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The evaluation of nucleation rates from molecular dynamics trajectories is hampered by the slow nucleation
time scale and impact of finite size effects. Here, we show that accurate nucleation rates can be obtained in
a very general fashion relying only on the free energy barrier, transition state theory (TST), and a simple
dynamical correction for diffusive recrossing. In this setup, the time scale problem is overcome by using
enhanced sampling methods, in casu metadynamics, whereas the impact of finite size effects can be naturally
circumvented by reconstructing the free energy surface from an appropriate ensemble. Approximations from
classical nucleation theory are avoided. We demonstrate the accuracy of the approach by calculating macro-
scopic rates of droplet nucleation from argon vapor, spanning sixteen orders of magnitude and in excellent
agreement with literature results, all from simulations of very small (512 atom) systems.
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I. INTRODUCTION

First order phase transitions are initiated by a nucle-
ation event, in which a small embryo of a thermodynam-
ically favored phase is formed within a bulk metastable
phase. Nucleation is an inherently difficult process to
study. In principle, the nanoscale dimensions of the crit-
ical nucleus make molecular dynamics (MD) simulations
a natural choice to probe the nucleation process. The
rare event nature of critical nucleus formation, which may
take seconds or longer, however puts it well beyond the
MD time scale.
The difficulties associated with nucleation simulations

are nicely illustrated by one of the simplest nucleation
processes, namely, the formation of a liquid droplet in
argon vapor. Even here, direct MD simulations can only
capture nucleation events at very high supersaturations1

or in very expensive massively parallel large-scale cal-
culations.2 In addition, the use of computationally effi-
cient small simulation cells introduces significant finite
size artifacts.3 Moreover, indirect rate calculations based
on classical nucleation theory (CNT) may be in error by
several orders of magnitude.2

Recently, accelerated molecular dynamics approaches
have started to address the key issues in this field.4,5

Slow argon droplet nucleation events can be observed in
direct MD simulations when an external bias potential is
applied. Under certain conditions, it is then possible to
quantitatively correct for the impact of the bias potential
on the apparent (shortened) nucleation time.6,7 This way,
trajectories corresponding to physical nucleation times
up to τ = 104 s have been sampled. This methodology
is in principle highly generic because, besides the simu-
lation model itself, no specific mechanistic assumptions
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are made. In addition, by using concepts from CNT,
estimates of macroscopic nucleation rates were obtained
a posteriori by correcting nucleation times from small-
scale simulations.4 Such accelerated MD approaches have
however not yet been applied to other types of nucleation
problems.

Yet, the enhanced sampling methods on which recent
accelerated MD work has been based have already been
broadly applied to different types of phase transitions in
atomistic simulations. Recent examples of such studies
include melting,8 solid–solid transitions,9,10 crystalliza-
tion from the liquid,11–16 and crystallisation from solu-
tion.17–19 Such approaches however do not directly pro-
duce nucleation rates, and rather aim to reconstruct the
free energy surface (FES) of the nucleation process.

The FES concept unifies the description of thermody-
namics across systems, avoiding any process-specific the-
ories: an appropriate set of low-dimensional order param-
eters is the only required system-dependent information.
Calculated FES for nucleation have therefore primarily
been used to investigate the thermodynamic aspects of
phase transitions.

The FES does, however, in principle also encode kinetic
information. It is possible to obtain free energy barriers
and, thus, calculate rates using transition state theory
(TST), at least for chemical reactions.20 Would this also
be possible for nucleation, thus unifying rate calculation
within a single framework? Indeed, dedicated “extraordi-
nary rate theories21” for specific processes tend to share
many common aspects and are ultimately equivalent.

Even though a large portfolio of tools has already been
applied to the calculation of nucleation rates—with re-
cent studies of various processes having employed seed-
ing approaches,22,23 transition path sampling (TPS),24

transition interface sampling (TIS),25,26 and forward flux
sampling (FFS)27–30—accurate calculation of realistic
nucleation rates is a formidable challenge in general.
Computed nucleation rates in any system are highly sen-
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sitive to every methodological aspect or approximation
in sometimes non-obvious ways.31 Moreover, different ap-
proaches to the calculation of nucleation rates can some-
times disagree quite strongly.2,32–34 Any new method-
ological perspective might therefore be valuable to un-
derstand such discrepancies.
In this manuscript, we demonstrate that highly accu-

rate nucleation rates can be calculated within the generic
workflow of a free energy calculation. It is not neces-
sary to rely on mechanistic assumptions35 or expression
derived from CNT,36,37 nucleation events need not be
explicitly sampled from dynamical trajectories, and it
is possible to account for finite size effects in a natu-
ral manner. In order to demonstrate the accuracy of our
approach, we first validate its rate estimates for droplet
nucleation from argon vapor in a small simulation cell
over a wide range of supersaturations. We then show
how, using the same small-scale system, this workflow
also allows to calculate rates free of finite size errors.

II. METHODOLOGY

A. TST rates for droplet nucleation

In order to generate a FES of an arbitrary process, one
must first identify at least one suitable collective variable
(CV) χ = χ(R) that is a function of the system coordi-
nates R and that can distinguish all states of interest.
This CV will also serve as a candidate reaction coor-
dinate of the process. Recently, we have demonstrated
that, whenever such a FES F (χ) is available for a process
A → B, its TST rate kTST can be calculated unambigu-
ously.20 For an arbitrary choice of the reaction coordinate
χ one can derive that the total flux through a dividing
surface χ = χ∗ in the configuration space R is equal to

kTST =

√

1

2πβm

∫

dR |∇χ|χ=χ∗ · δ[χ∗ − χ(R)] e−βU(R)

∫

dRH[χ∗ − χ(R)] e−βU(R)
,

(1)
in which U(R) is the potential energy of the system. |∇n|
is the norm of the gradient of χ(R) with respect to all
coordinates R and serves as a gauge correction to ensure
invariance of the rate with respect to the parametrization
of χ. β = (kBT )

−1, kB the Boltzmann constant, T the
temperature, and m the mass of the nucleating particles.
The step function H and delta function δ are used to
select configurations belonging to the initial metastable
state (χ < χ∗) and dividing surface (χ = χ∗) respectively.
The dividing surface χ = χ∗ can also be referred to as
the location of the transition state (TS). This expression
can be recast in terms of the free energy surface F (χ) (or
G(χ)):

kTST =
〈|∇χ|〉χ=χ∗√

2πβm
e−β(F (χ∗)−FA), (2)

in which state FA is the integrated free energy of state
A, which we have defined as all configurations for which
χ < χ∗:

FA = − 1

β
ln

∫

χ<χ∗

dχ e−βF (χ). (3)

We can now rewrite the expression for kTST to be equiv-
alent to the well-known Eyring formula:

kTST =
1

hβ
e−β∆‡F , (4)

in which h is the Planck constant. To do this, we must
define the free energy barrier ∆‡F as:

∆‡FA→B = F (χ∗) +
1

β
ln

〈|∇χ|〉−1
χ=χ∗

h

√

2πm

β
− FA. (5)

As we have argued before, besides ensuring compatibility
with the Eyring expression, this definition of ∆‡F also
has a physical significance: It measures the probability of
generating a configuration χ = χ∗ from the full ensemble
of A states, i.e., states for which χ < χ∗.20

Note that we have made no assumptions whatsoever
about the mechanism or nature of the A → B transition,
or put any requirements on χ. To be useful, χ of course
has to be able to properly discriminate states A and B,
and parametrize an appropriate dividing surface between
the two.
In a condensation process state A is the vapor phase g,

and B is the liquid l. For droplet nucleation, the number
of liquid atoms (the ten Wolde–Frenkel parameter) n38

has been a common choice.1,4,5 An atom is considered
liquid when it has more than 5 close neighbors.38

Thus, we choose χ = n. It must be noted that n, as
defined in this work, does not strictly count the number
of atoms inside the largest droplet. It is rather a mea-
sure of the number of highly coordinated atoms. Low-
coordinated atoms also make a (small) contribution to
n, even if they have no direct neighbors, while atoms at
the surface of a droplet may not be fully counted. This
is a consequence of requiring n to be a computationally
convenient continuous function that can be used to in-
duce transitions from gas to liquid, and back. As a re-
sult, n is also not a valid definition of cluster size within
the context of classical nucleation theory because it does
not strictly count the number of atoms inside the largest
cluster only.33

None of this matters much from a TST perspective.
n = n(R) is ultimately just some order parameter that
exfoliates configuration space and parametrizes a divid-
ing surface n = n∗. n∗ is in this context defined as the
value of n that maximizes the geometric free energy sur-
face FG(n)39:

FG(n) = F (n)− 1

β
ln〈|∇n|〉n(R)=n. (6)

This is mathematically equivalent to variationally mini-
mizing the TST rate Eq. (1), because it is the classical
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upper bound of the true rate. FG(n) can be obtained
simultaneously with the standard FES F (n) by reweight-
ing.20

We sometimes refer to n∗ as the “critical nucleus size”
although it is, strictly speaking, not the size of the actual
critical nucleus within macroscopic CNT for the reasons
outlined above. Whether or not we can identify the crit-
ical nucleus—or if it even exists—is however irrelevant.
After all, we could just as well have used a more advanced
reaction coordinate that also accounts for cluster shape5

or one that has an even less pronounced connection to the
nucleus size, such as a generic measure of global order.12

Any possibility to interpret the reaction coordinate in
terms of cluster size is then lost, but we can still proceed
to calculate the TST rate as described previously.20

It is worth pointing out that an earlier model of the
droplet nucleation rate was also based on TST.35 Com-
pared to our approach, the TST rate expression was con-
structed only for a single (elementary) monomer addition
or evaporation process at a cluster of fixed size n, whereas
we derive a single expression for the total nucleation rate
without explicitly assuming a mechanism based on se-
quential monomer addition only.
The FES is calculated within a small simulation cell,

and the resultant barrier derived from this FES is the
formation free energy of a critical nucleus (or, more gen-
erally, dividing surface) within this cell. That is, the
barrier in Eq. (5) and TST rate Eq. (4) are only defined
for the N -atom system in which the nucleation free en-
ergy surface was obtained. Therefore, kTST is the TST
nucleation rate inside this particular simulation cell. To
obtain a global nucleation rate J , we must divide k by
the initial volume V of the simulation cell:

JTST =
kTST

V
. (7)

kTST is a strict upper bound to the true rate and, con-
sequently, JTST could overestimate the true nucleation
rate J . A failure of TST can mostly be traced back to
one of two following phenomena:

1. the reaction coordinate n does not parametrize a
proper dividing surface and ∆‡F is underestimated,
or;

2. not every crossing of the dividing surface n = n∗

results in an effective transition g → l.

B. Committor analysis and recrossing correction

We propose that committor analysis, which is a stan-
dard way to verify the quality of a candidate reaction co-
ordinate χ, can simultaneously be used to obtain a trans-
mission coefficient κ, which compensates for recrossings
of the dividing surface. The committor pl is the proba-
bility that an ensemble of configurations commits to the
liquid state l.40 If pl > 0.5 configurations can be consid-
ered to belong to the liquid state, if pl < 0.5 they are

part of the vapor, and if pl = 0.5 they are part of the
transition state ensemble. As a result, the quality of our
putative dividing surface n = n∗ as identified from the
geometric FES (6) can be assessed by subjecting a sample
of n = n∗ states to a committor test. Finding pl = 0.5 is
a necessary condition for being a suitable dividing surface
and can thus be used to validate the reaction coordinate
n.
If we find pl ≈ 0.5, we assume that recrossings are in-

trinsic to the true dividing surface. We now also assume
that the system spends such a long time in the transi-
tion state (TS) region that it becomes fully decorrelated.
This corresponds to fully diffusional barrier crossing dy-
namics. The TST rate, by definition, amounts to all
crossings of n = n∗. Therefore, if we count the aver-
age number of TS crossings jcross during the committor
analysis we can directly measure the correction to the
TST rate. The fraction of TS crossings that effectively
results in a nucleation event is pl/〈jcross〉. This quantity
therefore corresponds to the transmission coefficient κ.
In addition, if it was previously found that pl = 0.5, we
have κ = (2〈jcross〉)−1.
The final estimate of the nucleation rate inside the cell

volume V is now

k = κkTST =
κ

hβ
e−β∆‡F , (8)

and the global nucleation rate is

J = κJTST =
κkTST

V
. (9)

Transmission coefficients and recrossings have received
much interest, and several theories have been developed
to rationalize the concept, including CNT or Kramers’
theory.41 Here, we however only calculate numerical val-
ues of κ for the chosen reaction coordinate, directly em-
ploying its definition within TST: The ratio between the
effective rate and the TST rate associated with the reac-
tion coordinate. Compared to more dedicated theories,
the current approach offers little direct physical insight
but, as we will show, it is accurate and simple to apply.

III. COMPUTATIONAL DETAILS

All simulations were carried out with LAMMPS42

and the PLUMED plugin.43,44 The interatomic inter-
actions between the Ar atoms was described using a
Lennard-Jones potential with ǫ = 0.99797 kJ/mol and
σ = 3.405 nm. The interaction was truncated at a dis-
tance of 6.75σ. These parameters fully match those used
earlier.1,4,5

The equations of motion were integrated with a time
step of 5 fs and temperature control at T = 80.7 K was
achieved using a Langevin thermostat45 with a time scale
of 1 ps. A Langevin thermostat was found to be nec-
essary to maintain a strict equipartition of the energy
in the system, between vapor and liquid phases. Note
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that such a thermostat should not be used when explic-
itly sampling nucleation times (i.e., in brute force MD
or infrequent metadynamics), since the Langevin friction
affects the rate of processes. For this reason, we used a
global thermostat46 when performing committor analy-
sis, which retains the equilibration efficiency of its local
Langevin counterpart while leaving dynamical trajecto-
ries mostly unperturbed.47

Constant volume (NVT) simulations were performed
in periodic cubic simulation cells of different size. Fol-
lowing previous definitions 1,4,5, each system is identified
by its supersaturation level S, defined as

S =
NkBT

peV
, (10)

in which pe = 0.43 bar.
Constant pressure (NPT) simulations were performed

in the same way as the NVT simulations, except that
the equations of motion are those of a Nosé–Hoover style
barostat.48 The imposed pressure p for each value of S is
chosen by an initial NVT simulation in a box with a size
found from eq. (10). We use this approach, rather than
using p = Spe, because we wish to comply with the ideal
gas law-based naming scheme established earlier.
In order to achieve sufficient sampling along the re-

action coordinate n, some enhanced sampling scheme
is necessary. Here, we choose well-tempered metady-
namics49,50 because it is a widely available method that
demonstrates the ease by which our approach can be
implemented practically. The approach presented here
is however method-agnostic and other sampling strate-
gies can employed to reconstruct the FES if they are
more efficient or practical. Other free energy stud-
ies of phase transitions have used, for example, um-
brella sampling,34,36–38 variationally enhanced sampling
(VES),12,15 adiabatic free-energy dynamics (AFED),8,10

on-the-fly probability-enhanced sampling (OPES),16 and
reweighted Jarzynski sampling.51

The metadynamics parameters were almost equal in all
systems. As a CV, we used the number of liquid atoms
n, defined using switching functions of the type

s(x) =
1− (x/x0)

6

1− (x/x0)12
. (11)

First, a coordination number ci is calculated for each
atom i, by summing s(rij) using the pairwise distance rij
with all other atoms j within 10 Å, and r0 = 5 Å. Then,
n is calculated as the sum of all s(ci), using c0 = 5.

The external bias potential in metadynamics is history-
dependent and expressed as a sum of repulsive Gaussians.
Every 50 ps, a Gaussian of initial height w = 0.5 kJ/mol
was added to the total bias. The width of each new
Gaussian was determined using a diffusional scheme,52

on a time scale of 25 ps. Well-tempered metadynamics
was used with bias factor γ = 15, to gradually reduce the
size of the newly added Gaussians and smoothly converge

the bias.50 FES estimates were produced by reweight-
ing53 200 ns chunks of the biased trajectory. The total
simulation time was 1 µs for each system.
We used harmonic restraints on n to keep the droplet

from growing too large. These were placed at n = 64 (for
S > 6.01) or n = 128 (otherwise).
Representative system configurations with n = n∗ for

committor analysis were generated using steered MD
(SMD), and a set of 10 independent trajectories were
launched for each condition. For each trajectory, we
recorded the number of times jcross the system crosses
the dividing surface defined by n = n∗. 20 ns per tra-
jectory proved to be sufficient for all systems, except for
S = 4.81.

IV. RESULTS AND DISCUSSION

A. The finite size limit

We first study nucleation in a vapor of 512 Ar atoms
in the canonical (NVT) ensemble using Langevin dynam-
ics45 within several fixed box volumes V (Table I). Each
box size represents a different supersaturation level S.
Specifically, we consider a series of systems at a temper-
ature T = 80.7 K, for which accurate rate estimates are
available from (accelerated) MD trajectories.1,4,5 As an
example, we plot in Fig. 1a the FES for nucleation in a
cubic cell with an edge length of 11.5 nm, or S = 8.68.
If we assume κ = 1, we can use (4) to calculate the TST

rate kTST and also obtain a TST-style estimate estimate
JTST of the global nucleation rate J . Only the free en-
ergy surface F (n) (and an appropriate gauge correction)
is needed to calculate kTST.
While TS crossing in many chemical reactions can be

considered to be ballistic (and k ≈ kTST), this may not be
the case for nucleation processes. Not every occurrence
of a configuration R for which n(R) = n∗ necessarily cor-
responds to a nucleation event. As can be seen in Fig. 1b
and Table I, a poor agreement with literature rates is
obtained when we calculate a nucleation rate JTST from
kTST. On average JTST and J ref deviate by three orders
of magnitude.
From a committor test we always found that pl ≈ 0.5

in all cases, confirming the quality of the CV n. From
just 10 trajectories per S, we also obtained estimates
of κ that have a precision similar to that of JTST, and
are in the order of 10−3 (Table I). TS crossing is there-
fore highly diffusive, thus validating our assumption that
trajectories around n = n∗ become fully decorrelated.
Our final nucleation rate estimates J now match very
well the J ref values, as can be seen in Fig. 1b. This
agreement is even more remarkable when realizing that
rate estimates purely from CNT can be off by several
orders of magnitude.2 Such inconsistencies in nucleation
rate predictions are quite common: A spectacular exam-
ple is ice formation, for which rates calculated by dif-
ferent approaches (seeding, forward flux sampling, and



5

TABLE I. Nucleation barriers ∆‡F , TST rates JTST, transmission coefficients κ and final rate estimates J in a fixed-volume
(NVT) 512 Ar system. Different supersaturations S are simulated by choosing the simulation cell edge length L. Reference
rates Jref are given for comparison.a

S L ∆‡F JTST κ J Jref

(nm) (kJ/mol) (cm−3 s−1) (10−3) (cm−3 s−1) (cm−3 s−1)
11.43 10.5 3.76± 0.15 5.34± 1.23× 1027 4.9± 1.4 2.62± 0.95× 1025 1.84± 0.27× 1025

9.87 11.0 5.13± 0.27 6.03± 2.44× 1026 2.6± 0.9 1.58± 0.83× 1024 1.09± 0.19× 1024

9.04 11.3 6.59± 0.18 6.36± 1.69× 1025 2.5± 0.4 1.61± 0.50× 1023 1.10± 0.27× 1023

8.68 11.5 7.46± 0.30 1.65± 0.73× 1025 2.1± 0.5 3.52± 1.73× 1022 2.80± 0.82× 1022

6.76 12.5 12.20± 0.19 1.10± 0.32× 1022 1.0± 0.2 1.10± 0.39× 1019 0.64± 0.33× 1019

6.01 13.0 16.31± 0.51 2.12± 1.63× 1019 1.1± 0.2 2.37± 1.85× 1016 1.26± 0.56× 1016

5.36 13.5 20.78± 0.13 2.44± 0.47× 1016 0.6± 0.2 1.57± 0.48× 1013 1.30± 0.75× 1013

4.81 14.0 25.24± 0.07 2.81± 0.29× 1013 0.2± 0.1 5.46± 1.08× 109

a Reference values taken from Tsai et al.5 for S ≥ 9.04 and from Salvalaglio et al.4 otherwise.

a CNT-based recipe) were found to span nine orders of
magnitude even though the employed water model and
simulation conditions were the same.34

As can be seen in Fig. 2, the relative contribution of κ
to the overall nucleation rate is similar to that of the ex-
ponential e−β∆‡F term at high supersaturations. With
decreasing S, the nucleation barrier increases strongly,
while κ only has a weak dependence on S. The fact that
nucleation time scales over the whole studied supersatu-
ration range span sixteen orders of magnitude can there-
fore be almost exclusively attributed to the exponential
term in the rate expression Eq. (9).

B. Macroscopic nucleation rates

Nucleation rates calculated in a small simulation box
with fixed dimensions are affected by finite size effects.
This is because the growing droplet depletes the gas
phase and, thus, artificially decreases the supersatura-
tion. Salvalaglio et al.4 corrected their accelerated MD
simulations by estimating the finite size error from CNT
expressions. However, a much more generic solution to
the finite size problem is available within our FES-based
approach. If we calculate the FES within the constant
pressure NPT ensemble, the vapor phase is kept at its ini-
tial pressure throughout the simulation because the box
size is allowed to vary.
We therefore repeat our metadynamics simulations in

the NPT ensemble. Taking yet again the case of S = 8.68
as an example, we see that the FES of nucleation—which
now represents the Gibbs free energy G rather than the
Helmholtz definition F—is significantly affected by the
ensemble change (Fig. 1a and Table II). In this sys-
tem, the nucleation barrier ∆‡Gg→l decreases by about
0.6 kJ/mol (∼kBT ). κ appears not appreciably affected
by finite size effects, meaning that our final estimate of
the macroscopic nucleation rate J∞ is about 3 times
higher than the finite size estimate J , which is in per-
fect agreement with the estimates of Salvalaglio et al.
(Fig. 1c). More generally, our results closely match finite

size-corrected nucleation rates for all S with available
reference data. With decreasing S, the magnitude of the
finite size effect increases very strongly, up till four orders
of magnitude for S = 4.81.

It may also be possible to directly sample nucleation
rates in the NPT ensemble, using accelerated MD. How-
ever, although the employed thermo- and barostat cor-
rectly reproduce the thermodynamic averages of the tar-
get ensemble, they achieve this by augmenting the equa-
tions of motion with an artificial friction term.45,48 The
dynamical trajectories of all atoms are thus affected.
It has therefore been argued that also nucleation times
could be unphysical to some extent, although the mag-
nitude of this possible effect was not quantified.2,32 In
contrast, the TST rate is purely an equilibrium prop-
erty of the system: The FES (or barrier) only depends
on the underlying thermodynamic distributions, and not
the precise dynamical trajectories.

More generally, calculating nucleation free energy bar-
riers is a matter of sampling along a suitable reaction co-
ordinate (or CV), while maintaining the nucleating par-
ticles at a physically meaningful chemical potential µ.
Depending on the process, such can be achieved in the
NPT,8–15 NVT,19 or µVT ensembles.18 As we show here,
the resultant FES (and accompanying committor anal-
ysis) then suffices to calculate accurate macroscopic nu-
cleation rates from TST. Care must be taken, however,
to ensure that the system is large enough to accommo-
date the critical nucleus. Convergence tests using differ-
ent system sizes can reveal any remaining size effects11

which, as will be shown in Section IVF, are absent in our
setup.

C. Efficiency of the rate calculation

The efficiency of accelerated MD simulations is often
expressed in terms of an acceleration factor α, which is
the ratio of the transition time τ and the length of the
MD trajectory needed to observe it in the biased simula-
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TABLE II. Nucleation barriers ∆‡G, TST rates JTST
∞ , transmission coefficients κ and final rate estimates J∞ in a constant

pressure (NPT) 512 Ar system that approximate the physics of a macroscopically sized system. Different supersaturations S

are simulated by enforcing a pressure p. Reference rates Jref
∞ are given for comparison.a

S p ∆‡G JTST
∞ κ J∞ Jref

∞

(atm) (kJ/mol) (cm−3 s−1) (10−3) (cm−3 s−1) (cm−3 s−1)
11.43 3.92 3.65± 0.17 6.33± 1.58× 1027 5.9± 2.0 3.75± 1.56× 1025 3.04± 0.70× 1025

9.87 3.52 4.99± 0.12 7.44± 1.32× 1026 2.9± 1.0 2.16± 0.84× 1024

9.04 3.30 6.12± 0.07 1.28± 0.13× 1026 3.9± 0.9 5.05± 1.25× 1023

8.68 3.16 6.83± 0.20 4.22± 1.24× 1025 2.4± 0.4 1.01± 0.35× 1023 8.64± 2.53× 1022

6.76 2.55 11.47± 0.38 3.25± 1.84× 1022 3.1± 0.9 1.00± 0.64× 1020 0.51± 0.27× 1020

6.01 2.31 14.49± 0.24 3.20± 1.13× 1020 1.2± 0.4 3.87± 1.94× 1017 2.57± 1.14× 1017

5.36 2.08 17.42± 0.06 3.62± 0.31× 1018 0.8± 0.3 2.92± 1.04× 1015 1.35± 0.78× 1015

4.81 1.89 20.98± 0.29 1.62± 0.69× 1016 0.9± 0.2 1.39± 0.67× 1013

4.33 1.71 26.23± 0.13 5.77± 1.14× 1012 0.6± 0.2 3.32± 1.13× 109

a Reference values taken from Salvalaglio et al.4 where available.

tion, i.e.,

α =
τ

tMD
. (12)

The reference rates J ref used here were obtained within
the infrequent metadynamics framework.7 In infrequent
metadynamics, a standard metadynamics setup is em-
ployed, but the deposition of the Gaussian bias potentials
is done more slowly. The idea is that this helps to ensure
that the dividing surface between states (here n = n∗)
is not biased, and the simulation becomes equivalent to
hyperdynamics.6 Then, α = 〈eβV (n)〉b, in which V (n) is
the bias potential and 〈· · · 〉b denotes a time average over
the biased trajectory.
Using infrequent metadynamics simulations,

αiMetaD = 1.7 × 1011 could be reached for S = 5.36.
However, in order to obtain correct statistics, several
independent observations nsim of the transition were
needed. We can use a similar definition to calculate
αFES for the FES-based estimation of the rate, in
which we take tMD as the time needed to converge
the FES estimates (1 µs in total), plus the time spent
for committor analysis (10 × 20 ns). The discrepancy
between the two definitions lies in the value of nsim.
Therefore, we can compute the relative efficiency η of
the two approaches as:

η = nsim
αFES

αiMetaD
. (13)

A clear discrepancy between different infrequent meta-
dynamics studies becomes apparent, where Tsai et al.
used significantly more aggressive biasing parameters
than Salvalaglio et al. In addition, and also not directly
discernable from Table III, the former authors used a
more complex CV, which besides n also contained infor-
mation about droplet shape. A single MD step in the
study of Tsai et al. therefore also required more CPU
time. A short test indicated that our implementation
of n is about 30 times faster to evaluate than their pre-
ferred CV for biasing. Indeed, due to the high cost of

TABLE III. Nucleation times τ in NVT simulations, number
of infrequent metadynamics runs nsim and acceleration fac-
tors αiMetaD in the literature,a acceleration by the FES-based
approach αFES, and relative efficiency η of the two.

S τ (s) nsim αiMetaD αFES η

11.43 3.30× 10−8 20 6.40× 101 2.75× 10−2 0.01
9.87 4.77× 10−7 20 1.10× 103 3.97× 10−1 0.01
9.04 4.29× 10−6 20 7.80× 103 3.58× 100 0.01
8.68 1.87× 10−5 100 1.80× 102 1.56× 101 9.95
6.76 4.64× 10−2 50 2.40× 105 3.87× 104 8.06
6.01 1.92× 101 50 6.30× 107 1.60× 107 14.44
5.36 2.59× 104 50 1.70× 1011 2.16× 1010 11.66
4.81 6.67× 107 5.56× 1013

a αiMetaD and nsim values taken from Tsai et al.5 for S ≥ 9.04
and from Salvalaglio et al.4 otherwise.

their simulations no supersaturations below 9.04 could
be simulated.5

Nevertheless, we see that a FES-based approach only
starts to become competitive at lower supersaturations,
where it quite consistently outperforms infrequent meta-
dynamics by an order of magnitude. In addition, without
changing biasing parameters, we could calculate rates for
supersaturations as low as S = 4.33 in the NPT simu-
lations, with τ ∼ 108 s, and αFES = 8.2 × 1013. We
can therefore anticipate that using the FES and TST be-
comes an increasingly attractive option when interatomic
potentials become more expensive and/or nucleation bar-
riers become higher.

Furthermore, metadynamics may not necessarily be
the most efficient free energy method under all condi-
tions. Plenty of alternative free energy methods have
been reported in the literature and implemented in
widely available codes such as PLUMED. We have re-
cently already demonstrated that a new method based
on nonequilibrium sampling improves upon metadynam-
ics by a factor ∼3 in the S = 8.68 NVT case.51
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FIG. 1. Calculation of Ar droplet nucleation rates from TST.
(a) Effect of the ensemble on the free energy surface. Inset:
snapshot of a droplet n ≈ 64. (b) Comparing computed TST
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semble to their NPT counterparts J∞ and finite size-corrected
macroscopic rates from the literature Jref

∞ as a function of S.

D. Discussion of errors

Overall, the agreement between infrequent metady-
namics and the TST-based approach is very good. This
is quite remarkable considering that the most prominent
sources of error of both methods go in opposite direc-
tions.

Suboptimal CVs have a negative impact on the per-
formance of infrequent metadynamics: If the CV does
not contain all slow modes in the system, the bias po-
tential will not be effective, leading to overfilling of the
metastable basin before a transition can occur. Or, put
differently, a poor CV will not properly distinguish tran-
sition states from metastable states, meaning that bias is
also added to the transition states, leading to a violation
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FIG. 2. Relative contributions to the nucleation rate J . Val-
ues of the exponential term e−β∆‡F and transmission coeffi-
cient κ are plotted as a function of ln−2 S.

of the hyperdynamics assumption.6 As a result, transi-
tion times will be overestimated, and predicted rates will
be underestimated.5,54

A poor CV can still be sufficient to enhance sampling
and converge a FES. Because it mixes TS states with sta-
ble states the apparent free energy of the TS will however
be too low. Therefore, rates computed from this barrier
will always be an upper bound of the true rate, and are
prone to overestimate it.
We attempted to minimize the error in the reference

nucleation rates by selecting the values Tsai et al. ob-
tained using their optimized CV, rather than n. Sal-
valaglio et al. only used n, but were significantly more
prudent with respect to their biasing parameters.
Despite using n as a CV, which may be suboptimal5,

our rates are very close to the infrequent metadynam-
ics estimates. There may, however, be a slight bias to
somewhat higher rates (up to 2 times higher than the
reference, but always within error bars), in line with the
reasoning outlined above. The overall good agreement
of the competing approaches is however consistent with
the observation of Tsai et al. that the barrier along their
optimized CV was not appreciably higher than the one
along n.5 Note, also, that small differences in numeri-
cal precision between the employed codes may introduce
small deviations.
Finally, our committor analysis reveals one important

point of caution when applying infrequent metadynamics
along n. Because the system may spend up to 10 ns in the
TS region, it is very difficult to guarantee an uncorrupted
TS if new Gaussian biases are continuously added: Only
simulations with impractically low bias addition rates or
very small Gaussians are truly trustworthy.
Rates have an exponential dependence on nucleation

free energy barriers, so even small uncertainties in the
FES can result in large error bars on a final rate esti-
mate. For almost every system we have managed to keep
the uncertainty on the barrier well below kBT , leading
mostly to errors between 30 and 60 % on the rate. These
error bars are similar to those reported by Salvalaglio et
al.4 Somewhat higher uncertainties have been reported
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on nucleation rates computed by forward flux sampling
(between 150 and 500 %) in diverse systems.27–29

E. Interpretation of the transmission coefficient

In the strictest sense, the objective of our study is to
obtain nucleation rates. As a consequence we have not
interpreted the values of the nucleation barrier or trans-
mission coefficient κ in great detail. These two quantities
are however quite interconnected.
Indeed, the value of κ as used in our study can poten-

tially serve two purposes. If we assume that n = n∗ is
the best possible choice of dividing surface, the free en-
ergy barrier will be maximized (in the spirit of variational
TST) and κ < 1 represents the inherent diffusivity in the
TS region. In such case, a no-recrossing dividing surface
does not exist, and κ captures dynamical (friction) effects
that lower the true TST rate.
Alternatively, recrossings may also be a consequence

of a poorly chosen dividing surface. In that case n = n∗

also contains configurations with lower free energies (so
the apparent barrier is too low) and is crossed more than
the true dividing surface (so κ becomes smaller). In such
a situation, the final rate estimate may still be accurate,
but barrier and transmission coefficient have less of a
clear-cut physical significance.
However, note that we use steered MD to generate trial

n = n∗ configurations for committor analysis, starting in
the g state. If n = n∗ is a poor dividing surface, one
would expect these configurations to be biased towards
the g state because there is a residual barrier still un-
accounted for in F (n). As a result, the SMD run will
be unable to place the system exactly on the true divid-
ing surface and pl < 0.5 Because we do, however, find
pl ≈ 0.5 we conclude that such residual barrier is negligi-
ble (∼kBT ). More rigorous tests for candidate dividing
surfaces have also been proposed.55

It is therefore likely, then, that the very low values of
κ (in the order of 10−3) are mostly a manifestation of in-
trinsic dynamic effects. This is a reasonable conclusion,
considering that droplet growth is a process fully driven
by diffusion of gas atoms, balanced by re-evaporation of
atoms from the liquid. The stochastic nature of these
phenomena is compatible with small transmission coeffi-
cients.

F. Comparison with a CNT-based approach

Our method bears some resemblance with the popular
“parameter-free” implementation of CNT pioneered by
Auer and Frenkel.36,37 As in our approach, a nucleation
FES must be reconstructed first and a rate estimate is
calculated from the barrier. It is important to note, how-
ever, that this expression is based on a definition of the
barrier within the macroscopic CNT framework.

To wit, within the NPT ensemble, the rate is expressed
as

J = Zf+ρge
−βG∗

. (14)

Herein, G∗ = G(n∗)−G(0), ρg is the number density of
the metastable vapor, f+ is the attachment rate on the
critical nucleus, and Z is the Zeldovich factor.
The attachment rate f+ can be calculated in several

ways. Most commonly, one launches several trajectories
starting from a critical nucleus, and calculates f+ as a
diffusion coefficient in n:

f+ =
〈(n(t)− n(0))2〉

2t
. (15)

Alternatively, in the case of droplet nucleation, one can
use kinetic gas theory4:

f+ = A(n∗)
ρg,e√
2πβm

. (16)

The density of the vapor at coexistence is ρg,e = ρg/S.
A(n∗) is the surface area of the critical nucleus, which
can be calculated if the number density ρl of the liquid
is known:

A(n∗) =

(

36π

ρ2l

)1/3

(n∗)2/3. (17)

The Zeldovich factor Z is computed from the free en-
ergy surface G(n) as

Z =

√

β

2π

∣

∣

∣

∣

d2G(n)

dn2

∣

∣

∣

∣

n=n∗

. (18)

We illustrate the application of this approach with a
calculation of J∞ for S = 8.68. From the FES G(n)
we compute Z = 0.065. Our two possible estimates of
f+ however differ quite strongly: The direct measure-
ment of the diffusion coefficient using Eq. (15) yields
2.5 × 1011 s−1, whereas the kinetic gas theory expres-
sion Eq. (16) predicts 9.2 × 109 s−1. Also note that the
former estimate is difficult to converge, and has a relative
error bar of 100%.
Now, we must calculate G∗ = G(n∗) − G(0). This

expression is however only valid if G(n) has the shape
predicted by CNT. Because the order parameter n does
not strictly count the number of atoms in the critical
nucleus only, G(n) thus deviates from the CNT shape
in particular for small n with increasing system size N
(Fig. 3). The minimum of this curve is now located at
nmin > 0 Therefore, the apparent barrier height G(n∗)−
G(nmin) is also size-dependent (Table IV). The precise
nature of these issues was only recently addressed in full
detail.33,56 In principle, the definition of the barrier as
G(n∗)−G(0) can be retained only if G(n) is transformed
first into a macroscopic function consistent with the CNT
definition of critical cluster size.33

A more ad hoc correction can be derived as follows.
e−βG∗

is defined as the relative “equilibrium” probability
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TABLE IV. Size-dependence of nucleation barriers obtained
from NPT simulations with different number of atoms N , for
S = 8.68.a Values of JTST

∞ , directly estimated from Eqs. (4)
and (7), show that our TST-based procedure naturally ac-
counts for the extensive nature of ∆‡G.

N G(n∗)−G(nmin) ∆‡G JTST
∞

kJ/mol kJ/mol cm−3 s−1

216 7.74 7.26 5.2× 1025

512 6.86 6.68 5.3× 1025

1000 6.18 6.36 4.4× 1025

a All barriers were computed from a single, long reweighting run.
For fairness, this is also true for the N = 512 case. This
explains the slightly different value for ∆‡G compared to the
value in Table II. It also explains the lack of error bars.

to form a critical nucleus around one monomer, and has
to be multiplied by the monomer density ρg to yield the
“equilibrium concentration” of critical nuclei. It is there-
fore an intensive, macroscopic quantity. The quantity
G(n∗)−G(nmin) is the work required to form a critical nu-
cleus inside the the simulation cell, i.e., the form a critical
nucleus around any of the monomer particles. It is there-
fore an extensive quantity. e−β(G(n∗)−G(nmin)) is there-
fore the probability of finding a critical nucleus within
the simulation cell volume, relative to the system resid-
ing exactly in its local minimum. The critical nucleus
concentration therefore equals e−β(G(n∗)−G(nmin))/V . If
a nucleation barrier is obtained from microscopic simu-
lations, one can therefore approximate the term ρge

−βG∗

by e−β(G(n∗)−G(nmin))/V in Eq. (14), as noted before.56

Alternatively, βG∗ ≈ βG(n∗)− βG(nmin) + lnN .
When now using Eq. (15) to estimate f+, employing

an appropriate definition of G∗, we find a predicted rate
of J∞ ≈ 4 × 1023 cm−3 s−1, which is quite close to our
TST-based result of 1.0×1023 cm−3 s−1 when taking into
account the very large uncertainty on f+. Eq. (16) fares
worse, yielding an estimated J∞ ≈ 1.4× 1022 cm−3 s−1.
These results highlight that TST, CNT, and related ap-
proaches are equivalent theories that can be used to cal-
culate nucleation rates.
Application of the CNT-derived expression Eq. (14)

thus requires some processing to turn the microscopic

simulation data into appropriately macroscopic quanti-
ties.33,56 The TST rate of Eq. (1), in contrast, is one
monolithic expression for the flux through the dividing
surface n = n∗. It is therefore a purely microscopic quan-
tity that is rigorously defined within the chosen simula-

tion cell. This local rate estimate can then straightfor-
wardly be converted in a global nucleation rate (through
Eq. (7) or (9)), which is also an experimentally verifiable
observable. In this sense the barrier ∆‡G and transmis-
sion coefficient κ only have significance for the specific
simulation setup in which they were obtained; they serve
as input for our procedure to yield the final nucleation
rate estimate J .
∆‡G as defined by Eq. (5), in particular, does not

correspond to the macroscopic nucleation barrier G∗ of
Eq. (14) because it is also size-dependent (Table IV).
Application of Eqs. (1) and (7), however, takes care of
producing a macroscopic quantity. It can also be seen
that no lingering size effects remain in nucleation rate
estimates from our procedure because the predicted TST
nucleation rate JTST

∞ is the same (within error) for each
system size (Table IV).

V. CONCLUSIONS

Enhanced sampling methods and TST provide a uni-
fied theoretical framework for rate calculations. When-
ever it is possible to converge a FES along a suitable
approximate reaction coordinate, accurate rates can be
computed at little extra cost. Here, we have used
Ar droplet nucleation as an example. Global, macro-
scopic, nucleation rates can be unambiguously obtained
from small model systems without the need to invoke a
process-specific approximation such as CNT, as long as
an appropriate ensemble is simulated.
Only two ingredients are required in a TST-based nu-

cleation rate calculation. Calculation of the TST rate
requires the free energy barrier, which can be obtained
through an ever-increasing array of free energy methods.
The quality of the free energy barrier can subsequently
be verified from a committor analysis of the candidate
transition state, which yields an accurate recrossing cor-

rection (i.e., transmission coefficient) as a byproduct. Ac-
curate, consistent, and reproducible nucleation rates are
thus accessible through a straightforward application of
widely available, well-tested and actively developed tools.
Although we have focused on nucleation process, the

highly generic nature of the approach likely makes it con-
veniently straightforward to apply to any type of process
in chemistry, materials science, and biology.
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