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Abstract. The electro-phonon resonance effect is a consequence of a resonant interaction
betwzen two electric subbands mediated by an optical phonon. It cccors in a quasi-two-
dimensional electron system each time the energy difference between two electric subbands
equals the energy of a LO phonon. We study the influence of this effect on the electron mobility
by using the momentum balance equation. The temperature and electron density dependences
of the resonances are studied in the linear and non-linear response regimes.

1. Introduction

In a polar semiconductor at relatively high temperatures (7 > 50K), the dominant factor
limiting the mobility is the electron longitudinal optical (L0) phonon scattering process [1].
For electron motion in a quasi-two-dimensional system the effective electron—L0-phonon
interaction is enhanced [2], which consequently leads to a lowering of the mobility. The
quantum confinement in the z direction implies that the electron momentum in the z direction
has no longer to be conserved during a scattering event. When several electric subbands are
occupied in a quasi-two-dimensional electron gas (Q2DEG), resonant scattering between these
levels will occur each time the energy difference of two electric subbands equals the energy
of a LO phonon (hwi o). These resonances are called electro-phonon resonances [3-9]. At
resonance an enhancement of the scattering rate [8] will occur and the conductivity [8] and
the mobility [9] will be suppressed.

With the development and application of the HEMT (high electron mobility transistor)
structure {10], the study of this electro-phonon resonant effect is of importance in
understanding transport phenomena in semiconductors, For electron motion in a two-
dimensional semiconductor system, the investigation of multi-subband transport effects
at' low temperature has received some attention [4,9,11,12]. In the present paper we
are interested in effects that are the consequences of (i) the occupation of several electric
subbands, and (i) the electron-L0-phonon scattering process at a relatively high temperature.

The electro-phonon resonance effect is the electrical equivalent of the magnetic magneto-
Phonon resonance effect, which was predicted by Gurevich and Firsov [13] (for a review
see, for example, [3]). In the presence of a strong magnetic field, the magneto-phonon
resonance effect occurs under the condition Nhw, = hwpg where o, is the cyclotron
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frequency and N = |r — | is the difference between the Landau-level indices # and
n’. This magneto-phonon resonance has been observed experimentally {14, 15] and studied
theoretically [16] for a two-dimensional system. Much less research has been devoted to
the electro-phonon resonance effect. Komiyama and co-workers [3] have shown that (1)
the subband splitting in a MIS structure (i.e. a n-inversion layer on p-InSb) can be tuned
electrically by varying the electron density, and (ii} the electro-phonon resonance effect can
be observed when a strong quantizing magnetic fieid is applied perpendicular to the interface,
which provides a ‘zero-dimensional’ energy level structure. A Monte Carlo simulation for
high-field transport in a quantum wire was reported by Briggs and Leburton [6]. They found
that the resonant inter-subband LO phonon scattering occurs when the subband spacing
is equal to the LO phonon frequency. Recently, Kastalsky and co-workers [7] presented
experimental evidence of the electro-phonon resonance effect in a AlGaAs/Al Ga;. As
triangular quanturn well (TQW). We studied the lirear electro-phonon resonance effects in
[8] by calculating the electron-LO-phonon scattering rate and the conductivity as a function
of the energy difference of the electric subbands with different confinement potentials: (i) 2
square well, (if) a triangular well (to model the heterostructure), and (iii) a parabolic well.
A relaxation time approximation method was infroduced to calculate the conductivity.

In the present paper we employ the momentum balance equation proposed by Lei and
Ting [17, 18] to study the eiectro-phonon resonance effects. One of the advantages of this
approach is that dynamic electron—electron screening can be included when evaivating the
electron transport characteristics. In section 2 the momentum balance equation for the
mobility is derived by including electron scattered by LO phonons and electron—electron
screening. The numerical results for the electro-phonon resonances in the mobility are
presented in section 3 for linear and non-linear transport. Qur conclusions are summarized
in section 4.

2. The momentum balance equation

It has been demonstrated [19] that the momentum balance equation proposed by Lei and
Ting [17, 18] provides a vseful tool to study the transport properties of electrons in two-
dimensional systems. This momentum balance equation, which is based on the motion of
the centre of mass of the electron system within the 2D plane, is physically equivalent to the
momentum balance equation as derived from the Boltzmann equation which we applied to
study warm-electron transport [20] and the electro-phonon resonances [9]. In most of the
previous papers [17] on electron transport in 2 quasi-two dimensional system, one assumes
that only the lowest electron subband is occupied. To cbserve the electro-phonon resonances
we extend this balance equation to the sitwation of occupation of multi-subbands,

Recently [21] the applicability of the momentum balance equation, called the force-
balance equation, has been questioned. It is known that in the linear response regime such
an approach leads to a resistivity p = {1/t)m/n.e?, when the correct result is given by
p = m/{t)n.e’. For a degenerate electron distribution one has {1/r) = 1/(r} at zero
temperature and there is no discrepancy. However for a non-degenerate distribution [22]
{1/7) and 1/(r} are different, where the difference may depend on temperature [23]. In
spite of this criticism we will use the momentum balance equation because (i) we are dealing
with a degenerate electron gas, although at non-zero temperature, (ii) in general it gives the
correct qualitative behaviour, and (iii} it is relatively easy to obtain results in the non-linear
regime.
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The Hamiltonian describing the general electron—phonon interaction in a many-electron
quasi-two-dimensional system is given by

Hy = z Mpr(q, g, A-)elq R(bQA + b_q,\) E :C tk-+qa Cnko + (1)
n.n,
4.9, A.

Following Lei and Ting [17] the momentum balance equation for the electron—phonon
interaction is obtained by

neeE+ Fluwy=0 (2a)
with the force term

Fw)=2 Y Ml,(q.9:, )’qI°(', n, 9, Qs +q - v)
qu4:h
hQaqa (hﬂm +hq-v)

- 2b
x["(.m") "\ kel (26)
where v is the electron velocity of the centre-of-mass motion, T {T;) the lattice {electron)
temperature, n the index of the electric subband, Q@ = (g.4.). ¢ = (4=, 4y). R=(x, y,2),
b}}l and bg, are the phonon creation and annihilation operators, respectively, with
wavevector (@ and frequency Qg in branch A, cz,w and c¢,. are the electron creation
and annihilation operators, respectively, n{x) = 1/[exp(x) — 1] is the Bose function,
1%n’, n, g, t) is the imaginary part of the electron density—density correlation function,

and M, ,,,(q, Gz, A) = Mpu(q, gz, MYGpn(g;) the electron—phonon interaction matrix with
the form matrix

Grnlg.) = fdz ‘p;'(z)'w'n(z)exp(“‘i‘fzz)
which is determined by the electron wavefunction in the z direction.

2.1. Electron~LO-phonon coupling
In case of electrons coupled to LO phonons, (1) reduces to the Frohlich Hamiltonian [24]

Hey = Z: Q(anqe"’ Ry ani' e i R) E CotkbqoSnko (3)

where Vg = i(dma/ V)20 /2m* wL0) Pharo/(g? + gDV, o is the electron-LO-phonon
coupling constant (@ = 0.068 for GaAs), and w o the LO phonon frequency (hwio =
36.6meV for GaAs). The momentum balance equation (2) with an electric field applied
along the x direction is

neeE + F(v;) =0 (4a)

Fuy =23 1v°(q, 4:)Pq: 10’ m, ¢, 010 + 205)
n'.n,
4,9z

hayo hawpo +Rq:v;
* [n( kgT ) - n( kpTe )] (40)
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with

4o h G2, (q2)
0 2= £ 2~ wn\Y2
(g, g2 ( 7 ) T (haro) P

where v = w,e, is the average electron velocity, and I1%n’,n,4,®) is the Fourier
transformation of the electron density—density correlation function which will be calculated
in the following subsection.

in the limit of small electric fields, the electron response is described by the mobility
i, which is given by

i 2 0 2 P
-_—= z er s Flgtf,
m oo ’;m' [v'(g, g:)1"g:IT"(n", 1, q, wLo + gxVs)
q.q:
kgT kaT. ’

2.2. The electron density~density correlation function

The electron density—density correlation function plays a crucial role in the actual evaluation
of electron transport:

Nw.n,qe)=w,nqw+ill. nq o) (6a)

with I11(r’, n, q, @) the real part, and IT(n’, n, ¢, @) the imaginary part, and thus
N, n, g, w) = My (', 1, g, ©). (6b)
For the situation where electron—¢lectron screening is included within the random phase

approximation (RPA) [25], we obtained for the imaginary part of the electron density-density
correlation function

@', n,q,0) =%, q,0) = Im(zeg,! > w)ﬂ(r,q,w)) (72)
Y

where I1(n’, n, 9, ) is the electron density-density correlation function in the absence of
electron—electron screening, and the electron—electron screening is included through the
dielectric function

€8y {(q, @) = 8g, — Vg, (I1(¥, ¢, @) (7b)

where we used the notation 8, y = (%, n), and

2me? —gin~
Vor@) = Vermnal0) = 2~ [ a1 [ 22 Sy sytampe-sio=s (10

is the Fourier-transformed Coulomb potential for electron scattering between subband » and
n' screened by the scattering between m and m', with f5(2) = fus (z) = ¥%(2)¥n(2) and &
the static dielectric constant of the material (x = 12.9 for GaAs).
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In the appendix we present a calculation of the imaginary part of the electron density—
density correlation function when several electric subbands are included and in the presence
of electron—electron screening.

In the absence of electron-electron screening the electron density—density correlauon
function takes the form

' F(Enk+q) — F (Enk)
n p Fly By = 2 ~ Sa
(',n,q,0) ;MM#H_EHH]& (82)
which gives
' F{Ewirq) — f(Enk)
sl 4, =2P 8b
Mm@, n,q,) ; 70+ Evira — Enk (8b)
where P stands for the principal value, and
(0,7, @, @) = ~27 ) [F(Enkiq) — F(Euc) 8 + Enksg — Enk) (8¢)
P

where E,; = h%k%/2m" +¢, is the electron energy with &, the energy of the electric subband
n, and f{x) = t/{expl(x —u*)/kpT.]+ 1} is the Fermi~Dirac function with ¢* the chemical
potential. After some simplifications we find

M, n, q, @) = —5;,:—2 = f o= f(loun — erlx + o)
+ Vewn — Ew —hw f(—[enn — & — holx + Sy — hw)) (9a)
and
: 1 m* 1 ® dx
My, 1, @) = ’E%ﬁ | 5 6+ o —ho) = fax+ ) (9b)

with €, = 12¢2/2m* and &y, = &, + (&, + how + 8w — £)*/4¢,.

2.3. The momentum balance equation for the mobility

With the above expressions for the electron density—density correlation function we can
calculate the mobility:

1 al
"o _n ev, ::20 )22_[ dg ¢°X5(q) d& cosf
hwro h _
x[n(m)~n(k:;’;)]m[geﬁ;@.wm(y.q.w)] @

with @ = w0 + quycosd, Ly = (7/2m*wi0)*/? the unit of length (Lo = 39.5 A for GaAs),
and

G2, (g:) -

9’ +q?

X5(q) = Xwalg) = f dq,
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The chemical potential u* is determined by electron number conservation:

% Du(E)
= 1
" Zfa W PIE = )/ BTTT 1 (La)

with D, (E) the density of states for electrons in subband n. Introducing the density of
states (DOS) for a two-dimensional electron system

*

Z_O(E — &) (11b)

nh

Dn(E) =

equation (11a) reduces to

m"‘kBT
nh?

=

> Il + e~V ksTy, (11c)

In the case when a weak electric field is applied, the electron velocity is very small,
which means |quycos6] << 1 and T, = T, and we obtain the ohmic mobility

_alLgh(hw)?

1
n mnceksT

Mot + DY [ dq ¢ Xs@
B
X Im(Ze;J @, ©Lo)TI(y, q.aw) a2z
y

with Ng = 1/{exp(hawro/kaT) — 1] the LO phonon occupation number.

24. The case of a square well

To demonstrate the electro-phonon resonances, and for sake of simplicity, we consider the
case of a quasi-two-dimensional electron system with a square-well (QW) confinement of
variable width. This has the advantages that (i) an arbitrary number of electric subbands
can be included in the calcuiation, (ii} the position of the energy level of the subbands is
tuned by changing the width of the quantum well, (jii) the electron density dependence of
the electro-phonon resonance effect can be studied more directly, because the main effect
of changing the electron density is to alter the chemical potential, and (iv) as will be shown
in this subsection, the quantum-well confinement potential leads to a rather simple form for
the form matrix and the electron—electron screening.

For the infinite-height square-well case, the eigenvalues g, and envelope wavefunctions
Ya(z) are known analytically:

Yo(2) = ‘/ 2/Lsin(nxz/L) (13a)
ﬁ2 2.2

where L is the width of the square well. In the above expressions we need

oo G% (g;) =L
X, = , —mnTtE L
wn(g) f_mdq PR Inn(q) (14a)
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and
i . .
VﬁY(Q) = Viman(q) = _"—sx'—q'[l -+ ("“l)m +mtn +n1-fm'mn‘n(‘f) {14b)
where we introduce
1 1+ 6ym 7n'nlc s ntn=
Ipn(g) = ) 2+ ) 7 2 3 ) )
ail+c? ai+c® (@ +cN)Uai+ c)) n’ 4+ n =even

and

m'mn'n[l — (—1)"+re=2]
(af + c2)(a3 + ) (af + D) (af +¢?)

Imtmrn(q) =

with @, = (' + n}/2, a» = w(n’ — n)/2, a3 = w(m’ +m)/2, a4 = (M’ — m}/2 and
¢ = gL/2. Notice that (14b) implies that, for the quantum well case, electron—electron
screening occurs only when the condition m' + m + n’ + n = 2N (where N is an integer)
is satisfied. This greatly simplifies our calculation of the imaginary part of the electron
density—density correlation function when we include electron—electron screening.

3. Numerical results

We perform the calculation for material parameters corresponding to GaAs: (i) the electron
LO phonon coupling constant o = 0.068, (ii) the effective mass ratio m*/m, = 0.0665, (iii)
the LO phonon energy fiwio == 36.6 meV, and (iv) the static dielectric constant ¥ = 12.9.
The Lo phonon units are: the unit of length Lo = [A/(2m*wi0)]*? (Lo = 39.5 A for GaAs),
of velocity vo = (Zharg/m*)V? (vo = 4.40 x 10’ cms™! for GaAs), of temperature
Tio = haro/ks (TLo = 425K for GaAs), and of electric fieid Ey = ao(m*hoLo)!/? /e
(Ep =9.25%10* Vem™' for GaAs). In our numerical calculations we included the following
electric subbands n =1, 2, 3 and 4.

In figure 1 the chemical potential p* is shown (full curves) as a function of the well
width for (a) different temperatures: T = 50, 77, 100, 140 and 220K at a fixed electron
density n. = 2 x 10'' cm™2, and (b) different electron densities: #:(x10' em™?) = 0.1,
0.8. 2, 5 and 8 at a fixed temperature T = 77 K. The chemical potential decreases with (i)
increasing width of the quantum well, (ii) increasing lattice temperature and (iii) decreasing
electron density.

The electro-phonon resonance occurs at L ~ (jn? —n"*)"/2x Ly, which is the condition
that the energy difference between two subbands » and »’ equals a LO phonon energy iwio.
The electro-phonon resonance effects are more pronounced when we plot the derivative of
the mobility with respect to the width of the well. The ohmic mobilities along with their
derivatives are shown in figure 2 as a function of the weil width in the absence of e
screening: (z) for different temperatures at a fixed electron density n, = 2 x 10! cm™2,
and (b) for different electron densities at a fixed temperature T = 77K. For illustrative
purposes, and ir: order to be able to compare the results at different temperatures and electron
densities, we scaled the mobility and its derivative to their values at L = mLy = 1244,
Note that (i} the strongest resonance is observed for £ — &; = ko, which is reached at
L = 3xLy = 2154; (ii) the resonance that involves higher subbands is much weaker;
(iii) the resonances are more pronounced for the case when the lowest subband n = 1 is
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WIDTH OF QUANTUM WELL L(R)

o

n,=2x10"'cm™2
PRI IR R TR U SR T 1

CHEMICAL POTENTIAL 4*/fies g
P
[4)] 4]

WIDTH OF QUANTUM WELL L/7rL,

Figure 1. The chemical potential p2* (full curves) and the erergy levels (broken curves) of the
different electric subbands as a function of the width of the guantum well for: (a) different
temperatures at a fixed electron density 7. = 2 x 101 cm~2: from top to bottom the full curves
cormrespond to the temperature T = 50, 77, 100, 140 and 220K; and (b) different electron
densities at a fixed termperature T = 77 K: from top to bottom the full curves correspond to the
eleciron density ne(x 104 cm=2) = 8, 5, 2, 0.8 and 0.1, The dotted curves correspond to the
energy levels of the electric subbands: from top to botiom, # = 1, 2 and 3. For GaAs the Lo
phonon energy is foro = 36.6meV and the unit of length is Ly = A/ 2m w0 = 39.5A.

involved; (iv) the amplitude of oscillations decreases quickly with increasing temperature,
which is opposite to the temperature dependence found for magneto-phonon resonances;
this is similar to what we found in [8] by using the relaxation time approach: the physical
reason of this effect will be discussed below; (v) the amplitude of the oscillation decreases
slightly with increasing electron density; and (vi) the resonances shift to smailer well widths
with increasing temperature and increasing electron density.

To study the influence of electron—electron screening on the electro-phonon resonances,
the chmic mobility along with its derivative are shown in figure 3 (full curves) together
with the previous results without screening (broken curves) as a function of the width of the
quantum well (@) for two different temperatures, and (&) for two different electron deasities.
Compared to the situation without e-e screening, we observe that the screening leads only
to a small increase of the background for the mobility. This agrees with the results found
by Lei [26] in a GaAs/AlGaAs heterojunction. The reason behind this is believed to be [26]
that within RPA the enhancement of the LO phonon scattering rate due to dynamical effects
almost compensates the reduction by static screening over the entire temperature and electron
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Figure 2. The chmic mobility and ils derivative as a fonction of the width of the quantam
well in the absence of electron—¢lectron screening, (@) Different temperatures at a fixed electron
density ne = 2 x 10} cm™2, The mobilitics are scaled to their values at L = wLg which
are pg = p(Liwlyg = 1) = 3605727 (for T = S0K), 665279.7 (for T = 77K), 239385.8
{or T = 100K), 95613.13 (for T = 140K) and 43 842.11em®V™s~! (for T = 220K). {b)
Different electron densities at a temperature T = 77K. g = u(L/fr Ly = 1) = 669626.8 (for
ne = 10¥cm™2), 667962.7 (for ne = 8 x 10 cm=2), 665279.7 {for ne = 2 x 101Lem™?),
662 460.8 (for ne = 5 x 10!t cm™2) and 677648.6cm?V-1s~! (for 5. = § x 10} ecm™2).

density region. Hence we conclude that the electron—electron screening does not effect the
electro-phonon resonances very much for the case of Q2DEG in a square well. Therefore
from now on (in order to limit CPU time) we will neglect eleciron—electron screening.

Non-linear effects can be studied in different ways: (i) we can heat up the electron
system such that the electron temperature (T, ) is larger than the lattice temperature, or (ii)
the average electron velocity can be made non-zero by the application of a strong driving
electric field. The effects of an electron temperature T, > T on the mobility can be evaluated
by assuming (see (12)) that (i) the LO phonon cccupation number Ny depends only on the
lattice temperature, and (ii) the electron distribution depends on the eiectron temperature.
The ohmic mobility along with its derivative is plotted as a function of the well width in
figure 4 at a lattice temperature T = 4.2K and at an electron density n, = 2 x 10'! cm™2
for different electron temperatures. As far as the electro-phonon resonance is concerned, it
is clear that changing the electron temperature leads to almost the same effect as changing
the lattice temperature. This implies that the LO phonon emission scattering is the dominant
process responsible for the electro-phonon resonances.
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Figure 3, Influence of electron—electron screening (full curves) on the ohmic mobility and its
derivative as a function of the width of the quantum well compared to the result in the absence of
screening (broken curves) for (@) different temperatures at electron density ne = 2 x 101! em=2:
so = p{Lfw Ly = 1) = 8642033 (for T = 50K) and 96080.03 exe®V—15~! (for T = 140K);
and (b) different electron densities at temperature T < 77K: po = pu(L/n Lo = 1) = 669769.9
{for n, = 1019 em~2) and 670657.3ecm®V~15~! (for n, = 5 x 10! cm™2).

The electro-phonon resonances are more pronounced at lower temperatures, which
can be understood as follows: (i) with increasing ternperature the LO phonon absorption
scattering rate is increased, which leads to an enhanced background scattering process
and leads to a ‘relative’ smaller electro-phonon resonance; (if) the electron’s energy
distribution is smoothed by thermal broadening at higher temperatures, which contributes to
the smoothing of the resonances; and (iii) for the electro-phonon resonance effect the density
of state (DOS) has only a step-like behaviour, which has to be compared with the singular
nature of the DOS in the case of the magneto-phonon resonances. For the magneto-phonon
resonances, thermal broadening is more important and consequently leads to a decreasing
magneto-phonon resonance amplitude with increasing temperature.

So far the electro-phonon resonances have been studied within a linear response
regime. Assuming that T, = T the electro-phonon resonance effect for the mobility in
the non-linear response regime (the hot-electron region) can be calculated within (10).
In figure 5 the mobility and its derivative are plotted as a function of the width of
the quantum well for different electron velocities at a temperature T = 77K and an
electron density n. = 2 x 10" cm~2, Note that (i) the electro-phonon resonances are more
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Figure 4. The ohmic mobility and its detivative as a
function of the width of the quantum well for different
electron temperatures T, at a fixed lattice temperature
of T = 4.2K and electron density 7. =2 x 10!} cm™?.
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Figure 5, The mobility and its derivative in the non-
linear response regime as a function of the width of the
quantum well at temperature T = 77K and electron
density n. = 2 x 10! em™2 for different electron
velocities. For GaAs the unit of velocity is vp =
VHopim® = 4.40 x 107ems™t, pg = p(l/mly =
1) = 6652618 (for v/urp = 0.001), 6237510
(for v/mg = 0.05), 5651542 (for v/uo = 0.08),
516968.5 (for v/vLg = 0.1) and 261 793.4cm2V—15™!
(for vfug = 0.2) :

pronounced at small velocity (i.e. small electric field); (ii) the amplitude of the oscillations
decreases with increasing electron velocity, and the effect disappears at the electron velocity
v = 0.2vp = 8.8 x 10°cms~! for the case of T = 77K and n. = 2 x 10! cm™?; and
(iii) within the small-velocity regime, such that v < 0.1v.o increasing the electron velocity
leads only to a small change in the electro-phonon resonance effect.

4. Summary

In the present paper we have studied the electro-phonon resonance effect by using
a momentum balance equation approach with the inclusion of the electron-LO-phonon
interaction and electron-electron screening. The aim of this study was (i} to understand
the transport phenomena in a quasi-two-dimensional semiconductor system; (i} to give a
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quantitative description of ¢lectron transport in a Q2DEG in the situation where the electron--
LO-phonon coupling is the dominant scattering process limiting mobility and where several
electric subbands are occupied by the electrons; (iii) to extend our previous study in order to
include electron—electron screening; (iv} to study the electro-phonon resonance effect in the
chmic and hot-electron regime; and (v) to study the dependence on the lattice temperature,
the electron temperature, the electron density and the electron average velocity of the electro-
phonon resonance effect. :

Qur conclusions of this study can be summarized as follows. (i) For a quasi-two-
dimensional electron system in a polar semiconductor such as GaAs and at relatively high
temperatures the electro-phonon resonance effect occurs when the energy difference between
two electric subbands equals a LO phonon energy (Repo). (ii) The electro-phonon resonance
effect is more pronounced at lower temperatures. With increasing temperature, the amplitude
of the oscillations decreases and the position of the resonances shifts to smaller well widths
in the case of a square-well confinement potential, (iii) With increasing electron density,
the amplitude of the electro-phonon resonances slightly decreases and the position of the
resonances shifts to smaller well widths. (iv) The strongest oscillation for the electron—
phonon resonances is observed for £; — £ = fuwro. The resonances that involve higher
subbands are much weaker. (v) Electron—electron screening does not greatly influence
the resonance effect. Electron—electron screening increases slightly the background of the
mobility. (vi) Increasing the electron temperature leads to almost the same effect as changing
the lattice temperature for the electro-phonon resonances. The dominant scattering process
that induces the resonances is LO phonon emission. (vii) The electro-phonon resonances
are more pronounced at low average electron velocity, i.e the weak electric field limit. The
amplitude of the oscillations decreases with increasing electron velocity. (viii) We predict
that the electro-phonon resonance is favourably observed in experiments done at relatively
low temperatures, on a low electron density sample, and with a small electric field (the
linear response regime).

In the present paper, numerical resuits were given only for the theoretical model of
infinite-well confinement. Real systems have finite well depths or have a triangular-well-type
of confinement, like the experimental systems of [5,7]. The present calculation can easily
be generalized to such confinement potentials. The drawback of these more complicated
confinement potentials is that only a very small number (i.e. one or two} electric subbands
can be included in order to keep computer time at a realistic level. We believe that
our conclusions concerning electron screening and the dependence of the electro-phonon
resonances on the lattice and electron temperature, the electron density and the average
electron velocity are valid irrespective of the exact form of the confinement potential.

It is now well established [28] that in real Q2D systems the bulk LO phonons are altered
into interface and slab phonon modes. It is possible to generalize the present calculation in
order to include these new type of phonons. Because the energy of the interface phonons
are only slightly different from those of the bulk phonons the electro-phonon resonance
condition will be practically the same. We do not expect very different results from such a
generalization when compared to the present results. From [29] it may be inferred that the
amplitude of the resonances can be slightly larger, because of the enhanced electron—phenon
scattering due to scattering with the interface phonons.
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Appendix
In this Appendix we calculate the imaginary part of the electron density—density correlation
with inclusion of the electron—electron screening as calcuelated within the random phase
approximation (RPA) and where many electric subbands are present [27]. For convenience
of presenting and deriving the formulae, we introduce the following notations. First, the
correlation function in the absence of e—e screening:

I; = [0} +i I}, (A1)
Second, the dielectric function in RPA:

€j =€,§-+i€l-lj. (A?.)
Third, the correlation function in the presence of e—e screening:

P S S |
Ci=Cl+iCl=¢; T, (A3)

By solving the equations induced by the real and imaginary parts of (A3), we have for the
imaginary part of the correlation function

C} =leff + ¢ (el e, 17T, — () T}, (Ad)

After simplification we obtain for the imaginary part of the electron density—density
correlation function

C} =1e(el) ™ + ()17 H(e) ' 1] — (IR (A5)
Retuming to our previcus notations (see section 2} we have
= hn(Z_eg’(q.w>n(j.q. w))
7
with
& =8 — Vy@lLi(j.q.@) € =—V@)2(j.q,0)
and

n}.‘:—.l’ll(j,q.w) H}=n2(j»q1"’)'
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