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Abstract

We investigate the characteristics of spin waves in ferromagnetic waveguides with non-uniform

states of the magnetization. The spin-wave generation is realized via the magnetoelastic effect by

applying locally biaxial or shear in-plane strains, as well as via the Oersted field emitted by a wire

antenna. Using micromagnetic simulations, we show that both types of excitation field generates

quantized width modes with both odd and even mode numbers, with tilted phase fronts. We

demonstrate that these effects originate from the average magnetization orientation with respect

to the main axes of the magnetic waveguide. Furthermore, it is shown that the excitation efficiency

of the second order width mode can even overcome the excitation efficiency of the first width mode.

This is traced back to the overlap integral between the mode profile and the distribution of the

excitation field. We demonstrate that the relative intensity of the excited width modes can be

controlled by the strain state as well as by tuning the dimensions of the excitation area. In addition,

we show that the asymmetry in the spin-wave radiation due to the chirality of the Oersted field

emitted by inductive antennas is removed by using a magnetoelectric excitation mechanism.
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I. INTRODUCTION

Spintronic devices based on spin waves have great potential for ultralow power computing

technologies that may complement the current complementary metal-oxide-semiconductor

(CMOS) technology in future technology nodes. When using spin waves as information

carriers, the information can be encoded in the amplitude and/or the phase of the wave.

Especially the phase coding has been proposed since wave interference can be used to design

majority gates that are advantageous for logic circuit design, but are costly to be realised

in CMOS [1–8]. Therefore, it can be envisaged that a hybrid spin-waveCMOS technology

may reduce power and area consumption per computing throughput with respect to CMOS

alone.

For the successful realization of a competitive hybrid spin-waveCMOS technology, spin

wave devices need to be miniaturized down to the nanoscale to achieve a high density of logic

functions in the circuit. Yet, scaling magnetic waveguides into the nanoscale leads to higher

aspect ratios and introduces stronger anisotropy. For a magnetic bias field transverse to the

waveguide as commonly employed in spin wave devices this results in an increasingly non-

uniform internal effective magnetic field and consequently in a non-uniform magnetization

state [9, 10]. To design magnonic devices at the nanoscale, it is thus crucial to understand

how these non-uniformities affect the spin wave generation and propagation behavior.

A key challenge of hybrid spin-waveCMOS circuits is the efficiency of the transduction

mechanism between electronic and spintronic parts of the circuit. Different spin wave exci-

tation mechanisms have been proposed, including excitation by inductive antennas [11–14],

spin transfer torques [15], or spin orbit torques [16, 17]. All of these coupling schemes are

based on electric currents to generate spin waves and hence are neither scalable nor energy

efficient. Recently, the magnetoelectric (MEL) cell has been proposed as a novel excitation

structure [6, 18]. This element combines the piezoelectric and magnetoelastic effect to excite

spin waves by application of a voltage instead of a current. Although it has been shown by

experiments [18, 19] and micromagnetic modelling [20] that the MEL effect can excite spin

waves, a detailed understanding of spin wave excitation by this effect in nanoscale waveg-

uides is still lacking. In this paper, we investigate by means of micromagnetic simulations

how dynamic strain states couple to non-uniformly magnetized waveguides and generate

spin waves. The propagation characteristics of spin waves excited by both magnetoelectric
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FIG. 1. Sketch of the waveguide geometry with arrows representing the equilibrium magnetization

and the out-of-plane component of the magnetization color encoded. Two types of transducers are

investigated: excitation with inductive antenna (a) and with magnetoelectric cell (b). Magnetiza-

tion components mx, my and mz in the equilibrium state along the width of waveguide (c).

effect and inductive antenna are further analyzed and compared.

II. SYSTEM CONFIGURATION

The structure under study consists of a CoFeB magnetic conduit with length of 10 µm,

width of 200 nm and thickness of 10 nm and typical magnetic parameters: Ms = 1.25 ×

106A/m as saturation magnetization [21], an exchange constant of Aex = 1.89× 10−11 J/m3

[22], and a Gilbert damping of α = 0.004. The damping constant is smoothly increased near

the waveguide ends to prevent reflection. The CoFeB is assumed to be polycrystalline, and

thus, the magnetocrystalline anisotropy is neglected. A sketch of the geometry is shown in

Figure 1(a-b).

A bias magnetic field is applied in-plane transverse to the longitudinal direction of the

waveguide. In this way, the bias field counteracts the demagnetization field which tries

to align the magnetization in the long direction of the waveguide. The amplitude of the

external field is set to 50 mT which results in a magnetization state that is not completely

saturated along the external field direction. Thus, the magnetization orientation varies along

the width of the waveguide because of the non-uniformity of the demagnetization field. The

magnetization components along the width are shown in Figure 1(c) which represents clearly

non-uniform orientation of the magnetization.
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Two types of transducers are considered to excite spin waves: inductive antenna excitation

and magnetoelectric excitation. For the inductive antenna excitation, a current line of width

50 nm is placed on top of the waveguide as shown in Figure 1(a). Oscillating current in

this line generates an oscillating Oersted field which generates spin waves in the magnetic

conduit.

A second approach for the excitation of spin waves is based on a MEL cell as shown in

Figure 1(b). In this case, a piezoelectric material is placed on top of the magnetic waveg-

uide which consist of magnetostrictive CoFeB. When a voltage is applied to the piezoelectric

material, a strain is induced inside the piezoelectric and consequently also inside the mag-

netic waveguide. This strain inside the waveguide couples to the magnetization via the

magnetoelastic interaction and is magnetically represented by the magnetoelastic field [23].

Hmel =
−2

µ0Ms


B1εxxmx +B2(εxymy + εzxmz)

B1εyymy +B2(εxymx + εyzmz)

B1εzzmz +B2(εzxmx + εyzmy)

 (1)

Here, B1 and B2 are the magnetoelastic coupling constants, mi are the normalized mag-

netization components and εij are the strain components from the strain tensor.

Equation (1) indicates that the MEL excitation field depends on both the strain state

and the magnetization. Therefore, the MEL excitation field becomes non-uniform because

the waveguide is non-uniformly magnetized. This is in contrast with the Oersted field which

is independent of the waveguide properties, and thus can be assumed to be uniform in thin

waveguides. Hence, in this paper, the spin waves are excited by a non-uniform MEL field

or by a uniform Oersted field.

As previously demonstrated for an in-plane magnetized system, the biaxial and shear

strain states are more efficient to excite spin waves than a uniaxial strain state [20]. There-

fore, in this work, only the biaxial and shear strain states are used to assess the influence of

the strain components on the spin wave properties.

ε̂biax =


εxx 0 0

0 εyy 0

0 0 0

 ε̂shear =


εxx εxy 0

εxy εyy 0

0 0 0

 (2)

The magnetization dynamics is simulated using the object-oriented-micromagnetic-
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framework (OOMMF) [24] with the YY mel module included to compute the magne-

toelastic field [25]. The magnetic waveguide is implemented as a mesh with cell size of

5 nm x 5 nm x 5 nm. A uniform strain distribution is assumed in the excitation region and

isotropic magnetoelastic coupling constants B1 = B2 = 8.85 J/m3 have been considered,

which is appropriate for polycrystalline CoFeB films [26].

III. SPIN WAVE MODES

The excitation and propagation characteristics of spin waves were studied in detail for

different excitation frequencies. For example, the spin wave profiles generated by magne-

toelastic effect at 10 GHz, 14 GHz, and 16.5 GHz are shown in Fig. 2(a-c). The dynamic

magnetization profiles show that the spin-wave phase front is tilted with respect the propa-

gation direction. This means, the phase front of the mode is not any more perpendicular to

the propagation direction of the wave. Additionally, the dynamic magnetization profiles at

different frequencies suggest the excitation of different propagating quantized width modes.

To identify the different spin wave modes for every frequency, a spatial Fast Fourier

Transform (FFT) is performed along the length of the waveguide. The results are shown in

Figure 2(d-f). At 10 GHz, only the first order width mode n1 is present, with a wavevector of

k(n1) = 40 rad/µm. At 14 GHz, both n1 and n2 are present with wavenumbers k(n1) = 54

rad/µm and k(n2) = 65 rad/µm, respectively. To note that the intensity of the second order

width mode is much higher than the intensity of the first order width mode, case that is

not possible with antenna excitation in the Damon-Eshbach (DE) and backward volume

wave (BVW) geometry. At 16.5 GHz, the third order width mode n3 appears and the three

modes correspond to wavenumbers k(n1) = 79 rad/µm, k(n2) = 72 rad/µm and k(n3) = 50

rad/µm.

It is also noted that the spin wave intensity at both edges along the waveguide is not

diminishing towards zero. This originates from dipolar pinning near the edges and results

in an effective waveguide width which is larger than the real width of the waveguide [27].

This effect becomes even more pronounced in narrow waveguides.

In addition, the spin wave dispersion relations for the whole excitation spectra are ex-

tracted from micromagnetic simulations and shown in Fig. 3. These are obtained by applying

an excitation pulse of 20 ps duration, and performing a two dimensional Fourier transform
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FIG. 2. (a-c) Snapshots images of the magnetization oscillation pattern for different excitation

frequencies: 10, 14 and 16.5 GHz, respectively. (d-f) Spin-wave wavenumber distribution across

the waveguide width computed by the Fourier transform in space of the z-component of the magne-

tization after 7 ns of continuous MEL shear excitation (10 mV) at the three excitation frequencies:

10, 14 and 16.5 GHz, respectively.

of the magnetization in space (longitudinal direction) and in time. The solid lines and color

plot correspond respectively to spin wave dispersion relations originating from spin waves

excited by a shear MEL pulse and an Oersted field pulse. Both excitation fields result in

exactly the same dispersion relations.

The phase tilting and the strong excitation of the second order width mode can be

attributed to: i) the nature of the MEL excitation field, ii) the non-uniformity of the mag-

netization, or, iii) the average magnetization orientation which is not anymore along one

of the principal axes of the waveguide. To find the real physical origin, different excitation

fields and magnetization states are used in the simulations.

From Eq. 1 and 2 it is seen that the biaxial and shear strain generate different non-

uniform excitation fields depending on the magnetization orientation. To test the first

hypothesis, the results of the three excitation mechanism are compared: biaxial, shear and

uniform Oersted field. Virtually, no difference was seen for the spin-wave mode behavior,
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FIG. 3. Spin wave dispersion relations for a non-uniformly magnetized waveguide. The color map

corresponds to the dispersion relations of spin waves excited by an inductive antenna whereas the

lines correspond to the dispersion relations of spin waves excited by a MEL shear excitation.

no change in the dispersion relations nor in the mode profiles of the spin waves. All three

excitation mechanism generate modes with tilted phase profile and higher intensity of the

second order width mode as compared to the first one. Therefore, the excitation mechanism

has no influence on the characteristics of the spin waves.

To determine the influence of the non-uniformity of the magnetization, an artificial waveg-

uide with uniform magnetization oriented under an angle θ with the longitudinal direction

is investigated. The angle θ is set to the average angle over the width of the waveguide:

θ = arctan(m̃y/m̃x) = 35◦ with m̃y and m̃x the average magnetization components over

the waveguide width. The same procedure was used to calculate the dispersion relations

and mode profiles and again identical results as in Figure 2 and 3 are obtained. Thus, the

non-uniformity of the magnetization lies also not at the origin of the identified behavior.

The higher amplitude of the second mode as compared to the first mode and their tilted

phase fronts could also be a consequence of the average magnetization orientation which

is not along one of the principal axes of the waveguide. Subsequently, waveguides with

uniform magnetization orientation with θ = 0◦ or θ = 90◦ have been considered in the

simulations. In these cases, no tilt of the phase front is seen, and the spin-wave modes with

an even mode number are absent. Therefore, the average orientation of the magnetization

determines the spin-wave dispersion relations and their corresponding mode profiles. The
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rotation of the phase front and the mode profile is thus attributed to the average orientation

of the equilibrium magnetization which is not aligned with one of the principal axes of the

waveguide, as can be seen from Figure 1(c).

Due to the off-axis average magnetization orientation, the dynamic dipolar field becomes

anisotropic over the width of the waveguide. At the start of the transient regime, this

dynamic field has different amplitude at both edges of the waveguide. Different amplitude

of the dynamic field results in different amplitude of the effective field at both edges and

thus different precession speeds of the magnetization at both edges. Hence, in the transient

regime, phase differences are introduced between both edges until a steady state phase

difference is reached. This constant phase difference at both edges in steady state explains

the rotation of the phase front.

IV. MEL EXCITATION EFFICIENCY

As previously explained, the excitation field has no influence on the dispersion relations

and mode profiles. Nevertheless, different types of strain distributions (e.g. uniaxial, biaxial

or shear strain) result in different excitation efficiencies of different modes. The excitation

efficiency of a specific mode n, An, is proportional to the overlap in space between the

excitation field Hexc and the mode profile of that specific mode mn [10]:

An ∝
∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Hexc(x, y, z) ·mn(x, y, z)dxdydz

∣∣∣∣ (3)

The generation of spin wave modes with even mode numbers can be explained by the

overlap integral. When the magnetization is along one of the principal axes of the waveguide,

the phase front is perpendicular to the propagation direction. In this case, the mode profile of

even modes is antisymmetric over the width which results in a zero net overlap integral with

a symmetric excitation field. Hence, it is impossible to excite even modes with a symmetric

excitation field. However, in the waveguide discussed here, the magnetization is not any

more along one of the principal axes. This results in a rotated phase front and altered mode

profiles. Therefore, the antisymmetric profile over the width of even modes is lifted and

consequently the net overlap integral is different from zero. Therefore, the existence of both

even and odd modes becomes possible in waveguides with average magnetization orientation

not along one of the principal axes.
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Besides the influence of the mode profile, also the excitation field has an influence on

the excitation efficiencies. When using the Oersted excitation field, a uniform field over

the width can be assumed. Hence, the excitation field reduces to a constant in the overlap

integral. This is not the case for the MEL excitation field. As seen in equation (1), the MEL

field is dependent on both the strain and magnetization inside the waveguide. Consequently,

if the strain or magnetization inside the waveguide is non-uniform, also the excitation field

becomes non-uniform over the width. Therefore, the excitation efficiency of the different

spin-wave modes is changing depending on the transducer type.

To illustrate the influence of the MEL excitation field on the excitation efficiency, the

biaxial and shear MEL excitation are compared with each other. For both cases, the spin-

wave intensity is calculated along the length of the waveguide at a frequency of 12.5 GHz.

The result is shown in Figure 4(a) where the grey and red curve, respectively, correspond

to the spin-wave intensity for a biaxial and shear excitation field. To note that the exci-

tation region (50 x 200 nm2) and voltage (0.01 V) were kept the same for the two strain

configurations.

The spin-wave intensity on a logarithmic scale is described by:

log (In(x)) = log(I0n)− x

δn
(4)

with δn the mean free path of mode n. Therefore, every region with a different slope in

Fig. 4(a) corresponds to a different mode. Two regions with different slope are identified

for both excitation fields, suggesting the generation of two spin-wave modes with different

mean free path. The slope of the intensity profile (i.e. negative inverse of mean free path)

extracted for mode n1 and mode n2 at 12.5 GHz are equal to δ1 = 4.64 µm and δ2 =

0.88 µm, respectively. This difference originates from the group velocity which is also mode

dependent. The mean free path is equal to δ = vgτ with vg the group velocity and τ the

lifetime of the spin wave. The lifetime can be approximated as the same for the two modes

whereas the group velocity is strongly differs for the two modes. The group velocities of the

different modes are derived from the dispersion relations (vg = ∂ω/∂k) and are shown in

Fig. 4(b). At 12.5 GHz, the wavenumbers for the modes n1 and n2 are kn1 = 57 rad/µm

and kn2 = 22 rad/µm, respectively, and the associated group velocities vg(n1) = 1.03 µm/ns

and vg(n2) = 0.25 µm/ns. Since vg(n2) < vg(n1) it is expected that n2 will attenuate faster.

This result is confirmed by the intensity curves shown in Fig. 4(a), and can be clearly seen in
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FIG. 4. Spin wave intensity along the propagation length for different excitation fields and different

transducer areas (a). Group velocity of n1 and n2 spin-wave modes as a function of the wavenumber

(b). Snapshots of the mz-component of the magnetization at 12.5 GHz and MEL excitation voltage

0.01 V with a transducer length of 200 nm and 20 nm in respectively (c) and (d).

the magnetization oscillation pattern displayed in Fig. 4(c). The n2 mode is dominant close

to the excitation region and decays rather strong with the propagation distance, whereas

the n1 mode is visible for longer distances.

Since the width modes are excited with different efficiency and they travel with different

group velocities, there will be a point in the waveguide where the intensity of the two modes

will equate, after which the intensity of the modes will interchange. For example, for mode

n1 and mode n2, this becomes:

I1 (Xtr) = I2 (Xtr)⇒ Xtr =
δ1δ2
δ1 − δ2

log

(
I02
I01

)
(5)

According to Eq. (5), this transition point can be related to the relative excitation effi-

ciency of mode n1 and mode n2. The further the transition point, the higher relative excita-

tion efficiency n2/n1. Hence, the distance between the excitation region and the transition

point holds information on the relative excitation efficiencies of the two different modes.

From Fig. 4(a) it is clear that the second order width mode is more efficiently excited
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than the first order width mode for both strain states. This behavior originates from the

average magnetization orientation which alters the mode profile. In all cases, the excitation

field is symmetric over the width of the waveguide. Hence, the largest overlap integral is

obtained if the sign of the dynamic magnetization is everywhere the same in a line over the

width. However, if the dynamic magnetization profile consists of a partly positive and a

partly negative amplitude over the width, then the net overlap integral reduces. As can be

seen from the mode profiles at 10 GHz and 14 GHz (see Fig. 2), mode n2 has larger areas

where the sign is the same over the width. Hence, mode n2 is more efficiently excited than

mode n1 for a symmetric excitation field. This means that wire antenna excitation also

excites mode n2 more efficiently than mode n1 for this geometry.

From Fig. 4(a), it is also seen that the transition point is further away from the excitation

region for the shear strain than for the biaxial strain. According to Eq. (5), this means that

the MEL shear excitation field excites more efficiently mode n2 than mode n1 as compared

to the biaxial excitation field. The difference between the biaxial and shear excitation field

originates from their non-uniform amplitude profile over the width. The strain state inside

the excitation region is in both cases assumed to be uniform, however, the magnetization

orientation is not. Consequently, this non-uniformity of the magnetization orientation also

makes the MEL excitation field non-uniform over the width.

The shear excitation field has maximum amplitude near the edges and minimum ampli-

tude in the middle whereas the biaxial excitation field has a maximum amplitude in the

middle and minimum near the edges. On the other hand, the first (second) order mode has

highest (lowest) amplitude in the middle and lowest (highest) towards the edges. Therefore,

the shear excitation field overlaps more with the second order width mode than the biaxial

excitation field which results in a higher excitation efficiency. The opposite is true for the

first order width mode. Thus, by altering the strain components, it becomes possible to

play with the relative excitation efficiency between the different spin wave modes if they are

excited with a MEL excitation field.

Furthermore, from Eq. (3) it is seen that the excitation efficiency depends on the spatial

overlap between the excitation field and the mode profile. Therefore, it is expected that

changing the area or the geometry of the transducer will change the excitation efficiency.

To illustrate this, we performed additional simulations considering an excitation area of

50 x 20 nm2 and a frequency of 12.5 GHz. The intensity along the length of the waveguide is
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plotted in Fig. 4(a). In this case the mode n2 is nearly not present, as can be seen in Fig. 4(d),

where only n1 mode is clearly visible. The second order width mode has low amplitude in the

middle of the waveguide, therefore, the overlap integral between the excitation field and the

mode profile of n2 is thus nearly zero. However, the mode n1 can be excited as described by

the overlap integral (Eq. (3)). Hence, a mode selective spin-wave excitation can additionally

be achieved by tuning the area of the magnetoelectric cell.

It is well known that the non-reciprocal propagation character of the magnetostatic sur-

face waves is enhanced by the chirality of the Oersted field emitted by an inductive wire

antenna [11]. However, this chirality is removed when strain excitation fields are used due

to symmetry reasons (see Eq. 1), therefore, a symmetric radiation pattern is expected.

To illustrate this, spin waves excited by an Oersted field created by a wire and a magne-

toelectric field are compared with each other. The waveguide thickness is set to 40 nm to

make sure the anti-symmetry is visible (if present). The spin wave intensity over the length

of the waveguide is calculated and plotted together with the mode profile in Fig. 5. It is

clearly seen that the Oersted field generates propagating spin waves in both directions, but

FIG. 5. Spin-wave intensity along the propagation length over the waveguide for antenna and

shear strain excitation at a frequency of 11 GHz(a). Snapshots images of the mz-component of

the magnetization for antenna and shear strain excitation in (b) and (c) respectively. The Oersted

field has amplitude of 10 A/m and the voltage for the MEL excitation is 0.01 V.

12



with different intensities, whereas the MEL equally radiates in both directions. To note that

the mode profile is the same for the two types of excitation mechanisms: the Oersted field

and the strain induced magnetic field.

V. CONCLUSION

In summary, we analyzed the excitation of spin waves via the magnetoelastic effect by

applying locally biaxial or shear in-plane strains, and we studied their propagation char-

acteristics in non-uniformly magnetized metallic waveguides. We show that both types of

strain induced fields generate quantized width modes with both odd and even mode numbers.

Furthermore, all excited modes showed a tilted phase front with respect to the propagation

direction. We demonstrated that these effects originate from the orientation of the average

magnetization with respect to the main axes of the magnetic waveguide. In addition, it

is shown that the excitation efficiency of the second order width mode can overcome the

efficiency of the first width mode. This is traced back to the rotation of the phase front

which affects the mode profile and consequently also the excitation efficiency via the overlap

integral between the mode profile and the distribution of the excitation field. We demon-

strated that the relative intensity of the excited width modes can be controlled by the strain

state as well as by tuning the dimensions of the excitation area. These characteristics were

further compared to the classical excitation of spin waves via the Oersted field emitted by

a wire antenna. We show that the two excitation mechanisms generate spin waves with

similar behavior. However, the asymmetry in the spin-wave radiation due to the chirality of

the Oersted field is removed by using a magnetoelectric excitation mechanism.
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