – –
2.3923 0.1269 – – 12 30 –

53 14.8852839 10,43 1.1872 0.0824 0.0945 0.1074 0.1163 – 2 8 – –
2.4055 0.1520 – – 12 31 –

14.8852982 10,43 1.1872 0.0820 0.0689 0.1106 0.1510 – 2 8 – –
2.4055 0.1286 – – 12 31 –

54 15.0857028 10,44 1.1872 0.0581 0.1393 0.1393 0.1671 – 2 8 – –
2.4186 0.1061 – – 12 32 –

15.0857248 10,44 1.1867 0.0620 0.0187 0.1361 0.1384 – 2 8 – –
2.4186 0.1485 – – 12 32 –

55 15.2847026 12,43 1.2773 0.0250 0.0456 0.0456 0.1197 – – 12 – –
2.4618 0.1086 – – 12 31 –

15.2851700 11,44 1.2356 0.1654 0.1349 0.1446 0.1660 – 2 8 1 –
2.4465 0.1624 – – 12 32 –

56 15.4821444 12,44 1.2770 0.0193 0.0879 0.0879 0.1185 – – 12 –
2.4743 0.1110 – – 12 32 –

15.4834142 1,12,43 0.0407 – 0.0462 0.0462 0.0778 – – – – –
1.3786 0.0463 – – 12 – –
2.4878 0.1372 – – 12 31 –

57 15.6793502 12,45 1.2763 0.0210 0.0622 0.1012 0.1334 – – 12 – –
2.4869 0.1110 – – 12 33 –

15.6794160 12,45 1.2759 0.0031 0.0757 0.0757 0.1089 – – 12 – –
2.4869 0.0953 – – 12 33 –

58 15.8754062 1,12,45 0.0052 – 0.0661 0.0828 0.1215 – – – – –
1.3765 0.0150 – – 12 – –
2.5126 0.1406 – – 12 33 –

15.8754397 12,46 1.2766 0.0000 0.2012 0.2012 0.2012 – – 12 – –
2.4992 0.0932 – – 12 34 –

59 16.0701034 1,12,46 0.0000 – 0.1928 0.1928 0.1928 – – – – –
1.3764 0.0000 – – 12 – –
2.5247 0.1217 – – 12 34 –

16.0701563 1,12,46 0.0168 – 0.0722 0.0722 0.1448 – – – – –
1.3771 0.0197 – – 12 – –
2.5246 0.1294 – – 15 28 3
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

60 16.2637073 12,48 1.2755 0.0094 0.1154 0.1202 0.1202 – – 12 –
2.5236 0.1007 – – 12 36 –

16.2639715 1,12,47 0.0036 – 0.0719 0.0934 0.1105 – – – – –
1.3764 0.0197 – – 12 – –
2.5368 0.1294 – – 12 35 –

61 16.4558128 1,12,48 0.0041 – 0.0899 0.1262 0.1262 – – – – –
1.3751 0.0063 – – 12 – –
2.5488 0.1264 – – 12 36 –

16.4558710 1,12,48 0.0000 – 0.0628 0.0628 0.0628 – – – – –
1.3752 0.0000 – – 12 – –
2.5489 0.1046 – – 12 36 –

62 16.6475197 1,13,48 0.0164 – 0.0308 0.1233 0.1538 – – – – –
1.4134 0.0953 – 1 10 2 –
2.5738 0.1612 – – 12 36 –

16.6475207 1,13,48 0.0249 – 0.0623 0.0981 0.1401 – – – – –
1.4133 0.0715 – 1 10 2 –
2.5739 0.1509 – – 12 36 –

63 16.8376940 1,14,48 0.0047 – 0.0633 0.0949 0.0993 – – – – –
1.4473 0.0762 – – 12 2
2.5988 0.1408 – – 12 36 –

16.8376973 1,14,48 0.0037 – 0.0138 0.0897 0.1014 – – – – –
1.4473 0.0742 – – 12 2 –
2.5988 0.1311 – – 12 36 –

64 17.0272889 1,14,49 0.0019 – 0.1435 0.1435 0.1633 – – – – –
1.4478 0.0758 – – 12 2 –
2.6101 0.1233 – – 12 37 –

17.0273485 1,14,49 0.0071 – 0.1001 0.1336 0.1504 – – – – –
1.4475 0.0725 – – 12 2 –
2.6101 0.1266 – – 12 37 –

65 17.2153608 1,14,50 0.0000 – 0.1842 0.1947 0.1947 – – – – –
1.4477 0.0517 – – 12 2 –
2.6212 0.1197 – – 12 38 –

17.2154915 1,14,50 0.0026 – 0.0648 0.1149 0.1625 – – – – –
1.4470 0.0784 – – 12 2 –
2.6215 0.1381 – – 12 38 –

66 17.4028913 1,15,50 0.0059 – 0.1165 0.1246 0.1499 – – – – –
1.4805 0.0846 – – 12 3 –
2.6453 0.1339 – – 12 38 –

17.4028985 1,15,50 0.0042 – 0.0667 0.1156 0.1299 – – – – –
1.4804 0.0680 – – 12 3 –
2.6453 0.1289 – – 12 38 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

67 17.5893474 1,15,51 0.0046 – 0.1210 0.1384 0.1594 – – – – –
1.4803 0.0724 – – 12 3 –
2.6563 0.1436 – – 12 39 –

17.5893617 1,15,51 0.0027 – 0.0809 0.0963 0.1458 – – – – –
1.4802 0.0708 – – 12 3 –
2.6564 0.1412 – – 12 39 –

68 17.7748744 1,16,51 0.0034 – 0.1446 0.1446 0.1748 – – – – –
1.5123 0.0756 – – 12 4 –
2.6797 0.1201 – – 12 39 –

17.7750173 1,16,51 0.0155 – 0.1070 0.1310 0.1567 – – – – –
1.5123 0.0957 – – 12 4 –
2.6797 0.1260 – – 12 39 –

69 17.9594322 1,16,52 0.0010 – 0.1491 0.1768 0.1768 – – – – –
1.5126 0.0968 – – 12 4 –
2.6903 0.1043 – – 12 40 –

17.9594876 1,16,52 0.0000 – 0.1329 0.1329 0.1329 – – – – –
1.5130 0.0836 – – 12 4 –
2.6902 0.1055 – – 12 40 –

70 18.1433383 1,16,53 0.0023 – 0.1333 0.1487 0.1622 – – – – –
1.5119 0.0885 – – 12 4 –
2.7010 0.1228 – – 12 41 –

18.1433927 1,16,53 0.0057 – 0.0821 0.1361 0.1694 – – – – –
1.5120 0.0928 – – 12 4 –
2.7010 0.1340 – – 12 41 –

71 18.3262819 1,16,54 0.0084 – 0.1102 0.1590 0.1800 – – – – –
1.5118 0.0791 – – 12 4 –
2.7116 0.1316 – – 12 42 –

18.3263270 1,16,54 0.0030 – 0.0962 0.1450 0.1653 – – – – –
1.5115 0.0843 – – 12 4 –
2.7117 0.1371 – – 12 42 –

72 18.5084443 1,17,54 0.0059 – 0.1167 0.1293 0.1315 – – – – –
1.5423 0.0744 – – 12 5 –
2.7342 0.1505 – – 12 42 –

18.5084666 1,17,54 0.0073 – 0.0918 0.1218 0.1560 – – – – –
1.5424 0.0797 – – 12 5 –
2.7342 0.1548 – – 12 42 –

73 18.6897294 1,17,55 0.0047 – 0.0965 0.1287 0.1432 – – – – –
1.5422 0.0724 – 1 10 6 –
2.7445 0.1434 – – 12 43 –

18.6897341 1,17,55 0.0031 – 0.1061 0.1432 0.1773 – – – – –
1.5420 0.0741 – – 12 5 –
2.7445 0.1568 – – 12 43 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

74 18.8701679 1,17,56 0.0088 – 0.0998 0.1439 0.1635 – – – – –
1.5423 0.0640 – 2 8 7 –
2.7546 0.1681 – – 12 44 –

18.8701690 1,17,56 0.0051 – 0.0698 0.1325 0.1501 – – – – –
1.5421 0.0625 – – 12 5 –
2.7547 0.1790 – – 12 44 –

75 19.0497421 1,18,56 0.0055 – 0.1108 0.1154 0.1461 – – – – –
1.5717 0.1016 – 2 8 8 –
2.7765 0.1401 – – 12 44 –

19.0497889 1,18,56 0.0058 – 0.0913 0.1288 0.1521 – – – – –
1.5716 0.1007 – 2 8 8 –
2.7765 0.1426 – – 12 44 –

76 19.2286002 1,18,57 0.0000 – 0.0975 0.0975 0.1649 – – – – –
1.5714 0.0562 – – 12 6 –
2.7865 0.1149 – – 12 45 –

19.2286011 1,18,57 0.0031 – 0.0628 0.1374 0.1574 – – – – –
1.5717 0.0803 – 2 8 8 –
2.7864 0.1317 – – 12 45 –

77 19.4068165 1,18,58 0.0033 – 0.0693 0.1191 0.1454 – – – – –
1.5714 0.0971 – 2 8 8 –
2.7964 0.1390 – – 12 46 –

19.4068274 1,18,58 0.0056 – 0.0895 0.1175 0.1353 – – – – –
1.5717 0.0958 – – 12 6 –
2.7964 0.1518 – – 12 46 –

78 19.5841752 1,18,59 0.0046 – 0.0987 0.1108 0.1475 – – – – –
1.5715 0.0732 – – 12 6 –
2.8063 0.1385 – – 12 47 –

19.5842034 1,18,59 0.0061 – 0.0972 0.1330 0.1460 – – – – –
1.5714 0.0793 – – 12 6 –
2.8063 0.1373 – – 12 47 –

79 19.7607999 1,18,60 0.0049 – 0.0641 0.1102 0.1913 – – – – –
1.5709 0.0885 – 2 8 8 –
2.8161 0.1549 – – 12 48 –

19.7608055 1,18,60 0.0013 – 0.0781 0.1348 0.1540 – – – – –
1.5710 0.0830 – 2 8 8 –
2.8161 0.1511 – – 12 48 –

80 19.9366899 1,19,60 0.0031 – 0.0930 0.1310 0.1580 – – – – –
1.6002 0.1195 – – 12 7 –
2.8369 0.1429 – – 12 48 –

19.9366954 1,20,59 0.0049 – 0.0628 0.0883 0.1355 – – – – –
1.6276 0.1198 – – 12 8 –
2.8481 0.1447 – – 12 47 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

81 20.1115924 1,20,60 0.0064 – 0.0727 0.0945 0.1006 – – – – –
1.6271 0.1021 – – 12 8 –
2.8577 0.1372 – – 12 48 –

20.1116078 1,20,60 0.0014 – 0.0522 0.1064 0.1124 – – – – –
1.6272 0.1176 – – 12 8 –
2.8576 0.1262 – – 12 48 –

82 20.2861031 1,20,61 0.0050 – 0.0420 0.0987 0.1113 – – – – –
1.6274 0.1081 – – 12 8 –
2.8671 0.1464 – – 12 49 –

20.2861622 2,20,60 0.5468 0.0000 0.0699 0.0930 0.1130 – – – – –
1.6883 0.1829 – – 12 8 –
2.8773 0.1626 – – 12 48 –

83 20.4598342 2,20,61 0.5447 0.0629 0.0891 0.0971 0.1153 – – – – –
1.6886 0.1873 – – 12 8 –
2.8866 0.2084 – – 12 49 –

20.4598388 2,20,61 0.5457 0.0333 0.0931 0.0993 0.1445 – – – – –
1.6887 0.1799 – – 12 8 –
2.8865 0.2000 – – 13 47 1

84 20.6327589 2,21,61 0.5426 0.0047 0.0674 0.0913 0.1289 – – – – –
1.7140 0.2477 – 1 10 10 –
2.9064 0.1758 – – 12 49 –

20.6327815 2,21,61 0.5410 0.0353 0.0671 0.1014 0.1031 – – – – –
1.7137 0.2052 – 1 10 10 –
2.9065 0.1568 – – 12 49 –

85 20.8049075 2,21,62 0.5422 0.0306 0.1124 0.1194 0.1385 – – – – –
1.7135 0.2091 – 1 10 10 –
2.9156 0.1594 – – 12 50 –

20.8049198 2,21,62 0.5417 0.0125 0.0962 0.1161 0.1351 – – – – –
1.7136 0.2168 – 1 10 10 –
2.9156 0.1507 – – 12 50 –

86 20.9765178 2,21,63 0.5403 0.0136 0.0478 0.1128 0.1571 – – – – –
1.7138 0.2117 – – 12 9 –
2.9247 0.1898 – – 12 51 –

20.9765313 2,21,63 0.5407 0.0017 0.0482 0.0972 0.1177 – – – – –
1.7137 0.2423 – 1 10 10 –
2.9247 0.1681 – – 12 51 –

87 21.1473848 2,22,63 0.5386 0.0063 0.0804 0.1240 0.1480 – – – – –
1.7380 0.2213 – – 12 10 –
2.9442 0.1553 – – 13 49 1

21.1474046 2,22,63 0.5376 0.0097 0.0743 0.0968 0.1314 – – – – –
1.7378 0.1895 – – 12 10 –
2.9442 0.1573 – – 12 51 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

88 21.3176820 2,22,64 0.5385 0.0081 0.0267 0.1186 0.1367 – – – – –
1.7378 0.1826 – – 12 10 –
2.9532 0.1602 – – 12 52 –

21.3176867 2,22,64 0.5380 0.0000 0.0414 0.1045 0.1146 – – – – –
1.7377 0.1946 – – 12 10 –
2.9532 0.1176 – – 12 52 –

89 21.4873691 2,22,65 0.5375 0.0000 0.0990 0.1089 0.1292 – – – – –
1.7378 0.1552 – – 12 10 –
2.9621 0.1380 – – 12 53 –

21.4874019 2,22,65 0.5376 0.012 0.0708 0.1113 0.1208 – – – – –
1.7376 0.1962 – – 12 10 –
2.9620 0.1646 – – 12 53 –

90 21.6564037 2,22,66 0.5359 0.0000 0.0791 0.1085 0.1109 – – – – –
1.7376 0.1955 – – 12 10 –
2.9709 0.1657 – – 14 50 2

21.6564542 2,22,66 0.5369 0.0036 0.0674 0.1020 0.1338 – – – – –
1.7374 0.2154 – – 12 10 –
2.9709 0.1621 – – 12 54 –

91 21.8248231 3,22,66 0.7050 0.0079 0.1106 0.1150 0.1297 – – – – –
1.7916 0.2288 – – 12 10 –
2.9891 0.1871 – – 13 52 1

21.8248255 2,22,67 0.5363 0.0182 0.0658 0.1152 0.1428 – – – – –
1.7373 0.1602 – – 12 10 –
2.9797 0.1671 – – 12 55 –

92 21.9925417 3,22,67 0.7052 0.0304 0.0693 0.1242 0.1369 – – – – –
1.7911 0.2386 – – 12 10 –
2.9979 0.1984 – – 12 55 –

21.9925442 3,22,67 0.7052 0.0264 0.0784 0.1496 0.1600 – – – – –
1.7911 0.2187 – – 12 10 –
2.9979 0.1873 – – 12 55 –

93 22.1594897 3,24,66 0.7019 0.0226 0.0269 0.0968 0.1271 – – – – –
1.8361 0.2716 – – 12 12 –
3.0260 0.1530 – – 12 54 –

22.1595122 3,24,66 0.7012 0.0388 0.0585 0.0639 0.0900 – – – – –
1.8361 0.2707 – – 12 12 –
3.0260 0.1764 – – 12 54 –

94 22.3258413 3,24,67 0.7001 0.0340 0.0346 0.0906 0.1039 – – – – –
1.8356 0.1973 – – 12 12 –
3.0347 0.1696 – – 12 55 –

22.3258448 3,24,67 0.7006 0.0263 0.0898 0.0970 0.1104 – – – – –
1.8354 0.1904 – – 12 12 –
3.0347 0.1622 – – 12 55 –
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Table A.1. (Continued.)

N E/N Configuration r 1(r ) f1 f2 f3 N(3) N(4) N(5) N(6) N(7)

95 22.4918782 4,24,67 0.8089 0.0487 0.0493 0.0944 0.1360 4 – – – –
1.8848 0.2173 – – 12 12 –
3.0522 0.1774 – – 12 55 –

22.4918953 4,24,67 0.8090 0.0320 0.0807 0.1119 0.1269 4 – – – –
1.8846 0.2324 – – 12 12 –
3.0523 0.1737 – – 12 55 –

96 22.6572706 4,24,68 0.8083 0.0572 0.0221 0.0868 0.1205 4 – – – –
1.8846 0.2237 – – 12 12 –
3.0606 0.1854 – – 12 56 –

22.6573098 4,24,68 0.8103 0.0277 0.0814 0.1188 0.1338 4 – – – –
1.8848 0.2344 – – 12 12 –
3.0605 0.1997 – – 12 56 –

97 22.8220322 4,24,69 0.8095 0.0517 0.0736 0.1016 0.1401 4 – – – –
1.8849 0.2134 – – 12 12 –
3.0687 0.2059 – – 14 53 2

22.8220678 4,24,69 0.8088 0.0527 0.1019 0.1244 0.1471 4 – – – –
1.8847 0.2268 – – 12 12 –
3.0689 0.1757 – – 12 57 –

98 22.9861991 4,25,69 0.8081 0.0560 0.0706 0.0706 0.0815 4 – – – –
1.9055 0.2482 – – 12 13 –
3.0864 0.1388 – – 12 57 –

22.9862098 4,25,69 0.8078 0.0401 0.0881 0.1184 0.1520 4 – – – –
1.9058 0.2468 – – 12 13 –
3.0863 0.1562 – – 12 57 –

99 23.1497580 4,25,70 0.8071 0.0581 0.1012 0.1152 0.1281 4 – – – –
1.9056 0.2477 – – 12 13 –
3.0945 0.2070 – – 12 58 –

23.1497869 4,25,70 0.8064 0.0276 0.0623 0.1007 0.1264 4 – – – –
1.9056 0.2638 – – 12 13 –
3.0945 0.1858 – – 13 56 1

100 23.3127593 4,26,70 0.8055 0.0530 0.0710 0.1105 0.1235 4 – – – –
1.9259 0.3221 – – 12 14 –
3.1117 0.2120 – – 14 54 2

23.3127595 4,26,70 0.8056 0.0523 0.0946 0.1060 0.1223 4 – – – –
1.9254 0.2559 – – 12 14 –
3.1119 0.2079 – – 12 58 –
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