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Abstract 

Recent time-resolved measurements of gas and vibrational temperatures in pulsed glow discharges 

have fostered the development and validation of detailed kinetic models to understand the 

underlying heating dynamics. The models published so far have been successful in identifying the 

fundamental processes underlying vibrational and gas heating in pure CO2 discharges; however, 

this has come at the cost of including vibrational kinetics with thousands of reactions. This makes 

these models not compatible with self-consistent computational fluid dynamics (CFD) codes, 

which are needed to develop new plasma reactors operating at high pressures or with complex 

flow patterns and capture the relevant dynamics in multi-dimension. In this work, we solve 

separate energy balance equations for the asymmetric and symmetric vibrational modes of CO2, 

as well as for the vibrational modes of CO and O2, the gas temperature, and the electron 

temperature, making it a six-temperature (6T) plasma model. This eliminates the need to include 

a vast array of vibrational levels as separate species, drastically reducing the number of reactions 

in the model. The model is compared with experimental measurements conducted in a pulsed CO2 

glow discharge at 6.7 mbar. Excellent agreement is observed for the temporal evolution of the 



vibrational and gas temperatures, confirming that our approach is suitable for modeling systems 

under significant non-equilibrium conditions, paving the way for coupling detailed CO2/CO/O2/O 

kinetics with CFD codes. 
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1. Introduction 

In view of limiting the global temperature rise to 1.5 °C, closing the carbon cycle and electrifying 

the industry, particularly in the production of fuels and valuable chemicals, pose significant 

challenges. In effect, the industrial sector is considered the most difficult to electrify, due to a 

combination of factors, including diverse end-uses, cost sensitivity, high-temperature processes, 

and continuous operational requirements [1]. The global demand of chemicals continues to grow, 

making the chemical industry the third-largest source of greenhouse gas emissions today [2]. 

Therefore, it is crucial to find solutions to replace fossil fuels with renewable electricity as the 

primary source for process energy [3]. 

In this regard, plasma-based CO2 conversion emerges as a versatile and promising technology. 

Particularly, plasma offers high process versatility, allowing for various types of reactions, 

including CO2 splitting and combinations with the conversion of other gases (e.g., CH4, H2, H2O) 

[4]. Since plasma reactors are powered by electricity, and can quickly be switched on/off, the 



technology can easily be combined with different forms of renewable energy sources [5]. 

Additionally, plasma is typically associated with low investment and operational costs [6], does 

not require expensive materials, such as rare-earth metals, and can be scaled up for larger 

applications [7]. 

The latter is a rather critical point on which the plasma community is now focusing, given that the 

other features listed have been established. Indeed, the industrial application of plasma for gas 

conversion faces hurdles, mainly because its energy efficiency needs to be further improved [4]. 

A key factor in improving efficiency is identifying the fundamental processes underlying CO2 

conversion in a plasma, especially those leading to splitting with minimal energy consumption, 

and optimizing the reactor design accordingly. For decades, research suggested that the potential 

of plasma technology lies in the ability to selectively excite the asymmetric streching mode of the 

CO2 molecule, which is believed to lower the activation energy for CO2 dissociation and thereby 

increase the energy efficiency of the process [8]. However, uncertanties remain regarding the 

utilization of the asymmetric streching mode as an efficient dissociation mechanism. The main 

reason for this is the lack of detailed experimental data of the temporal dynamics of its excitation, 

along with that of the dissociation products of CO2, i.e. CO and O2. 

Indeed, time-resolved vibrational temperature profiles are crucial to validate the existing kinetic 

models. Only recently, glow discharge reactors with power pulsing have been developed for this 

purpose [9,10]. Specifically, Rivallan et al. [9] investigated the temporal evolution at the 

microsecond timescale of the infrared spectra in the range of 4000-1200 cm-1 with a Fourier-

transformed infrared (FTIR) spectrometer during the active phase of an air-CO2 discharge, in the 

1-15 mbar range. The analysis indicated that the recorded spectra were greatly affected by the 

discharge in the 2400-2200 cm-1 region, where the asymmetric stretching mode of CO2 falls. 



Subsequently, Klarenaar et al. [10] extended the time-resolved analysis to the densities of the 

levels of the symmetric stretching and bending modes of CO2, which are strongly coupled into one 

effective vibrational mode due to Fermi resonance [11]. In addition, the authors introduced the 

measurements of the vibrational levels of CO, produced in the discharge, as well as the rotational 

temperature, which can be assumed in equilibrium with the translational temperature due to the 

extremely fast rates of rotational relaxation for CO2 [12,13]. Therefore, Klarenaar et al. [10] were 

able to monitor the temporal evolution of four different temperatures, namely the temperature of 

the asymmetric stretching mode (T3), the symmetric levels of CO2 (i.e. coupled symmetric 

stretching and bending modes, T12), CO vibrations (TCO) and the gas (Tg), in a CO2 discharge at 

6.7 mbar and an applied current of 50 mA. The accuracy of the time-dependent measurements of 

Tg by means of FTIR spectroscopy was later confirmed with rotational Raman spectroscopy [14], 

which enabled also spatially resolved measurements, confirming the hypothesis that Tg is constant 

along the line-of-sight of the FTIR measurements. Similarly, Klarenaar et al. [14] validated the 

vibrational temperatures measured by [10], relating the rotational Raman spectra of CO2 to the 

vibrational temperatures through the vibrationally averaged nuclear degeneracies [15]. The 

comparison between FTIR and rotational Raman spectroscopies was further continued in [16], 

with a focus on the excitation of the asymmetric stretching mode within the range of 1.3-6.7 mbar 

and a discharge current of 10-50 mA. More recently, Damen et al. [17] performed time-resolved 

measurements of the vibrational and rotational temperatures with the same reactor of [10,14,16] 

but with quantum cascade laser (QCL) spectroscopy as diagnostic tool. Compared to FTIR, QCL 

spectroscopy allows measurements with a smaller instrumental broadening and higher temporal 

resolution. On the other hand, the asymmetric strecthing mode is not Raman active and therefore 

T3 cannot be inferred directly from rotational Raman spectroscopy. Moreover, Damen and co-



authors investigated the effect of N2 [17] and H2O [18] addition to the vibrational kinetics of CO2 

and its dissociation, while the influence of O2 was studied by Vervloedt et al. [19] in the same 

pulsed glow discharge setup. 

The extensive characterization of the temporal evolution of vibrational temperatures in pulsed 

glow discharges provides the ideal framework for benchmarking global kinetic models. The high 

homogeneity of the positive column of a glow discharge [20] allows for the capture of the main 

kinetic phenomena without relying on numerous approximations for multi-dimensional processes, 

such as heat transfer to reactor walls and fluid dynamics. Additionally, power pulsing facilitates 

the study of vibrational excitation and relaxation, which would otherwise quickly reach a steady 

state and equilibrate with the other degrees of freedom in continuous-mode discharges. 

Global kinetic models, also called zero-dimensional (0D) chemical kinetics models, are the 

computational tool of choice for describing detailed plasma chemistry in complex gas mixtures. 

These models are particularly useful for studying molecular discharges where multiple products 

are formed through dissociation and recombination reactions. Moreover, 0D models are quick to 

develop and execute, allowing them to be complemented with the solution of the electron 

Boltzmann equation and detailed vibrational kinetics without significantly increasing 

computational time and effort [21,22]. In this context, state-to-state (STS) models have been 

developed to simulate the time-dependent evolution of the densities of numerous vibrational states, 

which are treated as individual chemical species. Thus, for each individual state, a continuity 

equation is solved, with production and loss terms determined by reaction rates.  

Specific to CO2, pioneering works on the development of STS models are [23,24]. Thanks to the 

detailed scheme for the vibrational chemistry of CO2, Kozák and Bogaerts [24] demonstrated that 

conversion could be improved in microwave discharges through stepwise excitation of the 



asymmetric stretching mode (also known as the ladder-climbing mechanism) [8,25]. This is due 

to favorable conditions for electron-impact excitation of the low vibrational energy levels and fast 

vibration-vibration relaxation towards the higher levels, closer to the dissociation limit of the 

molecule. In contrast, it was also reported in [24] that plasma with strong non-equilibrium between 

electrons and heavy particles, such as dielectric barrier discharges (DBDs), promote dissociation 

through channels with much higher energy thresholds than the ladder-climbing mechanism, such 

as electronic excitation, thereby reducing the associated energy efficiency. These findings 

motivated further developments of STS 0D models, focusing on vibrational excitation in plasmas 

with mild deviations from equilibrium [26–28]. In these plasmas, also known as “warm” plasmas, 

the electron temperature typically exceeds the vibrational temperatures, which are higher than the 

gas temperature. The STS 0D models developed up to now suggested that the ladder-climbing 

mechanism can have a beneficial effect on the reactor performance. 

Notwithstanding the remarkable effort, the aforementioned detailed STS 0D models lack direct 

validation with experimental results. This can be ascribed to a fundamental feature often observed 

in “warm” plasmas, distinguishing them from the low-pressure glow discharges studied by 

Rivallan et al. [9] and Klarenaar et al. [10]. This feature is the high degree of spatial 

inhomogeneity, especially in the radial direction, which is further enhanced by stabilizing swirling 

flows and microwave absorption patterns in microwave discharges [29]. Due to these 

complications, direct comparison between experiments and STS 0D models is not possible. 

Instead, the models can only provide insights that can be linked to certain experimental trends. 

Thus, while helpful in identifying mechanisms underlying reactor performance a posteriori, after 

the experiments are done, they are not ideal for steering the design of new and improved reactors. 



This limitation arises because the predictive power of a model scales with the range of conditions 

for which it can accurately capture experimental trends. 

As “warm” plasmas cannot be used for the validation of 0D models, the N-PRiME group focused 

on modeling of the low-pressure pulsed glow discharge developed by Klarenaar et al. [10]. 

Particular attention was paid to the “single-pulse” measurement, where a sufficiently high gas flow 

rate and inter-pulse time were set to ensure full evacuation of the exhaust and replacement with 

fresh feed gas before the subsequent pulse. These conditions enable to isolate the vibrational 

kinetics of CO2 and its potential effects on dissociation without interference from the dissociation 

products. 

The first modelling effort from the N-PRiME group on the “single-pulse” measurement led to two 

separate contributions, in which the authors modelled the afterglow dynamics [30] and the active 

phase of the discharge [31]. In the former, they validated a set of vibration-translation (V-T) and 

vibration-vibration (V-V) energy transfers under plasma-off conditions, where electron kinetics 

do not play a role and the dynamics are dominated by relaxation processes. In the latter, they added 

a set of electron impact processes for vibrational excitation and de-excitation. Overall, the model 

successfully captured the experimental trends for T3 and T12, although the experimental Tg profile 

was used as input parameter. Subsequently, Silva et al. [32] extended the validation of the kinetic 

scheme of [30,31] with the self-consistent calculation of Tg in the afterglow of the “single-pulse” 

measurement of [10]. This confirmed the validity of their vibrational scheme, providing a new 

reference model for continuing the construction of a fully self-consistent model. 

Along with the efforts of the N-PRiME group, two STS 0D models were separately developed for 

the purpose of reproducing the “single-pulse” measurement of [10]. Kotov [33] employed a 

reduced vibrational scheme, previously constructed and tested in [34], which included all levels 



up to the dissociation limit by grouping them into fewer effective levels. The author was able to 

qualitatively reproduce the experimental vibrational temperature profiles, although they were 

overall overestimated. Kotov attributed this discrepancy to the lack of self-consistency of their 

model, particularly regarding the electron kinetics. Nearly at the same time, Pietanza et al. [35] 

simulated some features of the “single-pulse” experiment with their model, which involved a self-

consistent calculation of the electron, vibrational, and heavy particle kinetics. Overall, they 

obtained good agreement with experiments in terms of vibrational temperatures up to 1 ms, but 

overestimated the profiles beyond that point. Within the same time frame, the computed electron 

density was in good agreement with previous estimations [31], but was also overestimated later 

on. The authors suggested that including some electron loss mechanisms and more symmetric 

levels of CO2 could improve the agreement and make the model more complete. These two 

independent modelling studies underlined the importance of the electron kinetics. Pietanza et al. 

[35] particularly demonstrated that capturing the transient behavior of electron kinetics is essential 

for a full understanding of the mechanisms underlying the “single-pulse” measurement.  

In this regard, Biondo et al. [36] attempted a self-consistent calculation of the electron density, 

along with the estimation of the temporal evolution of the reduced electric field (E/N) from the 

power profile; the latter was obtained from the current profile and a fixed voltage from [10]. 

Compared to Pietanza et al. [35], Biondo et al. [36] observed that E/N should be higher than ca. 

94 Td throughout the “single-pulse” experiment in order to sustain the discharge, in contrast to 

previous estimations [10,31]. However, since the voltage profile was not provided for the “single-

pulse” experiment, the authors decided to test two extreme cases, i.e. 55 Td (as previous 

estimations) and 90 Td constant throughout the pulse-on time. By including the solution of the gas 

heat balance equation, Biondo et al. [36] could capture the temporal evolution of Tg, together with 



that of T12 and T3, thereby validating their kinetic scheme for gas heating. Particularly, they found 

that relaxation of electronic states is necessary to obtain good agreement with the experiments at 

90 Td, while at lower E/N, the gas heating is underestimated. Therefore, this study confirmed that 

electron kinetics play a critical role in defining the dynamics of gas heating.  

Notwithstanding the high degree of self-consistency reached by this joint effort between the N-

PRiME and PLASMANT groups [36], reproducing the “single-pulse” experiment of Klarenaar et 

al. [10] required ca. 14000 individual reactions. This extensive kinetic model would not be 

compatible with a self-consistent computational fluid dynamic (CFD) model, which is needed to 

develop new plasma reactors, operating at high pressures or with complex flow patterns, to capture 

the relevant dynamics. 

The drawback of extensive kinetic schemes is intrinsic of the STS approach, which requires a state-

resolved set of reactions. An alternative approach to avoid computationally expensive reaction sets 

can be found in the field of laser modelling, as detailed in the book of Smith and Thomson [37]. 

In this approach, here referred to as the “energy approach“, the solution of the vibrational densities 

from individual continuity equations (STS approach) is replaced with the solution of only a few 

energy balance equations, i.e., one for each vibrational manifold. This dramatically reduces the 

number of chemical species in the model, potentially enabling the coupling of chemical kinetics 

with multi-physics (CFD) models. 

One of the first applications of the energy approach in the context of non-equilibrium CO2 reactive 

flows was presented by Kustova and Naghibeda [38]. Their model included multiple CO2 

vibrational modes and the corresponding main energy transitions, while being sufficiently simple 

and suitable for engineering applications. The authors used the model to obtain non-equilibrium 

transport coefficients for CFD codes and compared their results with available literature data. 



Subsequently, Kustova et al. [39] introduced the energy approach to strong non-equilibrium CO2 

flows, to study the structure of shock waves created during Mars atmospheric entry. They 

developed a three-temperature (T3, T12 and Tg) model capable of capturing the effects of V-V inter-

mode relaxation on bulk viscosity, essential to achieve reasonable solutions in shock wave studies. 

Recently, Kunova et al. [40] made significant efforts to extend and validate the theory underlying 

the energy approach. A comparison between the STS and energy approach revealed that one can 

model the vibrational modes of CO2 and significantly improve the computational cost without any 

loss of accuracy, thus allowing an efficient implementation into CFD codes. Later, Kustova and 

Mekhonoshina [41] employed the three-temperature model of [39] to investigate different theories 

for the calculation of the transition probabilities of intra- and inter-mode vibrational energy 

transfer. The authors validated the resulting relaxation times against experimental values available 

in the literature, recommending the use of the forced harmonic oscillator (FHO) model [42] for 

non-equilibrium flow simulations.  

In this work, we make use of the experimental framework provided by Klarenaar et al. [10] and 

the solid computational foundations developed by the PLASMANT [24,26–28,36], N-PRiME 

[30–32,36] and Saint Petersburg [39–41] groups, to develop a fully self-consistent model capable 

of reproducing the single-pulse measurement. Particularly, we implement the energy approach in 

a kinetic plasma model that solves the electron energy balance equation for the electron 

temperature (Te), separate vibrational energy balance equations for the asymmetric (T3) and 

symmetric (T1,2) modes of CO2, as well as for the vibrational modes of CO (TCO) and O2 (TO2), and 

the gas temperature (Tg) balance equation, making it a six-temperature (6T) plasma model. The 

two-term Boltzmann equation is used to determine the electron energy distribution function 

(EEDF) and the electron density (ne) is calculated assuming quasi-neutrality. The successful 



comparison of the outcome of our model with the single-pulse experiment confirms the 

mechanisms for gas heating in pure CO2 discharges proposed by Biondo et al. [36]. Furthermore, 

this study reveals the dynamic behavior of the electron and ion kinetics, while achieving reasonable 

agreement with the experimental current profile. 

Overall, we achieve satisfactory agreement between our model and the experiments. This confirms 

that the energy approach is suitable for modelling systems under non-equilibrium conditions, 

opening up to the coupling of a detailed CO2/CO/O2/O kinetics with CFD codes for plasma reactor 

design and optimization.  

 

2. Computational framework 

Our 6-T model is developed and executed in COMSOL Multiphysics® 6.2 [43]. The EEDF is 

computed self-consistently using the Boltzman solver integrated in the Plasma Module. The rate 

coefficients of electron-impact reactions are obtained from the integration of the corresponding 

cross sections over the EEDF. In our model, we include the cross sections for elastic scattering, 

excitation, ionization and attachment for CO2 and its dissociation products (CO, O2, O), whereas 

for C we only account for elastic scattering. The cross sections are taken from the LXCat database 

and detailed information on the included processes and references is given in Appendix A1. 

 

2.1. Species included in the model 

The species considered in this model are listed in Table 1, and they include 20 neutral species and 

18 charged particles.   



Table 1. Species included in the model 
Neutral species * 
CO2(X1Σg+), CO2(𝑒1), CO2(𝑒2), CO(X1Σg+), CO(a3Π), CO(a′3Σ+), CO(𝐴1Π) , CO(b3Σ+) , 
CO(B1Σ+) , CO(C1Σ+) , CO(E1Σ+) , O2(X1Σg+), O2(𝑎1Δ𝑔) , O2(b1Σg+), O2(A3Σu+, C3Δu, c1Σu-), 
O(3P), O(1D), O(1S), O3, C 
Charged species 
CO2+, CO+, O2+, O+, O3+, O4+, C+, C2O2+, C2O3+, C2O4+, CO4+, O-, O2-, O3-, O4-, CO3-, CO4- and 
electrons. 
*For the specific nomenclature of the electronically excited levels, we refer to the LXCat database, from which 
electron-impact excitation to the listed electronically excited states is taken. 

Among the neutral species in the model, two lumped electronic states of CO2 are included. While 

the exact composition of these two states is not fully known, there is general consensus about the 

electronic states present in the energy range between 7 and 10 eV, corresponding to CO2(e1), and 

above 10 eV, corresponding to CO2(e2). Both lumped states contain dissociative and radiative 

states, and some contributing to fast gas heating through collisional quenching [36]. Further details 

can be found in the work of Pietanza et al. [44], which summarizes the relevant literature.  

The extensive description of the ion kinetics is of utmost importance to accurately compute the 

time evolution of the plasma parameters, such as E/N. This is learned from previous modelling 

studies on low-pressure plasmas and lasers in molecular gases [45–47]. In this regard, it is essential 

to include ambipolar diffusion losses to the walls, which represent the dominant sink of charged 

particles in the positive column of glow discharges [48,49]. In our model, the diffusion of charged 

particles to the walls is described by classical ambipolar diffusion in the presence of negative ions 

[50]. The mobility of each ion for calculating the corresponding diffusion coefficient is taken from 

[51], when available, or assumed from similar ions. 

 

2.2. Species continuity equations 



For each species except the electrons, the continuity equation is solved: 

ρp
dws

dt = mflowin-mflow୭୳୲ + Rs + Rsurf (1) 

where ρp is the mass density, and ws is the mass fraction of species s.  mflowin is the mass flow 

feed, mflowout is the outlet flow and Rs and Rsurf are the net rate of change of the species density, 

based on the gas phase and surface phase reactions, presented in detail in Appendix A1. The 

pressure in the simulation is kept constant by adjusting the outflow feed. The electron density is 

computed assuming quasi-neutrality. 

The number densities of the vibrational states of CO2, CO and O2 are calculated assuming a 

Boltzmann distribution through the partition function Z. While this assumption is reasonable for 

the conditions in this study, limitations may arise under conditions for which a non-Boltzmann or 

Treanor distributions occur. In such cases, our model cannot capture deviations from Bolztmann 

distributions. However, this limitation does not introduce significant uncertainty on the computed 

temperature profiles, as the vibrational densities of higher levels in non-equilibrium are either low 

[24] or exhibit only moderate deviations from a Boltzmann distribution [52]. 

The partition functions for CO2, CO and O2 are presented in equations (2a), (2b) and (2c), 

respectively. 

nvib, CO2ሺi1,i2,i3) = 
nCO2*ሺi2+1)
ZCO2ሺT12,T3) exp (-

i1ε100

kBT12
-

i2ε010

kBT12
-
i3ε001

kBT3
) (2a) 

nvib, COሺiCO) = nCOZCOሺTCO) exp (- iCOεCOkBTCO ) (2b) 

nvib, O2(iO2) =
nO2

ZO2(TO2) exp (-
iO2εO2

kBTO2
) (2c) 



where nvib is the vibrational number density as a function of i1, i2, i3, iCO and iO2, which are the 

quantum numbers of the symmetric stretching and bending mode, the asymmetric stretching of 

CO2, and of CO and O2, respectively. nCO2, nCO, nO2 and ZCO2, ZCO, ZO2 are the total number 

densities and partition functions of CO2, CO and O2, respectively. ε1, ε2, ε3, εCO and εO2 are the 

energies of the first state of the symmetric stretching, bending mode and asymmetric stretching of 

CO2, and of CO and O2, respectively, and kB is the Boltzmann constant. 

ZCO2 is obtained by summation over all vibrational states below the dissociation threshold as 

follows: 

ZCO2(T12, T3) = ෍ (i2+1)
(i1,i2,i3)

exp (-
i1ε100

kBT12
-

i2ε010

kBT12
-
i3ε001

kBT3
). (3) 

In equations (2a) and (3), the statistical weight si1,i2,i3 is taken into account as i2+1. ZCO and ZO2 

are computed analogously to equation (3). 

The energy of the vibrational modes as function of temperature was calculated as: 

ET1,2(T12) = ෍ (i1ε100+i2ε010)nvib൫i1,i2,i3൯
i1i2i3

 (4a) 

ET3(T3) = ෍ (i3ε001)nvib൫i1,i2,i3൯
i1i2i3

 (4b) 

ETCO,O2
൫TCO,O2൯ = ෍ (iCO,O2

εCO,O2
)nvib, CO,O2

൫iCO,O2
൯

iCO,O2

 (4c) 

The heat capacity per molecule of the vibrational degrees of freedom Cp,Tv  is calculated as the 

derivative of the vibrational energy (from Eqs (4a-c)) with respect to the vibrational temperature:  

Cp,Tv=
dEvib(Tv)

dTv
 (5) 



 

2.3. Modeling the electrical circuit 

Klarenaar et al. [10] did not report on the time evolution of the voltage during the single-pulse 

experiment. The measurement of the voltage is critical to calculate the power input as a function 

of time for the simulation. In effect, Damen et al. [17] showed that the voltage cannot be assumed 

constant and presents a significant spike at the onset of the pulse, in order to ionize the gas. 

Therefore, we couple the Plasma Module with the Electrical Circuit interface to compute the 

power, using the experimental current profile as a current source. To do so, the plasma is assumed 

a resistor in a circuit connected to a ballast resistor (50 kΩ) in series, with a capacitor (10 pF) in 

parallel. Thus, the plasma resistance is obtained from: 

R = Lplasma൫neμeqe൯πRplasma
2 

(6) 

where ne is the electron density, μe the electron mobility, and qe the elementary charge. The voltage 

is then estimated based on R. Experimentally, Klarenaar et al. [10] used a voltage-regulated power 

supply instead of a current source. Moreover, we note that the ballast resistance used is not large 

enough to provide a constant current of 50 mA. Consequently, the plasma resistance together with 

the ballast resistance determines the current passing through the system. Therefore, we choose to 

use the experimentally reported current source as an input to the simulation in order to avoid 

numerical instabilities during the solution. 

 

2.4. Energy balance equations 

The electron energy balance equation is solved to obtain the average electron energy ε̅e: 



d(neε̅e)
dt

 = Sen + Qcircuit (7) 

where ne is the electron density, Sen is the average energy lost per collision and Qcircuit is the 

deposited power, computed with Ohm’s law. 

Each of the vibrational temperatures included in this model (T12, T3, TCO and TO2) are calculated 

through separate energy balance equations. This model represents an evolution of the state-to-state 

approach. While we still use individual excitation and relaxation rates, these are employed to 

calculate the energy production or loss rates associated with each transition (then summed to give 

the total energy rates), rather than the vibrational density. The latter, on the other hand, is calculated 

from the partition function by assuming a Boltzmann distribution within each manifold, as 

described earlier in Section 2.2. We note that loss and gain in the vibrational energy balance 

equations due to chemical reactions are not included, as these reactions are orders of magnitude 

slower than vibrational relaxation for the conditions studied. However, chemical-vibrational 

coupling should be accounted for to improve accuracy when chemical kinetics play a larger role, 

such as for the multi-pulse experiment by Damen et al. [17]. Future developments will therefore 

incorporate this coupling as described in [53,54]. For T12, the energy balance equation takes the 

form of: 

nCO2 ⋅ dev,T12
dt

 = QeV + QVVT -QVT12
 -QcondT12

 -QfeedT12
  (8) 

where ev,T12is the energy deposited into the symmetric levels of CO2, QeV is the energy deposited 

through collisions with electrons, i.e., the net energy due to superelastic collisions, QVVT includes 

the energy transferred from the asymmetric stretching mode to the symmetric levels through intra-

molecular vibration-vibration-translation (V-V-T) relaxation, but also inter-molecular V-V-T 

relaxation between TO2 and T12. The rate coefficients used in this work are presented in Appendix 



A2. V-V-T relaxation differs from V-V relaxation because the energy of the initial vibrational 

levels does not coincide with that of the final levels, and therefore part of the vibrational energy is 

lost to translational degrees of freedom [36]. The latter part is not included in QVVT in (8), but it 

will be included in the energy balance equations of T3, TO2 and Tg.  

QcondT12
 is the energy transfer to the walls due to conduction: 

QcondT12 = 8 ⋅ Cp,T12(T12) ⋅ DCO2൫Tg൯ ⋅ T12-T12,wall

R2  (9) 

where Cp,T12 is the heat capacity of the symmetric levels of CO2 at constant pressure, DCO2 is the 

diffusion coefficient of CO2, T12,wall is the temperature of the symmetric levels at the reactor walls, 

and R is the reactor radius. The factor 8 appears because of averaging over the cross section of the 

reactor, indicating that the equation is an energy balance equation for the average temperature in 

the plasma. If the averaging is not performed, the factor changes to 4, which then represents the 

centerline temperature in the reactor assuming a parabolic temperature profile [55]. More details 

about the choice of this factor will be given in section 3.1. The conduction term (eq. 9) has the 

same form for all of the vibrational energy balance equations. This term does not include 

vibrational deactivation due to collisions with the reactor walls, as it was shown earlier that this 

cooling process is only appreaciable for pressure well below 6.7 mbar [56].  

Along with conduction, convective cooling due to the feed gas, Qfeed, is included in the energy 

balance equation (eq. 8): 

QfeedT12
 =  mሶ  ⋅ wCO2  ⋅  HT12൫T12,feed൯ - HT12(T12)

MCO2  ⋅ Vr
 (10) 

where mሶ  is the mass flow feed (kg/s), wCO2 and MCO2are the feed mass fraction and the molar mass 

of CO2,  HT12 is the energy stored in the symmetric levels of CO2 and Vr is the reactor volume. The 



convection term (eq. 10) has the same form for all of the vibrational and gas energy balance 

equations. 

The energy balance equation for T3 is similar to that of T12: 

nCO2 ⋅ dev,T3
dt

 = QeV -QVVT -QVT3
 -QcondT3

 -QfeedT3
  (11) 

In this case QVVT is a loss term, containing intra-molecular V-V-T relaxation analogously to T12, 

and inter-molecular V-V-T relaxation with CO and O2. More details on the terms of eq. 11 are 

given in the Appendix A2. 

The energy balance equation for TCO is defined as follows: 

nCO⋅ dev,TCO
dt

 = QeV + QVVTCO2
 –QVTCO

-QVVTO2
 -QcondTCO

 -QfeedCO
  (12) 

QVVTCO2
is the energy transferred from T3, included as -QVVT in eq. 11, whereas QVVTO2

represents 

a loss term for the energy transferred to TO2 via CO(iCO) + O2 ⇋ CO + O2(iO2), with a rate 

coefficient of 1.66 x 1024 ቂcm3

s
ቃ ⋅ e41 - 306 ⋅ Tg

-1/3+ 1126 ⋅ Tg
-2/3

 taken from [57]. QVTCO
 involves only one 

type of transition, CO(iCO) + M ⇋ CO(iCO-1) + M. The rate coefficient for this transition with M 

= CO2, CO and O2 is taken from [58,59], whereas the rate coefficient with M = O is 

5.3 x 1013 ቂcm3

s
ቃ ⋅ඥTg ⋅ e-1600[K]/Tg [58]. 

The last vibrational energy balance equation is that for TO2: 

nO2⋅ dev,TO2
dt

 = QeV + QVVTCO
+ QVVTT3

 -QVTO2
-QVVTT12

-QcondTO2
 -QfeedO2

  (13) 

Even in this case,  QVVT is split in multiple terms: two positive terms,  QVVTCO
 and  QVVTT3

, 

representing the transfer of heat from TCO and T3, respectively, and a loss term, QVVTT12
, for the 



transfer of energy to T12. These terms are described above. V-T relaxation of O2, QVTO2
, is taken 

from the survey of Blauer and Nickerson [57]. All the other terms in (13) are similar to the previous 

equations. 

Finally, we also solve the energy balance equation of Tg: 

ρCp
dTg

dt
  = QVT + QVVT + Qg -QcondTg

 -QfeedTg
  (14) 

where ρ is the gas density, Cp is the mixture-averaged gas heat capacity, subtracted of the heat 

capacity of the vibrational manifolds (see eq. (8-13) at thermal equlibrium, i.e. for the vibrational 

temperatures equal to Tg,  Qg is the heat released from the reactions in the plasma and the Joule 

heating of the electrons. In contrast to the conduction term in the vibrational energy balance 

equations, QcondTg
 uses the thermal conductivity kg instead of the product Cp ⋅ Dm൫Tg൯. kg is the 

mixture-averaged thermal conductivity, calculated as: 

kg= 0.5ቌ෍ xmkm
i

+
1∑ xm

km
ൗm

ቍ (15) 

where xm is the molar fraction of species m, and km is the thermal conductivity of species m. km 

is net of the vibrational contributions to the thermal conductivity, which are included in eq. (8,-10-

13). In order to include only the translational and rotational contributions for the molecules for 

which separate vibrational energy balance equations exist, we introduce the following calculation 

from Thomson [60], a specific form of the Eucken formula [61], which considers only translational 

and rotational degrees of freedom: 

km =  15
4
η

m
((kB*NA)/Mm))(1 + 4

15
) (16) 



with m = CO2, CO or O2, and ηm and Mm being the corresponding viscosity and molar mass. ηm 

(in Pa × s) is calculated as [62,63]: 

ηm = 2.669e-6
ටTgMm×103

σm
2 ΩD

 (17) 

where σm is the characteristic length of the Lennard-Jones potential, and ΩD is the collision integral 

[64]. 

The mixture-averaged diffusion coefficient Dm  for the species m is given as: 

Dm = 1-wm∑ xm
Di,m

i≠m
 (17) 

where wm is the mass fraction of species m. The binary diffusion coefficient Di,m is calculated 

based on the expression from [64–66]. For the charged particles, the diffusion coefficient is 

calculated from their mobility, taken from [51] or assumed from similar ions, based on the 

Einstein‘s relation. Heat capacity, enthalpy and entropy as function of temperature for each species 

are taken from the NASA polynomials [67,68]. In the computation of Tg, the heat capacity of 

molecular species with separate vibrational energy balance equations is subtracted of the 

corresponding vibrational contributions, as described above. For cluster ions, namely C2O2+, 

C2O3+, C2O4+, CO4+ and CO4-, the heat capacity is neglected, because their low concentrations do 

not affect the computations, while enthalpy and entropy are taken from [69,70] without 

temperature dependence, with a constant value at ca. 300 K, depending on the source measurement. 

The uncertainty that this approximation brings to the computations is very small due to the low 

concentrations of these species and the narrow temperature range of this study. The thermal 



conductivity of CO2 calculated in this way was compared to the thermal conductivity as a function 

of temperature available in literature and the agreement was within 5 %. 

We must point out that, for each of the above balance equations, we have checked that the energy 

is conserved by summing the time-dependent and heat terms. 

 

3. Results and discussion 

The experimental conditions investigated in this study correspond to the single-pulse measurement 

of Klarenaar et al. [10]. The pressure is kept constant at 6.7 mbar and the feed flow rate is 166 

sccm. The pulse-on time is 5 ms, with a current of 50 mA. The plasma length and radius are 17 

and 1 cm, respectively. Our model represents the first fully self-consistent model describing the 

single-pulse experiment of Klarenaar et al. [10], starting from the experimental current profile as 

input parameter, without the need to assume a priori electron density or temperature, or E/N. To 

achieve such degree of self-consistency, our model includes the electrical circuit, the ion kinetics, 

the electron temperature and the vibrational and gas temperature balance equations, in contrast to 

the existing models, which use the electron density profile or gas temperature profile as input to 

the simulations. Moreover, using energy balance equations instead of the STS description of the 

vibrational kinetics drastically reduces the number of reactions, making this kinetic model suitable 

for implementation in CFD models.   

 

3.1. Temperature evolutions and comparison with experiments  



Figure 1 compares the calculated temporal profiles of the various temperatures with the 

experimental results.  

 

Figure 1. Calculated (solid lines) and experimental (dashed, when available) temperature profiles 

for the single-pulse experiment of [10]. 

Overall, we reach satisfactory agreement between calculated and experimental temperature 

profiles during the first part of the pulse. However, significant deviations arise for the second part 

of the pulse, especially for Tg and the closely related T12 and TO2 profiles. This can be ascribed to 

the way heat losses to the walls are accounted for in the model. Particularly, eq. (9) in section 2.4 

describes heat conduction averaged over the tube radius, with a factor 8 in front of the conduction 



term. This is ideal for comparing the computed profiles with radially averaged experimental 

temperatures. However, Klarenaar et al. [10] measured the temperatures at the center of the tube 

radius; thus, the factor 8 in front of the conduction term (cf. eq. (9) above) has to be replaced by a 

factor 4, when calculating the gas temprature in the center of the reactor [55]. Figure 2 presents 

calculated (solid lines) and experimental (dashed, when available) temperature profiles for the 

single-pulse experiment of [10] using the heat balance equation for the center of the reactor, 

allowing a more correct comparison with the experiment.  

 

Figure 2. Calculated (solid lines) and experimental (dashed, when available) temperature profiles 

for the single-pulse experiment of [10] using the heat balance equation for the center of the reactor, 

needed to compare with the experiment. 



Compared to Figure 1, Figure 2 shows improved agreement between the computed and 

experimental temperature profiles, especially in the second part of the pulse for T12 and Tg, which 

were earlier strongly underestimated. The difference between Figure 1 and 2 is a consequence of 

the strong dependence of T12 and Tg on the conduction term, as the corresponding degrees of 

freedom have a high heat capacity and transfer a substantial amount of energy to the walls through 

conduction. This underscores the critical importance of accurately understanding the shape of the 

temperature profile when applying the energy approach in modeling non-equilibrium conditions.  

By examining the temporal profiles, we observe that TCO closely follows the profile of T3 and 

remains elevated throughout the entire duration of the pulse. Due to the low degree of dissociation 

and vibrational non-equilibrium, we do not account for dissociation processes occurring through 

high vibrational levels of the asymmetric stretching mode (T3), known as the “ladder-climbing 

mechanism” [8,24]. Nevertheless, our results indicate that, under these conditions, the excitation 

of TCO is likely to promote CO + O recombination back to CO2. This effect was briefly mentioned 

by Rusanov et. al. [71], who estimated that when TCO ≅ T3, the forward and reverse rate of 

dissociation equilibrate, reducing the overall energy efficiency by 30%. In our study, TCO > T3, 

suggesting that the recombination might be favored over dissociation. Indeed, the vibrationally 

enhanced reverse reaction is often overlooked in literature due to the additional complexity it 

introduces into the system. Our results highlight the necessity of including the vibrational energy 

balance of the products, along with that of the feed components, to correctly describe the dynamics 

of the system.  

In the next section, we delve deeper into the individual energy balance equations to reconstruct the 

heating dynamics. From now on, only the results for the centerline temperatures, with a factor 4 in 

the conduction terms, are presented. 



 

3.2. Heating dynamics of the gas and vibrational modes 

Given the reasonable agreement for the temperature profiles, we can now examine the gas heating 

dynamics by looking at the individual energy balances. The energy balance of T3 is presented in 

Figure 3.  

 

Figure 3. Contributions to the energy balance of T3, see eq. (11), including the time-dependent 

(TD) term. 

Figure 3 indicates that T3 is exclusively heated by electron-impact excitation (QeV), whereas the 

dominant cooling mechanism is V-V-T relaxation to T12. V-T relaxation and heat conduction to 



the walls play a minor role. Due to the low heat capacity, T3 is significantly higher than T12 (cf. 

Figure 2 above). The lower heat capacity also implies that the energy conduction towards the walls 

is reduced, assuming a parabolic dependence of the vibrational temperature profile. The same 

analysis is performed for T12 in Figure 4. 

 

Figure 4. Contributions to the energy balance of T12, see eq. (8), including the time-dependent 

(TD) term.  

The dominant cooling mechanism for T3 (i.e., QVVT) is an important heating channel for T12, in 

line with the modelling results of Biondo et al. [36], who showed that V-V-T relaxation is 

responsible for coupling the asymmetric and symmetric levels of CO2. Equally important is 



electron-impact excitation, which constitutes approximately half of the heating rate for T12. V-T 

relaxation is the primary cooling pathway, as also reported in previous studies (e.g., [32,36]). 

However, heat conduction to the walls becomes as important in the second part of the pulse, and 

is the dominant cooling mechanism in the afterglow. This is consistent with what was described 

by Thomson et. al. [60], indicating that the vibrational component of the thermal conductivity is 

responsible for nearly 30% of the total energy flux in CO2. Thus, the use of the energy approach 

requires a careful description of the vibrational thermal conductivity in the energy balance 

equations.  

The fact that the rates of V-T relaxation and heat conduction to the walls are comparable is a 

strikingly different result from previous modelling work, due to the distinct approach used here. 

Specifically, in many state-to-state modelling studies, such as those by Vermeiren and Bogaerts 

[72], Silva et al. [32], and follow-up works, the energy balance equation for Tg includes vibrational 

contributions to the heat capacity and thermal conductivity, assuming Tvib = Tg. The non-

equilibrium vibrational contributions are thus either neglected or treated as wall deactivation [32]. 

In contrast, the energy approach allows for a more accurate description of the heating dynamics 

compared to these implementations of the state-to-state approach. However, a state-to-state 

approach can achieve a similar level of accuracy if only translational and rotational contributions 

are included in the Tg balance equation, as demonstrated by Nagnibeda and Kustova [73]. Thus, 

this difference lies not in the state-to-state approach itself, but in the proper treatment of the 

approximations made when applying it. 

The energy balance for TCO and TO2 are not shown because of the very low dissociation degree (ca. 

0.4%). Thus, the last energy balance to examine is that of Tg, which is shown in Figure 5. 



 

Figure 5. Contributions to the energy balance of Tg, see eq. (14), including the time-dependent 

(TD) term.  

Figure 5 indicates that V-T relaxation is an important pathway of gas heating, becoming the 

dominant mechanism in the afterglow, but it is not sufficient to describe the overall heating 

dynamics. Indeed, fast gas heating from reactions (Qg), especially relaxation of electronic states, 

is responsible for the elevation of Tg during the first millisecond in the pulse, triggering V-T 

relaxation as a second heating mechanism. The electronic states contributing the most to fast gas 

heating are CO2(e1), CO2(e2) and CO(a3Π). The rest of the electronic states have minimal 

contributions to the heating dynamics. Despite this, we believe that their inclusion is important in 

view of extending the validity of this model over a wider range of experimental conditions in the 



future. These findings agree well with the observations of Biondo et al. [36], who showed that an 

E/N of more than 90 Td is needed to sustain the discharge, triggering electronic excitation and 

relaxation, and to achieve a good agreement with measured Tg. Nevertheless, Biondo et al. [36] 

were not able to perform a self-consistent calculation of the electron kinetics and E/N, and had to 

rely on a constant, estimated E/N of 94 Td for their simulations. 

In our study, we go beyond the foundation laid by [36], by incorporating the electrical circuit in 

our model, with a current source of 50 mA as given by the experimental benchmark [10]. The 

corresponding calculation results are presented in the next section. 

 

3.3. Electrical characterization: E/N, electrical current and Te 

As we include the electrical circuit in our model, we are able to self-consistently calculate E/N, Te 

and current profiles, as shown in Figure 6. 



 

Figure 6. Current, reduced electric field (E/N) and electron temperature (Te) calculated by our 

model for the single-pulse experiment of [10]. 

We can see that in the beginning of the pulse, where the electron density is low and the plasma 

resistivity high, the reduced electric field has a value of nearly 120 Td. As the electron density and 

the plasma conductivity are increasing, the electric field needed to sustain the discharge is reduced. 

As a result, the value of E/N gradually drops to 94 Td towards the end of the pulse. Figure 6 

confirms that the discharge is sustained at E/N > 90 Td, in line with the findings of [36], 

corresponding to Te > 2 eV. To achive this, the inclusion of ambipolar diffusion of positive ions 

and electrons to the reactor walls is essential. Without it, the computed plasma parameters become 

unreasonable shortly after the breakdown, making the simulations challenging to solve.    



 

3.4. Ion kinetics 

In order to calculate the plasma properties of Figure 6 in a self-consistent manner, our model 

includes a detailed description of the ion kinetics. This is necessary to predict the correct electron 

density, which is very similar to the one estimated in [31], although achieved at a higher E/N. 

Figure 7 shows the time evolution of the numb er densities of the main ions and the electrons. 

 

 

Figure 7. Time evolution of the electron and dominant ion number densities. 

Including a complete set of ion kinetics reveals that the dominant negative ion during the pulse is 

CO3-, which has a much higher density than the electrons. It results from dissociative electron 



attachment to CO2 forming O-, and subsequent recombination of O- with CO2 to form the stable 

CO3- ion [74]. In fact, electron detachment from this ion has a high energy threshold [75], and thus 

the ion is only efficiently lost via ion-ion recombination and collisional detachment with O atoms 

and CO. Despite its importance, the corresponding chemistry is not well understood and is often 

omitted in CO2 plasma modeling. For instance, Naidis and Babaeva [76] did not include CO3- in 

their work, when modelling similar experiments (same pressure but lower mass flow rate, with 

higher pulse repetition rate)  [10]. Their conclusion was that CO3- is not formed, because O- is 

effectively quenched through collisions with CO. However, our model shows that quenching upon 

collision with CO is not effective enough to remove the ion, due to the low dissociation degree in 

the single-pulse experiment. The second important negative ion is CO4-, originating from a 

clustering reaction between O2- and CO2 [47], but its density is much lower than for CO3-, and 

comparable to or even slightly higher than ne. As a result of the high negative ion densities, the 

electrons are lost primarily by attachment reactions, rather through ambipolar diffusion. This effect 

increases the reduced electric field until a sufficient amount of CO is produced.  

The dominant positive ions are a result of clustering reactions as well, and subsequent charge 

transfer reactions. Initially, C2O4+ is formed from CO2+ + 2CO2 ⟶ C2O4+ + CO2 [77]. Then, C2O4+ 

reacts with CO, originating from the dissociation of CO2, to produce C2O3+ and CO2. As the O2 

concentration builds up during the pulse, C2O4+ is converted to CO4+ through C2O4+ + O2 + CO2 ⟶ CO4+ + 2CO2 [78]. Thus, CO4+ becomes the dominant positive ion in the second part of the 

pulse and in the afterglow. 

 

Conclusions 



Fully self-consistent modeling of CO2 plasmas can unlock the potential of plasma-based CO2 

conversion for the electrification of fossil fuel-based sectors, such as the chemical industry. 

However, the road ahead for fully self-consistent (and predictive) models is still very long, due to 

the multitude of physical phenomena that need to be thoroughly considered and captured, e.g., 

fluid dynamics, heat transfer, chemical kinetics, and the interplay between them. 

In this study, we focus on the kinetics underlying vibrational and gas heating in a pulsed CO2 glow 

discharge, operated at low pressure. This type of discharge represents the ideal case to validate a 

kinetic scheme due to the homogeneity of the plasma. Moreover, pulsing enables to capture the 

transient behavior of the electron kinetics and the relaxation of excited species, and compare them 

with global computations. 

Starting from the foundations laid by previous modelling efforts, we construct a fully self-

consistent kinetic model based on an energy approach, with separate energy balance equations for 

the vibrational temperatures of CO2 (both asymmetric and symmetric modes), CO and O2, the gas 

temperature, and the electron temperature. The latter is a particularly innovative aspect, introduced 

for the first time by our model. In fact, the models published so far have failed to include a fully 

self-consistent description of the electron kinetics using the experimental current as an input 

parameter. We were able to achieve this by coupling the plasma to an electrical circuit and 

resolving the extensive ion chemistry, which is rarely considered in recent literature. This is 

possible by the drastic reduction in the number of reactions within the model, achieved by 

replacing the detailed, state-to-state vibrational kinetics with the energy approach. Therefore, these 

represent additional innovative features of our model. 

Comparison with the temporal evolution of the measured temperature profiles shows satisfactory 

agreement, indicating that our model includes all the relevant kinetics, at least for the single-pulse 



experiment, where the dissociation degree is limited and all dissociation products are evacuated 

before the subsequent pulse. Therefore, we can consider our model to be validated for CO2 

discharges at low pressure and low excitation, for which the dissociation degree of CO2 is smaller 

than 1%. Hence, the simulation outcome can be used to infer the underlying dynamics, confirming 

the importance of vibrational-vibrational relaxation, coupling the asymmetric and symmetric 

levels of CO2. Moreover, our study highlights the important role of vibrational energy transfer to 

the walls for an accurate description of the gas heating. 

Furthermore, our study reveals the importance of CO3- in describing the dynamics of the system. 

Due to the low dissociation degree, CO3- is efficiently produced, which results in an increase of 

the reduced electric field, needed to sustain the specified current. The CO3- density is an order of 

magnintude higher than the electron density, resulting in significant losses due to attachment 

reactions. The detailed description of the formation and destruction of positive and negative ions, 

as well as their interactions with electrons and neutrals, allows us to self-consistently simulate the 

behavior of the reduced electric field, eliminating significant assumptions previously necessary for 

modelling transient discharges. 

Notwithstanding the successful results of this study, our model is still limited to conditions that 

are far from appealing for industrial application, namely atmospheric (or higher) pressure and high 

CO2 conversion. The next step towards such conditions is to compare our model with experiments 

where the effects of dissociation products are significant, such as the multi-pulse experiment by 

Damen et al [17]. This experiment presents conditions with more prominent gas heating and higher 

fractions of species with high thermal conductivity (e.g., O and O2). In doing so, we anticipate that 

the model will require a more detailed description of radial heat losses to the reactor walls. 

Additionally, the model will need to include the dependence of chemical reactions on all the six 



temperatures for more accurate description of dissociation and recombination dynamics, as 

previously presented by Kosareva et al. [54]. For these reasons, incorporating the validated 

chemical kinetics from this study into a 1D radial model will be a necessary step towards self-

consistent CFD modeling of CO2 discharges, for reactor optimization and design. 
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Appendix  

A1. Chemistry set 



The electron-impact processes, described by energy-dependent cross sections and the EEDF, are 

taken from specific databases within the LxCat database, as detailed in the reference column of 

Table A1. The cross sections for direct electron-impact dissociation of CO2 have been modified 

compared to the original set, following the adjustments in Biondo et al. [36]. The consistency of 

these updated cross sections with the swarm parameters was verified in the same study. For all 

other reactions, rate coefficients and corresponding references are given in Table A1.   

Table A1. Chemistry set used in this work. Rate coefficients are in s_1, cm3/s or cm6/s, for radiative 

decay, two-body and three-body reactions, respectively, while Te and Tg are both expressed in K. 

Nn represents the total neutral density in cm-3, while M is a colliding partner and kM the 

corresponding rate coefficient. Most of the electron-impact processes are described by energy-

dependent cross sections and the EEDF, as indicated in the table. 

Reaction Rate expression Ref. 

Electron-impact processes 

e + CO2 → e + CO2 EEDF [79] 

e + CO2 → e + e + CO2+ EEDF [79] 

e + CO2 ↔ e + CO2(v1v2v3)a EEDF [79] 

e + CO2 ↔ e + CO2(e1,e2) EEDF [36,79] 

e + CO2 → e + CO + O(1D) EEDF [36,80] 

e + CO2 → e + CO(a3Π) + O EEDF [36,80] 

e + CO2 → CO + O- EEDF [79] 

e + CO → e + CO EEDF [81] 

e + CO → e + e + CO+ EEDF [81] 



e + CO ↔ e + CO(v) EEDF [81] 

e + CO ↔ e + CO(a3Π, a′3Σ+, 𝐴1Π, 

b3Σ+, B1Σ+, C1Σ+, E1Σ+) 

EEDF 
[81] 

e + CO → e + C + O EEDF [81] 

e + CO → C + O- EEDF [81] 

e + O2 → e + O2 EEDF [82,83] 

e + O2 → e + e + O2+ EEDF [82,83] 

e + O2 ↔ e + O2(v) EEDF [82,83] 

e + O2 ↔ e + O2(𝑎1Δ𝑔, b1Σg+, 

A3Σu+, C3Δu, c1Σu-) 

EEDF 
[82,83] 

e + O2 → e + O + O EEDF [82,83] 

e + O2 → e + O + O(1D) EEDF [82,83] 

e + O2 → O + O- EEDF [82,83] 

e + O2 + M → O2- + M kCO2,CO = 3.3 x 10-30, kO = 1  x 10-31, 

kO2  = 1.4 x 10-29×300/Te×e
-600

Tg ×e
(
700൫Te-Tg൯

TeTg
)
 

[84–86] 

e + O → e + O EEDF [87] 

e + O → e + e + O+ EEDF [87] 

e + O → O- kM = 1 x 10-31 x Nn [85] 

e + O ↔ e + O(1D, 1S) EEDF [87] 

e + C → e + C EEDF [88] 

e + O3 → e + O3 EEDF [87] 

e + O3 → e + e + O3+ EEDF [87] 



e + O3 → O2 + O- EEDF [87] 

e + O3 → O + O2- EEDF [87] 

Electronic relaxation 

CO(a3Π) + O2 → CO + 2O 2.4 x 10-11 [49] 

CO(a3Π) + O2 → CO2 + O 1.2 x 10-11 [49] 

CO(a3Π) + CO → CO2 + C 9.12 x 10-13 [49] 

CO(a3Π) + CO2 → 2CO + O 5 x 10-12 [49] 

CO(a3Π) + M → CO + M k
O = 1.9 x 10-10, k

O2
= 2.4 x 10-11,  k

CO = 5.6088 x 10-11,  k
CO2

= 5 x 

10-12 
[49] 

CO(a3Π) → CO 1/0.012 [89] 

O(1D) + M → O + M k
O

 = 8 x 10-12, k
O2

= 6.4 x 10-12e67/Tg ,  k
CO

 = 4.7 x 10-11e62.542/Tg , 

 k
CO2

= 7.9 x 10-11e133/Tg  
[86] 

O(1D) + O2 ↔ O + O2(𝑎1Δ𝑔) 1.6 x 10-12e67/Tg [90] 

O(1D) + O2 → O + O2(b1Σg+) 2.56 x 10-11e67/Tg [86,91] 

O(1D) + O2(𝑎1Δ𝑔) → O + O2 3 x 10-11 [46] 

O(1D) + O3 → 2O2 0.47 x 2.5 x 10-10 [92,93] 

O(1D) + O3 → O2 + 2O 0.53 x 2.5 x 10-10 [92,93] 

O(1D) + CO → CO2 8 x 10-11 [94] 

O(1D) + CO2 → O2 + CO 2.4 x 10-13 [95] 

O(1D) → O 6.8 x 10-3 [91,96] 

O(1S) + M → O + M k
O

 = 3.33 x 10-11e-300/Tg , kO2
= 4.3 x 10-12e-850/Tg ,  

 k
CO

 = 7.4 x 10-14e-957.37/Tg ,  kCO2
= 3.09 x 10-13 

[91,96–

99] 



O(1S) + M → O(1D) + M k
O

 =5 x 10-11e-301/Tg , kO2
=1.333 x 10-12e-850/Tg ,  

 k
CO

 = 9.4 x 10-14,  kCO2
= 2.394 x 10-13 

[86,97,10

0,101] 

O(1S) + O2 → O + O2(𝑎1Δ𝑔) 1.5 x 10-12e-850/Tg [86] 

O(1S) + O2 → O + O2(b1Σg+) 7.3 x 10-13e-850/Tg [86] 

O(1S) + O2 → O + O2(A3Σu+, 

C3Δu, c1Σu-) 

2.967 x 10-12e-850/Tg 
[86] 

O(1S) + O2(𝑎1Δ𝑔) → O + O2 1 x 10-10 [90] 

O(1S) + O2(𝑎1Δ𝑔) → O + 

O2(b1Σg+) 

1.3 x 10-10 
[90] 

O(1S) + O2(𝑎1Δ𝑔) → O(1D) + O2 3.6 x 10-11 [90] 

O(1S) + O2(𝑎1Δ𝑔) → 3O 3.23 x 10-11 [86] 

O(1S) + O2(𝑎1Δ𝑔) → O + 

O2(A3Σu+, C3Δu, c1Σu-) 

7.905 x 10-11 
[86] 

O(1S) + O2(𝑎1Δ𝑔) → O(1D) + 

O2(𝑎1Δ𝑔) 
1.7 x 10-12 

[86] 

O(1S) + O2(𝑎1Δ𝑔) → O(1D) + 

O2(b1Σg+) 

2.89 x 10-11 
[86] 

O(1S) → O(1D) 1.3 [91] 

O(1S) → O 0.078 [91] 

O2(𝑎1Δ𝑔) + M → O2 + M k
O

 =7 x 10-16, k
O2

=2.2 x 10-18 ቀ T
g

300ቁ0.8

,  

 k
CO,CO2

= 3.8 x 10-18e-205/Tg  

[86,102,1

03] 



O2(𝑎1Δ𝑔) + O2(𝑎1Δ𝑔)  → O2 + 

O2(b1Σg+) 

7 x 10-28 Tg
3.8e700/Tg 

[104] 

O2(𝑎1Δ𝑔) + O  → O2 + O 1 x 10-32 Nn [105,106] 

O2(𝑎1Δ𝑔) + O3  → 2O2 + O 4.5 x 10-11e-2380/Tg [102] 

O2(𝑎1Δ𝑔) + CO  ↔ O(1D) + CO2 (1-0.07) x 1.209 x 10-16 Tg
1.6e-13710/Tg [107] 

O2(𝑎1Δ𝑔) → O2 2.6 x 10-4 [91] 

O2(b1Σg+) + M → O2 + M k
O

 =8 x 10-14, k
O2

=4 x 10-17,  

 k
CO

= 3.3 x 10-15, kCO2
=4 x 10-13 

[93,100] 

O2(b1Σg+) + M → O2(𝑎1Δ𝑔) + M k
O

 =8 x 10-14, k
CO, O2

=4.3 x 10-22T
g
2.4e-241/Tg ,  

 k
CO2

=4.5 x 10-13 
[85,103] 

O2(b1Σg+) + O2(b1Σg+) → O2(𝑎1Δ𝑔)  
+ O2 

3.6 x 10-17 ൬ Tg

300൰0.5
 [90] 

O2(b1Σg+)  → O2 0.083 [91,96] 

O2(b1Σg+)  → O2(𝑎1Δ𝑔)   0.0025 [91,96] 

O2(A3Σu+, C3Δu, c1Σu-) + M → O2 

+ M 

k
O

 = 4.95 x 10-12, kO2
= 2.32 x 10-14,  

 k
CO

= 2.5 x 10-15, kCO2
= 5 x 10-14 

[86,100] 

CO(a3Π) → CO(a′3Σ+) 1 x 104 [108] 

CO(𝐴1Π) → CO 1 x 104 [108] 

CO(b3Σ+) → CO(a3Π) 1/8.6 x 10-8 [109] 

CO(B1Σ+) → CO 1/2.5 x 10-8 [108] 

CO(B1Σ+) → CO(𝐴1Π) 1.11 x 107 [110] 

CO(C1Σ+) → CO 1/1.4 x 10-9 [108] 



CO(E1Σ+) → CO k
O = 1.9 x 10-10, k

O2
= 2.4 x 10-11,  k

CO = 5.6088 x 10-11,  k
CO2

= 5 x 

10-12 
This work 

Neutral reactions 

CO + O ↔ CO2 3 x 10-14× e-1219Tg /(1+ 3 x 10-14×e-1219Tg
10-32×e-1500Tg × c_effሾMሿ ), 

with c_eff = 3.5, 6, 1.5, 1, for M = CO2, O2, 

CO, and C and O, respectively 

[111] 

CO + O2 ↔ CO2 + O 4.15 x 10-12 ×e-24054/Tg [111] 

CO + O3 ↔ CO2 + O2 4 x 10-25  [91] 

O + O ↔ O2 2.4 x 10-21 + 0.5×3.8 x 10-30Tg
-1×e-170/Tg×(Nn-

nO-nO2(a1Δg))    
[91,102] 

O + O ↔ O2(𝑎1Δ𝑔)  0.33×3.8 x 10-30Tg
-1×e-170/Tg×(Nn-nO-

nO2(a1Δg))    
[102] 

O + O → O2(b1Σg+)  0.17×3.8 x 10-30Tg
-1×e-170/Tg×Nn    [102] 

O + O → O2(A3Σu+, C3Δu, c1Σu-)  1.2 x 10-34×Nn    [86] 

O + O + O ↔ O2 + O 2.5 x 10-31Tg
-0.63    [104] 

O + O + O2(𝑎1Δ𝑔) ↔ O2 + 

O2(𝑎1Δ𝑔) 

7.4 x 10-33    

[90] 

O + O + O → O2 + O(1S)  1.4 x 10-30×e-650/Tg    [91] 

O + O + O ↔ O2(𝑎1Δ𝑔)  + O 6.93 x 10-35Tg
-0.63    [90] 



O + O + M ↔ O3  + M kCO2,CO=1.81 x 10-33 ቀ Tg

300
ቁ-1.2

, 

kO2=6.9 x 10-34 ቀ Tg

300
ቁ-1.25

, 

kO=2.1 x 10-34×e245/Tg    

[86,102,1

04] 

O + O3 ↔ O2  + O2 0.5×1.8 x 10-11×e-2300/Tg    [86] 

O + O3 ↔ O2  + O2(𝑎1Δ𝑔)   0.33×1.8 x 10-11×e-2300/Tg    [86] 

O + O3 → O2 + O2(b1Σg+)   0.17×1.8 x 10-11×e-2300/Tg    [86] 

C + O ↔ CO 2.14 x 10-29 ቀ Tg300ቁ-3.08 e-2114/Tg  × Nn [111] 

C + O2 ↔ O + CO 9.63 x 10
-11× e-290/Tg [111] 

C + CO2 ↔ CO + CO 1 x 10-15 [111] 

Electron-ion recombination 

e + CO2+ → CO + O 
4.2 x 10-7 ൬ Te300൰-0.75

 [112] 

e + O2+ → O + O 
0.32×1.95 x 10-7 ൬ Te300൰-0.7

 [113,114] 

e + O2+ → O + O(1D) 
0.43×1.95 x 10-7 ൬ Te300൰-0.7

 [113,114] 

e + O2+ → O(1D) + O(1D) 
0.2×1.95 x 10-7 ൬ Te300൰-0.7

 [113,114] 

e + O2+ → O(1D) + O(1S) 
0.04×1.95 x 10-7 ൬ Te300൰-0.7

 [113,114] 

e + O2+ → O2 
6 x 10-27 ൬ Te300൰-1.5

× Nn [85] 

e + O+ → O(1D) 5 x 10-13Te -0.5 [90] 



e + O+ → O 
6 x 10-27 ൬ Te300൰-1.5

× Nn [85] 

e + CO+ → C + O 
2.75 x 10-7 ൬ Te

300൰-0.55
 [115] 

e + CO4+ → CO2 + O2 
1  x 10-6 ൬ Te

300൰-0.5
 [116] 

e + C2O2+ → CO + CO 
1.3 x 10-6 ൬ Te

300൰-0.34
 [117] 

e + C2O3+ → CO2 + CO 
5.4 x 10-8 ൬ Te

300൰-0.7
 [46] 

e + C2O4+ → CO2 + CO2 2 x 10-5𝑇௘-0.5𝑇௚ି ଵ [46] 

e + O3+ → O2 + O 
1.95 x 10-7 ൬ Te300൰-0.7

 This study 

e + O4+ → O2 + O2 
1.4 x 10-6 ൬ Te300൰-0.5

 [85] 

e + A+ → A 

A = C, CO, CO2, O3 
5.5 x 10-25 ൬Tg

Te
൰3/2

× Nn [118,119] 

e + AB+ → A + B 

AB = C2O2, C2O3, C2O4, CO4, O4 
5.5 x 10-25 ൬Tg

Te
൰3/2

× Nn [118,119] 

e + e + A+ → e + A 

A = O, C, CO, O2, CO2, O3 
1 x 10-19 ൬300

Te
൰4.5

 [85,120] 

e + e + AB+ → e + A + B 

AB = C2O2, C2O3, C2O4, CO4, O4 
1  x 10-19 ൬300

Te
൰4.5

 [85,120] 

Ion-neutral reactions 

O + CO2+ ↔ CO  + O2+ 1.64 x 10-10    [121] 



O + CO2+ ↔ CO2  + O+ 9.63 x 10-11    [121] 

O2 + CO2+ ↔ CO2  + O2+ 5.5 x 10-11    [122,123] 

CO2 + CO2+ → C2O4+ 7 x 10-28× Nn    [124] 

C + O2+ ↔ O  + CO+ 5.2 x 10-11    [125] 

C + O2+ ↔ O2  + C+ 5.2 x 10-11    [125] 

O2 + O2+ → O4+ 
2.4 x 10-30 ቀ Tg

300
ቁ-3.2

× Nn    [126] 

CO2 + O2+ + M → CO4+ + M kCO,O,O2  = 2.3 x 10-29, kCO2  =1 .2 x 10-29    [126–128] 

CO2 + CO+ ↔ CO  + CO2+ 1  x 10 -15    [129] 

O2 + CO+ ↔ CO + O2+ 
1.5 x 10-10 ቀ Tg

300
ቁ-1.1

    [123,130] 

O + CO+ ↔ CO  + O+ 1.4 x 10-10    [131] 

C + CO+ ↔ CO  + C+ 1.4 x 10-10 [125] 

CO + CO+ → C2O2+ 1.48 x 10-28× Nn    [132,133] 

O + O+ ↔ O2+ 
1 x 10-29 ቀ Tg

300
ቁ0.5

× Nn    [85] 

O2 + O+ ↔ O + O2+ 
2 x 10-11 ቀ Tg

300
ቁ-0.4

    [91,96] 

O2(𝑎1Δ𝑔) + O+ ↔ O + O2+ 
2e x 10-11 ቀ Tg

300
ቁ-0.5

    [134] 

O3 + O+ ↔ O2 + O2+ 1  x 10 -10    [91] 

O2 + C+ ↔ CO + O+ 0.62 × 9.9 x 10-10    [135] 

O2 + C+ ↔ O + CO+ 0.38 × 9.9 x 10-10    [135] 

CO2 + C+ ↔ CO + CO+ 1.1 x 10-9    [135] 

C2O2+ → CO + CO+ 1 x 10-12× Nn    [46] 



O2 + C2O2+ → 2CO + O2+ 5.4 x 10-12    [136] 

CO + C2O3+ → CO2 + C2O2+ 1.1 x 10-9    [124] 

C2O4+ → CO2 + CO2+ f(E/N) [124] 

CO + C2O4+ → CO2 + C2O3+ 9 x 10-10    [124] 

O2 + C2O4+ → CO2 + CO2 + O2+ 0.94 × 2 x 10-10    [128] 

O2 + C2O4+ → CO2 + CO4+ 0.06 × 2 x 10-10    [128] 

O2(𝑎1Δ𝑔) + O- ↔ O + O2- 
1  x 10-10 ቀ Tg

300
ቁ-0.5

    [90] 

O2 + O- → O + O2- f(E/N) [137] 

O2 + O- → O3- 
1.11 x 10-30 ቀ Tg

300
ቁ-1  × Nn    [85] 

O3 + O- → O + O3- 1.4 x 10-9    [138] 

O3 + O- ↔ O2 + O2- 3 x 10-10    [138] 

CO2 + O- + M ↔ CO3- + M kCO2,CO,O = 1.46 x 10-28 ቀ Tg

300
ቁ-1.5

, 

kO2  = 2.29 x 10-28 ቀ Tg

300
ቁ-2.06

    

[139] 

O + O2- → O2 + O- 
1.5 x 10-10 ቀ Tg

300
ቁ0.5

    [90,140] 

O(1D,1S) + O2- → O + O + O- 1.5 x 10-10    [90] 

O2 + O2- → O + O3- 3.5 x 10-15    [141] 

O2 + O2- → O4- 
3.5 x 10-31 ቀ Tg

300
ቁ-1

× Nn    [85,96] 

O3 + O2- ↔ O2 + O3- 1.3 x 10-9    [138] 

CO + O2- ↔ CO3- 1  x 10-30× Nn    [142] 

CO2 + O2- + M → CO4- + M kCO2,CO,O = 1  x 10-29, kO2  = 4.7 x 10-29    [47,143] 



O3- → O2 + O- f(E/N) [137] 

O + O3- → O2 + O2- 
2.5 x 10-10 ቀ Tg

300
ቁ0.5

    [90] 

O + O3- → O3 + O- 1 x 10-13    [86] 

O2(𝑎1Δ𝑔) + O3- ↔ O2 + O2 + O- 1  x 10-10    [90] 

O2(b1Σg+) + O3- → O2 + O2 + O- 1  x 10-10    [90] 

CO2 + O3- ↔ O2 + CO3- 
5.5 x 10-10 ቀ Tg

300
ቁ-0.49

    [90,142] 

O(1D,1S) + O3- → O + O + O2- 1 x 10-10 [86] 

O(1D,1S) + O3- → O + O2 + O- 1 x 10-10 [86] 

O4- → O2 + O2- 1 x 10-10 × e-1044/Tg × Nn    [85] 

O + O4- ↔ O2 + O3- 4 x 10-10    [144] 

O + O4- ↔ O2 + O2 + O- 3 x 10-10    [85] 

O(1D,1S) + O4- → O + O2 + O2- 1 x 10-10 [86] 

O(1D,1S) + O4- → O2 + O2 + O- 1 x 10-10 [86] 

O2(𝑎1Δ𝑔) + O4- ↔ O2 + O2 + O2- 1 x 10-10    [90] 

O2(b1Σg+) + O4- → O2 + O2 + O2- 1 x 10-10    [90] 

O3 + O4- ↔ 2O2 + O3- 3 x 10-10    [90] 

CO + O4- ↔ O2 + CO3- 2 x 10-11    [126] 

CO2 + O4- → O2 + CO4- 3 x 10-10    [144] 

O + CO3- ↔ CO2 + O2- 8 x 10-11    [145,146] 

O(1D,1S) + CO3- → CO2 + O + O- 1 x 10-10 [90] 

O + CO4- → O2 + CO3- 0.8 × 1.4 x 10-10 [116,140] 



O + CO4- → CO2 + O2 + O- 0.1 × 1.4 x 10-10 [116,140] 

O + CO4- → CO2 + O3- 0.1 × 1.4 x 10-10 [116,140] 

O(1D,1S) + CO4- → CO2 + O + O2- 1 x 10-10 [90] 

O2 + CO4- → CO2 + O4- 2 x 10-14 [90] 

O2(𝑎1Δ𝑔) + CO4- → CO2 + O2 + 

O2- 

1 x 10-10    

[90] 

O2(b1Σg+) + CO4- → CO2 + O2 + 

O2- 

1 x 10-10    

[90] 

O3 + CO4- → CO2 + O2 + O3- 4.3 x 10-10    [138] 

O3 + CO4- → O2 + O2 + CO3- 3 x 10-11    [138] 

CO + CO4- → CO2 + CO3- 1 x 10-16    [142] 

Ion-ion recombination 

A- + B+ → A + B 
2 x 10-7 ൬ Tg

300൰-0.5 + 2 x 10-25 ൬ Tg

300൰-2.5

× Nn [90,104] 

A- + B+ → AB 
1 x 10-25 ൬ Tg

300൰-2.5

× Nn [104] 

A- + BC+ → A + B + C 1 x 10-7 [104] 

O- + O+ → O + O(1D) 
4.9 x 10-10 ൬ Tg

300൰-0.5

 [90] 

O- + O2+ → O + O2(𝑎1Δ𝑔) 
6.3 x 10-10 ൬ Tg

300൰-2
 [86] 

O- + O2+ → O + O2(b1Σg+)   
1.3 x 10-10 ൬ Tg

300൰-2
 [86] 

O2- + O2+ → O2 + O2(𝑎1Δ𝑔) 
2.9 x 10-10 ൬ Tg

300൰-2
 [86] 



O2- + O2+ → O2 + O2(b1Σg+)   
4 x 10-10 ൬ Tg

300൰-2
 [86] 

Electron detachment 

O- → O + e 4 x 10-12 × Nn [147] 

O- + O → O2 + e 
2 x 10-10 ൬ Tg

300൰0.5

 [90] 

O- + O(1D, 1S) → O + O + e 1 x 10-10 [90] 

O- + O2 → O2 + O + e 2.3 x 10-9×e-26000/Tg    [148,149] 

O- + O2 → O3 + e 
5 x 10-15 ൬ Tg

300൰0.5

 [90] 

O- + O2(𝑎1Δ𝑔) → O3 + e 
3 x 10-10 ൬ Tg

300൰0.5

 [90] 

O- + O2(b1Σg+) → O2 + O + e 
6.9 x 10-10 ൬ Tg

300൰0.5

 [90] 

O- + O3 → O2 + O2 + e 5 x 10-12 [138] 

O- + C → CO + e 5 x 10-10 [125] 

O- + CO → CO2 + e 
6 x 10-10 ൬ Te

300൰-0.39
 [150] 

O2- + O(1D,1S) → O2 + O + e 1.5 x 10-10    [90] 

O2- → O2 + e 
2.7 x 10-10 ൬ Tg

300൰0.5  e-5590/Tg  × Nn [84,149] 

O2- + O → O3 + e 
1.5 x 10-10 ൬ Tg

300൰-2

 [86,140] 

O2- + O2(𝑎1Δ𝑔) → O2 + O2 + e 
2 x 10-10 ൬ Tg

300൰0.5

 [90,151] 



O2- + O2(b1Σg+) → O2 + O2 + e 
3.6 x 10-10 ൬ Tg

300൰0.5

 [86,90] 

O3- → O3 + e 2.3 x 10-11 × Nn [106] 

O3- + O → O2 + O2 + e 3 x 10-10 [86] 

O(1D,1S) + O3- → O + O3 + e 1 x 10-10 [86] 

O3 + O3- → O2 + O2 + O2 + e 3 x 10-10 [152] 

CO + O3- → O2 + CO2 + e 1 x 10-13 [142,153] 

O(1D,1S) + O4- → O + 2O2 + e 1 x 10-10 [86] 

O4- + O2(𝑎1Δ𝑔) → 3O2 + e 1 x 10-10 [90] 

O4- + O2(b1Σg+) → 3O2 + e 1 x 10-10 [90] 

CO3- + O → CO2 + O2 + e 5 x 10-13 This study 

CO3- + O(1D,1S) → CO2 + 2O + e 1 x 10-10 [90] 

CO3- + CO → 2CO2 + e 5 x 10-13 [47] 

CO4- + O(1D,1S) → CO2 + O2 + O 

+ e 

1 x 10-10 
[90] 

CO4- + O2(𝑎1Δ𝑔) → CO2 + 2O2 + 

e 

1 x 10-10 
[90] 

CO4- + O2(b1Σg+) → CO2 + 2O2 + 

e 

1 x 10-10 
[90] 

aexcitation to v3 = 2-5 is included by applying the Fridman scaling [8] and threshold energy shift 

to the cross sections for e + CO2 ↔ e + CO2(v3=1), as described in [24]. 

 



A2. Details on some rate coefficients for V-T, V-V-T and V-T relaxation 

The rate coefficients of intra-molecular V-V-T relaxation are taken from Biondo et al. [36], 

whereas for inter-molecular V-V-T it is taken from Bass [154] as O2(iO2=1) + CO2 ↔ O2 + 

CO2(i2=2) with a forward rate coefficient of 2 x 10-12 ቂcm3

s
ቃ (Tg/300ሾKሿ)0.5. The reverse rate is 

computed from the detailed balance principle. The transitions within higher vibrational levels, i.e. 

iO2 > 1 and i2 > 2, are included with the same rate, without applying any scaling law. Finally, QVT12
 

represents the energy transferred from T12 to Tg through V-T relaxation. This term includes the 

transitions listed in Table A2, taken from the survey of Blauer and Nickerson [57]. The notation 

used for the vibrational levels involved in the transitions is CO2(i1i2i3). 

Table A2. List of V-T transitions included in QVT12
. 

V-T transition 

CO2(100) + M ⇋ CO2(000) + M, M = CO2, CO, O2 

CO2(010) + M ⇋ CO2(000) + M, M = CO2, CO, O2 

CO2(100) + M ⇋ CO2(010) + M, M = CO2, CO, O2 

CO2(200) + M ⇋ CO2(020) + M, M = CO2, CO, O2 

CO2(200) + M ⇋ CO2(001) + M*, M = CO2, CO, O2 

CO2(030) + M ⇋ CO2(100) + M, M = CO2, CO, O2 

*The energy lost from T12 corresponds to ε200, whereas ε200 – ε001 is transferred to Tg and ε001 is 

transferred to T3. 



QVT12
 contains also V-T relaxation from the bending mode of CO2 upon collisions with O atoms, 

with a rate coefficient of 2 x 10-12[ cm3

s
] ⋅ ඥTg/300[K] taken from Terraz et al. [56]. 

CO2(00i3) + CO ⇋ CO2 + CO(iCO) is taken from [57] with a rate coefficient of 

1.66 x 10-24 ቂcm3

s
ቃ ⋅ e28.7 - 153 ⋅ Tg

-2/3
, while, CO2(001) + O2 ⇋ CO2(010) + O2(iO2=1), is included from 

López-Puertas et al. [155], with a rate coefficient of 3 x 10-15 ቂcm3

s
ቃ ⋅ (1 + 0.02 ⋅ (Tg - 210)). QVT3

 

includes the transitions listed in Table A3, taken from [57]. 

Table A3. List of V-T transitions included in QVT3
. 

V-T transition 

CO2(001) + M ⇋ CO2(100) + M, M = CO2, CO, O2 

CO2(001) + M ⇋ CO2(010) + M, M = CO2, CO, O2 

CO2(001) + M ⇋ CO2(110) + M, M = CO2, CO, O2 

In addition to those listed in Table A3, QVT3
 incorporates also V-T deactivation by collisions with 

O atoms, CO2(001) + O ⇋ CO2(0i20) + O, with i2 = 1, 2, 3 and 4. The rate coefficient for this 

transition is 2 x 10-13[ cm3

s
] ⋅ ඥTg/300[K] and assumed independent of i2 [56]. 

We would like to point out that all rate coefficients for CO2 V-T and intra-molecular V-V-T 

relaxation involving higher vibrational levels are scaled based on the Schwartz–Slawsky–Herzfeld 

(SSH) theory [24,36]. 
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