
This item is the archived peer-reviewed author-version of:

On the time scale associated with Monte Carlo simulations

Reference:
Bal Kristof, Neyts Erik.- On the time scale associated with Monte Carlo simulations
The journal of chemical physics - ISSN 0021-9606 - 141(2014), 204104 
DOI: http://dx.doi.org/doi:10.1063/1.4902136 

Institutional repository IRUA

http://dx.doi.org/doi:10.1063/1.4902136
http://anet.uantwerpen.be/irua


1 

 

On the time scale associated with Monte Carlo simulations  

Kristof M. Bal
*
 and Erik C. Neyts 

University of Antwerp, Research Group PLASMANT, Department of Chemistry, 

Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium 

Abstract 

Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a 

powerful technique to access longer timescales in atomistic simulations allowing, for 

example, phase transitions and growth. Recently, a new fbMC method, the time-stamped 

force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective 

timescale; this timescale, however, does not seem able to explain some of the successes the 

method. In this contribution we therefore explicitly quantify the effective timescale tfMC is 

able to access for a variety of systems, namely a simple single-particle, one-dimensional 

model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal 

with point defects and a highly defected graphene sheet, in order to gain new insights in the 

mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders 

of magnitude compared to molecular dynamics, can be achieved for solid state systems by 

lowering of the apparent activation barrier of occurring processes, while not requiring any 

system-specific input or modifications of the method. We furthermore address the pitfalls of 

using the method as a replacement or complement of molecular dynamics simulations, its 

ability to explicitly describe correct dynamics and reaction mechanisms, and the association 

of timescales to MC simulations in general. 
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I. Introduction 

Molecular dynamics (MD) simulations have been shown to be an invaluable tool to 

investigate both static and dynamic properties of systems at the atomic scale. MD simulations 

are a robust and versatile technique and allow tracing the full dynamical path of the system 

through space and time. However, many processes take place at timescales well beyond the 

reach of pure MD simulations, which are typically limited to the pico- or nanosecond range. 

Several so-called accelerated molecular dynamics methods
1,2

 were therefore developed by 

Voter and co-workers in order to extend the MD timescale. Although these methods allow to 

speed up of MD simulations by several orders of magnitude, they are also limited to 

infrequent event systems, in which the system evolves through infrequent transitions from 

one metastable state to another. Many systems, however, violate this assumption. For 

instance, bond-switching events in the Ni/C system have been shown to occur at the sub-ps 

timescale, although the actual nickel-catalyzed growth of carbon nanotubes exceeds the 

timescale limits of MD.
3
 

A different and potentially more general way to access longer timescales in atomistic 

simulations is the coupling of MD simulations with stochastic Monte Carlo (MC) 

simulations.
4
 In this joint approach, an MD cycle can used to simulate fast processes (e.g. 

impacts on a surface), while the subsequent MC steps take into account the longer timescale 

thermal relaxation processes. Because the Metropolis Monte Carlo (MMC) method
5
 was 

originally developed to carry out efficient sampling of the configuration space, it can be 

expected that it is able to efficiently relax an out-of-equilibrium system. Indeed, it has been 

shown that the sequential application of MD and MMC allows an enhanced description of 

thin film growth, as evidenced by the higher quality of the obtained films that better match 

experimental results.
6-9

 This comes at the cost of losing detailed information on the described 

physical timescale, of which only rough estimates are available.
8
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Kikuchi et al.
10,11

 furthermore showed that MMC can be interpreted as a numerical solution 

of the Fokker-Planck equation and thus in principle has the ability to describe the true time 

evolution of Brownian diffusion processes. Because the MC system evolution corresponds to 

actual physical events, an MC step can thus be considered to be proportional to an MD time 

step. The size of this (statistical) MC time step has been explicitly determined in the case of 

diffusion in liquids by comparing the respective diffusivity in MD and MC simulations,
12,13

 

whereas explicit formulas were derived in the case of colloidal particles.
14-18

 

In order to increase the MC acceptance rate in strongly interacting systems, the force-bias 

MC (fbMC) method
19,20 

was developed. By including deterministic forces into the stochastic 

MC algorithm, fbMC methods have much larger acceptance ratios than conventional MMC 

simulations. It was later recognized that the method can even be turned into a uniform 

acceptance algorithm, i.e., in which each Monte Carlo step is accepted with unit probability,
21

 

provided that the maximum allowed particle displacement is chosen to be sufficiently small.
22

 

This “uniform-acceptance force-bias Monte Carlo” (UFMC) shows great potential: processes 

such as surface diffusion,
23

 phase transitions,
23

 thin film growth,
24

 and the growth of carbon 

nanotubes
25

 and graphene
26

 have been successfully modeled by UFMC or a hybrid 

MD/UFMC approach. Indeed, (hybrid) UFMC simulations seem to describe much longer 

timescales than those that can be reached by conventional “pure” MD.
23,25

 

The origin of the apparent efficiency of fbMC with respect to MD, however, is not 

immediately clear. Mees et al.
27

 attempted to answer this question and, starting from the 

canonical ensemble, derived a new uniform acceptance force-bias MC algorithm which they 

dubbed “time-stamped force-bias Monte Carlo” (tfMC). A universal timescale was derived, 

and the authors suggested that the method could be a valuable MD alternative, which would 

still be able to describe system dynamics but with an enhanced timescale. Moreover, the new 

method was recently also successfully applied to study carbon nanotube (CNT) cap 
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nucleation
28

 and phase transitions
29

. However, the obtained time step of about 10 fs, although 

an order of magnitude larger than a typical MD time step, is not nearly large enough to 

explain, for example, the growth of defect-free carbon nanotubes. The validation of the 

timescale was furthermore rather limited; in fact, all previous quantitative MC timescale 

studies had a small scope and only considered one particular process or system, mainly 

diffusion in liquids, and never bound systems undergoing chemical reactions. 

In this contribution, we present an extensive study of the tfMC timescale. The aim of our 

work is twofold. Firstly, we will explicitly quantify the timescale tfMC is able to access for a 

variety of systems, ranging from a simple single-particle, one-dimensional model system to 

amorphous solids – which is to our knowledge the largest scope of such a “calibration” yet – 

in order to gauge the method’s applicability for these various classes of systems.  Secondly, 

we wish to gain further general insight in the tfMC method, the mechanisms by which it 

operates and how these affect its performance for all kinds of systems. 

This paper is organized as follows. First, the tfMC method is reviewed and its dependence on 

its main parameters is investigated (Sec. II). After having described the general 

computational details (Sec. III), the tfMC timescale is studied for three systems in 

equilibrium: the Lennard-Jones liquid, an adatom on the Cu(100) surface and a silicon crystal 

with point defects (Sec. IV). As a last system, the healing of a highly defected graphene 

structure is studied as model system for defect healing in CNT growth, the as of yet most 

successful application of fbMC methods (Sec. V). 
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II. Theoretical discussion 

A. Description of the tfMC method 

In a single tfMC simulation step, each atom i is displaced over a distance 
,i j i   in every 

Cartesian direction j. 
,i j  is a stochastic variable distributed according to

27
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in which 
,i jF  is the force acting on the atom along component j, 

Bk  the Boltzmann constant, 

and T the temperature. The maximal displacement length of atom i, 
i , is dependent on its 

mass and is calculated from a system-wide parameter  , the atom’s mass 
im , and the 

smallest mass in the system 
minm :  

 min
i

i

m

m
   , (3)  

where   should be chosen to be sufficiently small in order to comply with detailed 

balance.
22,27

 The tfMC timescale was derived by realizing that an (statistically relevant) 

average time step could be related to the mean displacement ,i j   
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(6) also explains the particular form of (3), which ensures that the average tfMC time step is 

not mass-dependent. It can be calculated that, according to (6), the time step will be in the 

order of 10 fs for typical condensed matter simulations. Besides being able to describe longer 

timescales than MD, uniform-acceptance fbMC methods also have advantages over 

conventional MC methods such as MMC. Not only do they not require an explicit acceptance 

procedure for trial moves, but they also generate a system evolution in an MD-like fashion, in 

which all atoms are displaced at once in every step, instead of the single-particle moves 

common in MMC. 

It is obvious that the choice of   is crucial to the success of the simulation: larger values 

allow for a faster system evolution but, at the same time, a larger violation of detailed 

balance. Indeed, the algorithm is formally only correct in the limit of an infinitesimally small 

 ,
22,27

 meaning that any practical simulation will violate detailed balance to some degree. 

Nevertheless, a correction could be applied to circumvent the uniform acceptance 
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approximation by explicitly calculating the acceptance criterion. For a simple 1D test system 

it was shown that for processes with barriers in the order of 0.25 eV and 0.1   Å , this 

approach leads to rejection probabilities in the order of 10%,
22

 although under these 

conditions the method is still found to be equivalent to MMC
22

 and generates correct 

canonical averages, even for larger choices of   and interaction strength.
27

 Thus, it appears 

that explicitly monitoring the acceptance rate of an fbMC simulation does not result in 

immediately available conclusions about the practical validity of the method. Rather, a 

careful validation of the obtained physics can be used as a more practical measure of the safe 

range of  . For example, Timonova et al. carried out an extensive validation of UFMC for 

the study of processes in silicon, and found that values of   up to 0.25 Å lead to results 

equivalent to MD simulations.
23

 Studies of carbon nanotube growth
25

 and Cu adatom 

diffusion
27

 also confirmed that maximum displacement lengths between 0.1 and 0.15 Å 

(about 5-10% of a typical nearest neighbor distance) lead to physically meaningful results, in 

agreement with either MD simulations or the experiment, and can be considered 

“conservative” choices. 

B. Importance of   

It is important to note the linear relation between   and t  , as this contradicts the idea of 

an MC simulation being a random walk. Indeed, it has been recognized by many authors
14-18

 

that an (M)MC timescale should be proportional to the squared MC displacement length. 

Although these previous results were only obtained for MMC and Brownian systems (i.e. 

liquids), their basic principles should still be applicable to tfMC simulations of bound 

systems. 

To elucidate this contradiction, we consider a simple one-dimensional case study: diffusion 

of a single particle in the sinusoidal potential surface ( )U x :  
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in which Q and L are the energy barrier and the period of the potential, respectively. If we 

assume that the number of jumps over the barrier is proportional to the physical time 

described by the simulation, such a simple model system will allow us to gain a fundamental 

insight into tfMC simulations of bonded systems. Indeed, other studies
22,23,27

 of UFMC and 

tfMC have already used this model system and, for example, have found that tfMC is able to 

generate the correct canonical distribution.
27

 

 

Figure 1: Dependence of the number of effective transitions N, and hence time, on the 

maximal displacement squared 2 , for various temperatures, during 10
9
 tfMC iterations. Q 

was taken to be 0.25 eV, 1L   Å. 

In this study, we first performed a series of simulations at various temperatures, in which we 

checked the influence of the maximum displacement length  . Q was taken to be 0.25 eV, 

1L   Å, and each simulation consisted of 10
9
 iterations in order to gain sufficient statistics, 

during which the number of jumps N was counted by only considering minimum-to-

minimum transitions (“effective” transitions). It is clear from Figure 1 that the tfMC 
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timescale, based on the number of effective transitions, indeed is proportional to 2 , as is the 

case for other MC timescales. As mentioned earlier, this can be understood by seeing the 

tfMC simulation as conducting a random walk: each subsequent step is independent of the 

previous simulation steps. The timescale described by (6), however, assumes that the tfMC 

trajectory can be mapped onto an MD-like trajectory in which all steps are inherently 

correlated, contributing to one smooth trajectory. This assumption is closely tied to the 

suggestion of the tfMC authors that the method would be able to describe (approximate) 

system dynamics, which however cannot be achieved by a random walk.  

 

Figure 2: Time step size of an individual tfMC step, calculated for 0.05   and 0.1 Å using 

both effective transitions or TS crossings. Dashed lines are corresponding time steps as 

calculated using (6), whereas solid lines are least squares fitted straight lines. Q was taken to 

be 0.25 eV, 1L   Å. 

In order to explicitly quantify the “real” tfMC timescale, rather than only establishing 

qualitative relations, we compared the number of effective transitions with those in an MD 

simulation (using a time step of 1 fs, 10
9
 steps per run, velocity Verlet integration

30
 and an 
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Andersen thermostat
31

 with a collison time of 1 ps), in which the tfMC time step is measured 

as 

 tfMC
tfMC MD

MD

t t
N

N
    , (8)   

and N the number of transitions. Figure 2 clearly shows that the tfMC timescale (6) 

overestimates the real, physical time when one is interested in actual, effective transitions and 

which only is about 1 to 5 fs. What the figure also shows, however, is that the tfMC timescale 

is correct as long one only considers processes occurring in a single tfMC step. Indeed, while 

an effective (minimum-to-minimum) transition is not such a single-step process, but the 

crossing of the transition state (TS) is. The difference between real dynamics and tfMC 

trajectories is that, according to transition state theory (TST), every effective transition 

coincides with a single TS crossing, whereas due to the random walk-like nature of tfMC, 

many TS (re)crossings can happen in the course of only one effective transition (or the 

system may even end up in the original minimum again).  

C. Effect of the temperature 

It has been suggested by both Timonova et al.
23

 and Neyts et al.
22

 that fbMC methods are able 

to capture system dynamics because they are able to “feel” reaction barriers. When carrying 

out simulations using the sinusoidal potential (7), they noted that an Arrhenius plot could be 

used to obtain the activation energy Q of the diffusion process, 

 
0lnln( ) ( )

B

N
Q

t
k T

   , (9) 

implying that temperature-dependent dynamics could be reproduced using fbMC simulations. 

It was also found, however, that the “measured” activation energy was always lower than the 

imposed value Q, which inspired the hypothesis that this lowering of the apparent activation 



11 

 

energy is the mechanism by which fbMC methods operate,
22,23

 as this can lead to significant 

speed-ups of the simulation compared to MD. 

As has been noted in the previous section, however, it is dangerous to assume MC methods 

can be treated as if they were MD. In particular, it should be established whether the tfMC 

timescale is temperature-dependent: (6) already suggests it is, although this relation provides 

an incorrect estimate of the tfMC time step. Still, intuitively one expects there should be a 

temperature effect:   imposes a limit on the displacement length per iteration and is 

temperature-independent, whereas in an MD simulation, atoms will be able to travel a longer 

distance per time step at higher temperatures. 

A qualitative derivation, suited for solid state systems, is as follows. Although it is not 

possible to map a single tfMC step to an MD step, atomic movement is most of the time also 

limited by a maximum displacement length: the vibrational amplitude A of the atom in a 

potential energy well. Assuming this well is harmonic and has an associated force constant 

fk , the equipartition theorem then states that 2 2f Bk A k T . Recognizing that the tfMC 

timescale is proportional to 2 , which can be seen as equivalent to 2A , one finds  

 

2

~
f

t
k

T


 . (10) 

When inspecting Figure 2, one clearly sees that it indeed recovers this 1/T dependence of the 

tfMC timescale. 
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Figure 3: Measured activation energies Q, using either an unscaled or a scaled Arrhenius fit, 

for different choices of  . Set value of Q is 0.25 eV, 1L   Å. 

This also means one has to compensate for this fact when calculate activation barriers 

through an Arrhenius fit: Figure 3 demonstrates this, by showing both the measured values of 

Q when directly using a plot of ln( )N  vs. 1/T or by compensating for the T-dependence by 

using ln( )N T  instead. The first method clearly underestimates the imposed value of 

0.25Q   eV by about 20%, in agreement with previous results,
22

 whereas the compensated 

variant recovers the correct value (a small underestimation of about 2% remains, probably 

due to the coarser nature of the tfMC steps). Also, it can be seen that the unscaled approach 

yields much larger uncertainties (at the 95% confidence level) on the calculated barriers as a 

result of the poorer fit. This is an encouraging result as it shows that tfMC simulation do 

resemble actual dynamical simulations under certain conditions, even with mechanisms that 

are very close to the actual, physical dynamics. Moreover, although the enhancement 

compared to MD is not as large as the original timescale (6) suggests, tfMC indeed is able to 

describe longer timescales then MD. These time step values of 1 to 5 fs are, however, not 
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large enough to explain the method’s successes describing growth and phase transitions, a 

question we will address in the following sections. 

III. General computational methodology 

For all following simulations, the LAMMPS package
32

 was used. NVT MD simulations were 

performed using a Nosé-Hoover chain thermostat
33

 (three thermostats), whose equations of 

motion were integrated using the algorithm of Martyna et al.
34

 as implemented in LAMMPS. 

Prior to this production stage, the system was always equilibrated with a Langevin-type 

thermostat
35

 in combination with velocity Verlet integration.
30

 Damping constants for the 

thermostats were always set to be equal to 
MD100 t  and periodic boundaries were used in all 

directions. For this study, the tfMC method was implemented in LAMMPS as an additional 

fix
36

 and the method was used for both production runs as the preceding equilibration.  

IV. Systems in equilibrium 

A. Determination of the timescale 

In this section we will explicitly quantify the tfMC timescale for various different systems in 

equilibrium. In such systems, no specific transition from one macrostate to another can occur 

so that their transport properties provide a simple and constant benchmark. A tfMC time step 

tfMCt   can be estimated by comparing a selected property, e.g., a mean square displacement 

(MSD) with the same property as obtained from an MD simulation of the same number of 

steps and with time step 
MDt :  

 tfMC
tfMC MD

MD

MSD

MSD
t t     . (11) 
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B. The Lennard-Jones liquid 

As the simplest of systems, the Lennard-Jones liquid is an attractive model system to study 

liquid diffusion and offers a simple method of calibrating the tfMC timescale. Throughout 

this section, reduced units are used. In all simulations, the system consisted of 4000 atoms in 

a cubic periodic box, with a density of .* 0 9   and at a temperature of * 1T  . The MD time 

step was 0.005, whereas various values of   were used in order to verify the scaling of the 

tfMC time step size. In order to establish the safe range of   values, we monitored the 

potential energy and radial distribution functions of the system, and found that for values of 

0.14   and below, no anomalous energy fluctuations and incorrect radial distribution 

functions were obtained.
36

 The system was allowed to equilibrate for 10
6
 steps, after which 

the MSD was obtained during a production run of the same length. For each value of  , the 

time content of a tfMC step was calculated using (11). 

 

Figure 4: Magnitude of the tfMC time step and its dependence the size of 2 , as obtained 

through comparison with MD, for the LJ liquid. The magnitude of the MD time step (0.005 

a.u.) is also shown for clarity. 
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It is clear from Figure 4 that the 
2~t   scaling also holds for this real system, in agreement 

with previous MMC studies. It is also seen that tfMC, within its safe range, is hardly 

competitive with MD in terms of the described timescale. Indeed, tfMC only surpasses MD 

for 0.12  , very close to the 0.14   limit. The original tfMC timescale, however, 

predicts a much larger tfMC time step: for 0.1  , one finds a time step of about 0.04, 

whereas the actual value (through the MSD) is only 0.003. This further confirms that the 

“universal” tfMC timescale is not correct. The specific observation that tfMC performs 

poorly in simulating liquid diffusion is in fact a general aspect of stochastic methods. Not 

only MC, but also stochastic MD techniques such as the Andersen or Langevin thermostats 

do not conserve (or, in the case of MC, possess) momentum; liquid diffusion, however, is 

driven by momentum transport. Indeed, when Huitema and van der Eerden
12

 performed a 

similar MSD-based calibration of the MMC timescale for LJ diffusion they also found their 

MC moves had similar time contents as a single MD step, and furthermore pointed out that 

using a formula such as (6) to determine the MC time step would be “naive”. 

 

Figure 5: Effect of the mass-based scaling of 
i  on the diffusivity calculated by tfMC. The 

tfMC results were rescaled to be equal to the MD result for 1m  . 
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Furthermore, it should be mentioned that a mass-based scaling of the maximal displacement 

length as proposed by Mees et al.
27

 [equation (3)] should be modified to comply with our new 

findings: diffusion coefficients and reaction rate coefficients scale as 
1/2m

 and hence 
i  

should be scaled as  

 

1/4

min
i

i

m

m

 
   

 
.  (12) 

Figure 5 confirms this finding for the LJ liquid, as it shows that a tfMC simulation using our 

new scaling matches the mass-dependence of the MD result, whereas the original scaling 

does not. Using this scaling, combined with the findings in Sec. II, it can be expected that the 

method will be able to generate a correct pseudodynamics of mixed-element systems. 

C. Surface diffusion 

Although tfMC does not perform well while studying liquid diffusion, it has to be kept in 

mind that the method was primarily developed to be applied to bonded systems. Diffusion of 

adatoms on a surface constitutes an interesting model system for the study of diffusion in 

solid state systems, and is also well documented.
37

 The simulated system consisted of an 

adatom on a copper(100) surface made from six consecutive layers, each containing 60 

atoms. The four bottom layers were kept fixed to mimic the bulk of the crystal. The Cu-Cu 

interaction was described by an embedded atom (EAM) potential.
38,39

 The MD time step was 

1 fs and 0.1   Å, using an equilibration stage of 10
5
 steps and a production run of 10

8
 

steps, collecting data within a temperature range between 500 and 800 K. The tfMC timescale 

was determined using (11), but instead of the MSD, the number of adatom hops N was used. 
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Figure 6: Magnitude of the tfMC time step and its dependence on the inverse temperature 1/T 

for 0.1   Å, as obtained through comparison with MD, for adatom diffusion on Cu(100). 

The magnitude of the MD time step (1 fs) is also shown for clarity. 

It is clear from Figure 6 that the temperature dependence of the tfMC timescale follows a 1/T 

relation, in agreement with our earlier findings. Furthermore, it can be seen that for a 

conservative step size of 0.1   Å, tfMC is competitive with MD, although the 

corresponding time step of about 1 fs does not constitute a real improvement over MD. In 

order to gauge the method‘s accuracy in reproducing dynamical properties, we calculated the 

(apparent) activation energy for an adatom hop through an Arrhenius fit. Our MD result is 

20.52 0.0  eV, in agreement with other studies using the same potential.
40-43

 An Arrhenius 

fit of the tfMC results without temperature correction (i.e., using ln( )N  rather than ln( )N T ) 

unsurprisingly yields an activation energy of 20.41 0.0  eV, which is much too low. This 

observation was also made by Timonova et al.
23

 during the UFMC study of surface diffusion, 

but, as they obtained a similar activation energy lowering for the sinusoidal potential (7), 

attributed it to some inherent property of the method. However, when compensating for the 

temperature dependence of the tfMC timescale in a similar fashion as we did earlier for the 
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sinusoidal potential, the tfMC method yields an activation barrier of 20.46 0.0  eV, much 

closer to the MD value and literature results of this potential. 

Nonetheless, the system still experiences a somewhat smaller activation energy in tfMC 

simulations than in MD. Thus, although the global dynamical behavior of a system in a tfMC 

simulation will be very similar to the “real” dynamics, small discrepancies might still occur. 

In particular when studying more complex phenomena such as material growth, different 

processes can occur; in order to describe correct global dynamics, all the respective activation 

energies should be reproduced faithfully. Therefore the next section will describe a system 

for which we study two different processes. 

D. Silicon self-diffusion 

Diffusion in silicon is of great technological importance considering its role in the fabrication 

of silicon-based integrated circuits. The simplest of these diffusion mechanisms are the two 

pathways of silicon self-diffusion, which can happen through either a vacancy or an 

interstitial mechanism. These two processes have different rate constants (with both different 

activation barriers and pre-exponential factors) and thus pose an interesting test case to 

determine the correctness of the dynamical behavior of the tfMC method. We employed a 

silicon crystal containing 512 1  atoms with a lattice constant of 5.431 Å, modeled with the 

Stillinger-Weber (SW) potential.
44

 The MD time step was 1 fs, whereas multiple values of   

were used. The MSD was calculated in a temperature range between 500 and 1200 K during 

10
8
 steps, preceded by an equilibration run of 10

5
 steps. 

When using 0.1   Å, a conservatively small choice for this parameter, we obtained 

activation energies of 0.41 0.01  eV for vacancy and 0.78 0.05  eV for interstitial diffusion, 

matching the MD results of 0.44 0.02  eV and 0.86 0.07  eV, respectively, and in good 

agreement with other simulations using the SW potential.
45-47

 (We compensated for the 
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1~t T 
 scaling of the timescale in the Arrhenius fit.) By comparing the fitted pre-exponential 

factors of both defect types, tfMC time step sizes of 1.2 0.5  and 40.74 0.8  fs are found for 

vacancy and interstitial diffusion, respectively (the large error margins are due to 

exponentiation; the obtained time steps of ~1 fs were corroborated by comparing individual 

MSD’s rather than fitted pre-exponential factors). Therefore, it can be concluded that both 

processes are described by tfMC with the correct relative rates, albeit without a speedup 

compared to MD. 

 

Figure 7: Magnitude of the tfMC time step, as obtained through comparison with MD, for the 

two diffusion pathways in silicon, at 800 K. The magnitude of the MD time step (1 fs) is also 

shown for clarity. 

It was shown by Timonova et al., however, that UFMC is able to accomplish much higher 

boosts for Si-based systems, up to several orders of magnitude, provided that larger values for  

  are chosen. Indeed, as Figure 7 shows, we also observe that tfMC can possess average time 

steps of up to about 500 fs in the case of 0.27   Å. This, however, comes at the cost of (1) 

incorrect relative dynamics, as interstitial diffusion is more strongly boosted than vacancy 

diffusion by an order of magnitude, and (2) loss of the 
2~t   scaling in favor of an 
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exponential dependence on 2 . For smaller displacements ( 0.1   Å) on the other hand, we 

also verified and recovered this previously derived relation. 

The nature of the exponential boost caused by larger   becomes clear when inspecting 

Figure 8, showing that the apparent activation energy of both processes decreases as a linear 

function of 2 . This contradicts our findings in Sec. II, were we found that tfMC reproduces 

the correct barriers, irrespective of the size of  . The main difference between the crystal 

currently under consideration and the model system (7) we used previously is the nature of 

the potential energy surface (PES). Indeed, whereas the sinusoidal potential constitutes a 

fixed PES for the diffusion particle, each atom in a multi-particle system is subjected to a 

variable PES, which is imposed by its neighbors. Larger values of   introduce a stronger 

deformation of the crystal structure, and therefore increase of the total potential energy. 

Assuming harmonic behavior over smaller distortions it is logical this increase of the 

potential energy, and subsequent lowering of apparent barriers, will have a 2  dependence. 

 

Figure 8: Apparent activation energy of the two diffusion pathways in silicon in a tfMC 

simulation, and its dependence on 2 . 
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Lowering of the apparent activation energy of course allows for a substantial boost, but 

comes at the price of losing correct relative (pseudo)dynamics: as Figure 8 shows, the 

apparent activation energy decreases more rapidly with increasing displacement length in 

case of the interstitial mechanism, possibly because its higher true barrier will be more prone 

to large fluctuation caused by the stochastic displacements of the diffusing atom’s neighbors. 

Interestingly, taking the 
2 0   limit for both mechanisms recovers values in excellent 

agreement with MD result, i.e., 20.45 0.0  and 70.86 0.0  eV for the vacancies and 

interstitials, respectively. Thus, in the limit of an infinitesimally small maximum 

displacement length, one will obtain fully “correct” dynamics (and full compliance with 

detailed balance) but of course no advantage to MD at all. On the other hand, although large 

choices of    must certainly violate detailed balance to a certain degree, Timonova et al. 

found that UFMC simulations with 0.25   Å are a safe choice for most processes in Si, 

meaning that these simulations yield a global system evolution that is still physical. It is, 

however, intrinsically impossible to assign a single “timescale” to such a process, as we have 

seen that individual processes are boosted differently. 

V. Defected graphene 

The most impressive application of fbMC methods has been the growth of carbon 

nanostructures: in the case of carbon nanotube (CNT) growth, they were instrumental in 

achieving the first simulations of chiral growth,
25

 and nucleation from hydrocarbon 

precursors.
28

 The crucial long-timescale process that fbMC methods (but also MMC
49,50

) 

allow to access is the healing of topological defects in the growing structure, in order to 

obtain a perfect hexagonal lattice. It is therefore interesting to quantify the tfMC timescale for 

a system that is closely related to these carbon-based systems as it gives an indication on the 

actual speed-up that was gained in the aforementioned simulations, information that is as of 
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yet still unavailable. In addition to the relevance of its associated timescale as such, defected 

graphene is also an out-of-equilibrium system and able to undergo a phase transition, which 

is an important class of dynamic processes this paper has not addressed up to this point. 

 

Figure 9: Healing of a defected graphene sheet. (a) Initial (equilibrated) structure; (b) 

evolution of the potential energy during the relaxation at 1000 K; (c) final structure after 

52 10  MD steps; (d) final structure after 
52 10  tfMC steps with 0.1   Å. Red-colored 

carbon atoms are over-coordinated (higher than sp
2
), green-colored are under-coordinated 

(lower than sp
2
), respectively. 
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Figure 10: Further healing of the defected graphene sheet of Figure 9a, after 
74 10  steps of 

(a) MD or (b) tfMC, at 1000 K. Color coding is the same as in Figure 9. 

An amorphous graphene-like structure was generated by random displacement of all atoms in 

a perfect graphene lattice containing 360 atoms, and subsequent quenching and equilibration 

of 10
4
 MD steps at 1000 K. The C-C interaction was described by the second generation 

REBO potential.
48

 The MD time step was 0.25 fs, whereas   was chosen to be 0.05 and 0.1 

Å, which were shown to yield physical results for this type of system.
25,28

 After initial (pure 

MD) equilibration, the resulting structure was relaxed using either MD or tfMC. Figure 9 

then clearly shows that, at 1000 K and using 0.1   Å, tfMC is able to relax the defected 

structure much better than MD. Indeed, while 
52 10  MD steps are not able to cause an 

appreciable energy decrease or healing, tfMC is able to rapidly lower the structure’s energy 

by about 0.15 eV/atom and decrease the number of three-membered rings and over- or under-

coordinated atoms. After 
74 10  steps (10 ns in case of MD), the difference between the two 

structures (Figure 10) is even more apparent, with tfMC having healed out all over-

coordination and three-membered rings (catalysis or higher temperatures are required to 

obtain perfect graphene only consisting of six-membered rings
49,50

). 

This efficiency of MC methods has of course already been established, but the exact 

timescale at which this healing process takes place is not clear. In order to explicitly quantify 
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the boost tfMC achieves, we prepared 20 different structures at temperatures between 800 

and 1500 K using the same procedure as above. These structures were relaxed using MD or 

tfMC with 0.05   or 0.1 Å up till the point where an energy decrease of 0.15 eV/atom was 

reached. The average number of iterations required to achieve this target can again be used to 

determine the average size of the tfMC time step, or the boost the method can achieve. As 

Figure 11 then shows, this boost can be as large as 800 (a tfMC time step of about 200 fs) at 

800 K when using 0.1   Å. This boost rapidly decreases at higher temperatures to about 40 

at 1500 K, but this corresponds to a tfMC time step of 10 fs, which is still substantial. The 

performance of the method when 0.05   Å is much lower, however, as it is clear that at 

800 K, it is about 300 times slower (time step of only ~0.5 fs). These huge difference 

between the two choices of the displacement length, combined with the rapid deterioration of 

the boost with increasing temperature, show that lowering of apparent activation energies 

also for this system plays an important role. 

 

Figure 11: Magnitude of the tfMC time step, as obtained through comparison with MD, 

during healing of defected graphene at various temperatures, for 0.05   or 0.1 Å. The 

magnitude of the MD time step (0.25 fs) is also shown for clarity. 
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The additional energy that the tfMC methods injects into the structure in the case of 0.1   

Å thus allows for a strongly increased healing rate, leading to similar speedups as found in 

the previous section. In the case of 0.05   Å, a time step of similar magnitude as for the Si 

system with 0.1   Å is found, suggesting no significant changes of the apparent barriers are 

introduced and a more “well-behaved” pseudodynamics. Although we cannot expect the 

relative importance of processes as seen in the 0.1   Å to match the MD result, it is clear 

from our results that both simulation methods lead to the same global evolution: decrease the 

number of three-membered rings and over- or under-coordinated atoms. Moreover, from a 

thermodynamic viewpoint, all methods simulating the NVT ensemble are bound to ultimately 

bring the system to its free energy minimum, which is a perfect graphene sheet. The previous 

MD/fbMC CNT growth simulations that resulted in tubes with a definable chirality
25

 are an 

example of such a process, and demonstrate that the incorrect “dynamics” of fbMC methods 

with too large a displacement can still produce physically meaningful results, albeit with loss 

of kinetic fidelity. 

VI. Conclusions 

A comprehensive study of the timescale of the time-stamped force-bias Monte Carlo (tfMC) 

method was carried out in order to verify the method’s applicability to a wide range of 

systems and gain insight in the fundamental mechanisms underpinning its apparent 

efficiency. 

Using a simple one-dimensional model system, it is found that the originally derived 

timescale of the tfMC method, when compared to MD results, does not match the actual 

physical time associated with the observed events. Indeed, tfMC does not offer a large 

timescale elongation compared to MD for this model system. However, it is established that 
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tfMC simulations are subjected to the same activation barriers and hence will be able to 

describe a pseudoynamics that is very close to physical dynamics as accessed by MD. 

When applied to solid state systems, one has to find a compromise between physical accuracy 

and boost. Small maximum displacement lengths   ensure that the processes as obtained by 

tfMC closely match MD results in terms of relative importance, which guarantees both 

methods give rise to very similar mechanism and hence the same global evolution of the 

system, albeit without tfMC achieving a significant boost. If   is made larger, however, one 

can observe large speedups in comparison to what is possible using MD explaining, for 

example, the ability of the method to describe the growth of chiral carbon nanotubes. This 

large boost comes at the price of losing correct relative dynamics because this acceleration is 

caused by a lowering of the apparent activation energy of processes due to larger 

deformations of the surrounding crystal. Therefore, it can be concluded that it is inherently 

impossible to derive a universal timescale to describe the system evolution during a tfMC 

simulation. 

Although the tfMC method might not be generally suited to study relative dynamics, it still 

generates realistic system evolutions, as evidenced by the healing of defective graphene. 

Because these relaxing processes can be described several orders of magnitude faster than 

possible with MD, the tfMC method is excellently suited as an easy to implement, simple 

method that is able to quickly bring the system to equilibrium. The method furthermore 

requires no specific system-dependent information, making it an attractive alternative to more 

complicated accelerated MD or kinetic Monte Carlo methods, and is from a technical 

perspective closer to MD than MMC. However, to extend the timescale of atomistic 

simulations beyond the timescales reported in this paper, or with more detailed mechanistic 

information, accelerated MD methods will be needed. Such methods still require further 

development to make them more efficient and generally applicable, an ongoing field of 
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research of which tfMC can be a part as well: recently, the successful combination of 

hyperdynamics and MC methods was presented,
51,52

 thus opening new exciting perspectives 

for further development and applications of the tfMC method. 
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