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Resistance maps for a submicron Hall electrosensor in the diffusive regime
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The response of a mesoscopic Hall cross to a local potential barrier is calculated from which we
derive two-dimensional resistance maps. At zero magnetic field a double butterfly Hall resistance
pattern arises in the Hall cross that is attributed to barrier-induced inhomogeneous current flow.
Small, i.e., nonquantizing magnetic fields smoothen out the two wings of the butterfly into a single
elongated feature. The longitudinal resistance pattern shows the strongest changes in the current
leads leading to two well separated (by the cross area) bumps. Symmetry properties are found for
the resistance maps (Hall and longitudinal) with respect to the position of the local introduced
potential barrier. © 2007 American Institute of Physics. [DOI: 10.1063/1.2745345]

I. INTRODUCTION

Since its discovery,l the Hall effect has been used to
obtain information on the sign and density of charge carriers
in, e.g., semiconductors. Conversely, if the transport proper-
ties of the semiconductor are well characterized, the Hall
effect was recently used to probe the spatial variation of the
magnetic field above micromagnets and the flux lines of a
superconductor.z_4 Similarly when a micromagnet or a me-
soscopic superconductor is positioned in the center of such a
Hall cross, one obtained information on the response of such
objects on, e.g., an external applied magnetic field.” The
characterization of a Hall cross as a local detector of mag-
netic fields was extensively investigated in previous
works.5

Less well known is the use of a Hall cross as a local
sensor for electric fields (or potential profiles). A local varia-
tion of the potential in the Hall cross results in a local varia-
tion of the electron density and consequently of the Fermi
velocity. This effect was responsible for the variation of the
Hall resistance as first calculated by Baelus et al.’ Subse-
quently, in several experiments an atomic force microscope
(AFM) tip was placed above a Hall probe and modified the
Hall and bend resistances of submicron Hall cross.'® From
the response of the Hall cross, information can be obtained
on the current flow in such a Hall cross, which is strongly
spatial dependent on the presence of a large magnetic field
due to the appearance of skipping orbits, or edge states. For
small magnetic fields such Hall crosses can also be used as
local electric field probes, where recently the important mile-
stone of single electron resolution was achieved at room
temperature. ”

In a recent work,12 we calculated the dependence of the
Hall and magnetoresistances on the position of a local poten-
tial profile from which we obtained two-dimensional (2D)
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resistance maps which agreed very well with recent experi-
mental measurements.'® This calculation was done for a Hall
cross in the ballistic regime, i.e., high mobility two-
dimensional electron gas (2DEG) at low temperature such
that €,>2W (€, is the mean free path of the electrons and
2W is the width of the Hall cross). From previous work, " we
know that the effective area of the Hall cross that determines
the Hall resistance is twice as large in the diffusive regime as
compared to the ballistic regime. This suggests that the re-
sponse of a submicron Hall cross may be different at room
temperature from its known response at cryogenic tempera-
tures. This motivated us to extend our previous work valid in
the ballistic regime to the diffusive regime.

The aim of the present paper is to generalize previous
studies”'? to the case of diffusive transport (e.g., this is the
regime at room temperature) and to calculate the Hall resis-
tance and longitudinal resistance of a Hall cross as function
of the position of a local potential profile in the cross junc-
tion which is, e.g., induced by a scanning tunneling micro-
scope tip. As a result, we obtain 2D contour plots for the Hall
and magnetoresistances which will give us information on
the local sensitivity of a Hall cross. Special attention will be
paid to symmetry properties of such 2D resistance maps.

This paper is organized as follows. In Sec. II we describe
the numerical approach used to determine the Hall resistance
and longitudinal resistance of a Hall cross in the diffusive
regime in the presence of an arbitrary potential profile placed
in an arbitrary position in the Hall cross. In Sec. III the
results for zero and in Sec. IV for nonzero magnetic fields
are presented for a symmetric Hall cross. Our conclusions
are presented in Sec. V.

Il. NUMERICAL APPROACH

Following Ref. 7 we describe the electrical transport in a
two-dimensional electron gas by starting from the steady
state continuity equation for the current density j,
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FIG. 1. (Color online) Potential profile arising due to the presence of a
Gaussian potential barrier (indicated by the shaded circle) with height V,,
=0.8E and half-width d=0.25W. The values on the contour plot are in units
of U, the applied voltage along the y direction.

Vix,y)=0, (1)

and use the concept of a local conductivity tensor o(x,y) in
Ohm’s law j=GE. In the presence of a magnetic field normal
to the heterojunction plane of the 2DEG, the conductivity
becomes a two-dimensional tensor with magnetic field de-
pendent components. Moreover, in the steady state we have
V X E=0 and consequently we can write E=—V®, where ®
is the electrostatic potential. These expressions substituted in
Eq. (1) lead to the following differential equation for the
steady state electrostatic potential with a spatially dependent
conductivity tensor:

V[a(x,y) V ®(x,y)]=0. (2)

The equation can be written in expanded form:

d oD oD d oD )
—\ow—+o,— |+ |0, +0, =0, (3)
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where go(r)=n(r)eu, n(r) is the electron density, and w is
the mobility. This equation together with appropriate bound-
ary conditions determines the potential ®. For our Hall cross
geometry we demand the following boundary conditions:

q)(x»ymax) - q)(x5ymin) = U»

jx(xmin’y) :jx(xmax’y) =0. (5)

A potential is applied to the Hall device (see Fig. 1) in the y
direction and no current can flow through the sides of the
sample other than the current contact. After solving Eq. (3)
we obtain the potential ®(x,y) from which we find the cur-
rent density j(x,y)=—0(x,y)V®(x,y). Then the current /
and the Hall voltage Uy can be obtained,

I=ij(x,y)dx, (6)
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TABLE I. Characteristics of the 2DEG used in two different Hall crosses.

ny M €e EF Po Rc
Sample (m™2) m?V's) (um) (meV) (Qm) (50 mT)/W
A 3.3x 105 10 1 11.79 1894 3.8
B 5% 10" 9 1 17.86  138.9 4.67
Uy= (I)(xmin’y) - (I)(xmax’y)v (7)

from which one can calculate the longitudinal resistance R;
=U/I and the Hall resistance Ry=Uy/I.

In the presence of a local potential profile, the local elec-
tron density in the 2DEG becomes spatial dependent,

n(ey) = —5lEr= V)] =il = VEOVEL.  (8)

where the electron density ny=(m"/mh?)Ey of the uniform
2DEG was introduced and V(x,y) is for simplicity taken as a
Gaussian potential barrier:

V(r) = Vg exp[- (r — ro)/d*], 9)

with height V|,, width 24 at half maximum, and r, the center
position of the potential barrier in the Hall cross. This results
in a region of reduced electron density under the tip and thus
a reduced local conductivity accordingly. Using the finite
difference techniques, Eq. (3) is solved numerically in the
presence of a homogeneous magnetic field with boundary
conditions given by Eq. (5).

lll. SYMMETRIC HALL CROSS AT ZERO MAGNETIC
FIELD

The system we envisage is given schematically in Fig. 1:
a Hall cross with four identical leads. We consider as an
example a Gaussian shape for the local inhomogeneous elec-
tric field that will allow us to draw some general conclusions
about the electrical response of the Hall cross to a local po-
tential profile as is, e.g., induced by a scanning atomic force
microscope tip.

In a typical scanning gate experiment on a Hall cross,
the longitudinal and the Hall resistances are measured
through macroscopic Ohmic contacts. The conductive tip of
an AFM is scanned across the surface with a dc voltage
applied with respect to the sample, thereby acting as a local
gate that couples capacitively to the sample. The tip-induced
potential changes the local potential seen by the conduction
band electrons at a position defined by the tip. The resistive
responses of the Hall cross are recorded as a function of tip
position, which results in so-called scanning gate images.g’10
Here, the current and voltage response of the Hall cross will
be calculated for the Gaussian potential placed in different
grid points at the Hall cross, from which we obtain 2D re-
sistance maps for the Hall [Ry(ry,B,V,,d)] and the longitu-
dinal [R;(ry,B,V,.d)] resistances. The calculations were
performed for two different Hall crosses and the parameters
for the 2DEG are given in Table I, where n is the electron
sheet density, u is the electron mobility, €, is the mean free
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FIG. 2. (Color online) Hall Ry(r,,0,V,,0.25) (left panels) and longitudinal
R,(ry,0,V,,0.25) (right panels) resistance maps for V,=0.3E [(a) and (d)];
Vo=0.5E; [(b) and (e)]; Vy=0.7E; [(c) and (f)]; Vy=—E [(g) and (h)].

path, Er is the Fermi energy, p, is the resistivity, and R, is
the cyclotron radius. These quantities correspond to samples
used in the measurement of Ref. 10.

In Fig. 2, 2D resistance maps calculated at zero magnetic
field are presented for different potential barrier heights V,
with constant half-width d=0.25W. The corresponding
sample parameters are for sample A given in Table 1. The left
(right) panels show the Hall (longitudinal) resistance maps.
The maps show that the Hall resistance, which is zero in a
homogeneous sample at B=0, can be made nonzero by in-
troducing an inhomogeneity in the sample. The Hall resis-
tance is influenced only near the respective Hall cross area. A
very distinct double butterfly (or camel back) type pattern is
found which agrees very well with those recently observed in
two independent experiments (see Refs. 10 and 11). Qualita-
tively they are similar to those obtained in the ballistic
regime.12 Around opposite corners the potential barrier leads
to positive and negative Hall resistances with the following
symmetries:

Ry(x0,50:0:Vo3d) = Ry(= x9,— 0303 Vyp3d)
= Ry(=yo,— x0;0; Vg3 d).

The induced Hall resistance changes depend on the barrier
height and, e.g., for V,=0.5E are about +14 ). For negative
barrier height, the positive and negative corners are inter-
changed but

Rpy(x0,0:03V;0.25) # Ry(y0,x0; 03— V;0.25).

The resistance changes, e.g., for Vo=—Ef are about =14 ().
The 2D maps for the longitudinal resistances are depicted in
Figs. 2(d)-2(f) with positive and in 2(h) with negative barrier
height, respectively. In contrast to the Hall resistance the
longitudinal resistance is mainly influenced when the poten-
tial probe is positioned outside the Hall cross area and above
the current leads. The maxima (minima) are in the current
(voltage) probe and these positions are interchanged for
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FIG. 3. The Ry (top panel) and AR, (bottom panel) as a function of barrier
position along the Hall cross diagonal. The vertical dashed curves are the
edges of the Hall cross. The different curves are for increasing V,,/Ey with
steps of 0.1 (0.5) for positive and (negative) V.

negative V. The reason is that a positive voltage barrier
reduces the effective width of the current leads when placed
in those leads, and consequently resulting in a larger resis-
tance. Notice that for the homogeneous case with B=0 and
Vp=0 we have R2=2.72p0 where py=07; ! For a macroscopic
sample we know that Rg:L/ Wp,, with L the length and W
the width of the 2DEG. Here, L=3W and consequently one
would expect R2=3p0. The difference with the numerical
result R2=2.72p0 can be understood as follows. The presence
of the voltage probes makes the 2DEG channel locally wider
and consequently the effective width of the 2DEG is larger
than W, resulting in a smaller longitudinal resistance than
expected from the above scaling relation. The longitudinal
resistance changes induced by the local voltage probe (i.e.,
potential barrier) depend on its barrier height and, e.g., for
Vo=0.5E are about [-5 ;85 Q], and [0 ;-40 Q] for
Vo=—FEF and are substantially larger than the variations in the
Hall resistance. The figures exhibit the following symme-
tries:

Ry (x0,0:03 Vo3d) = R1(= x0,0: 03 V3 d)
=R, (xp,= y0;0;Vp3d)
=Ry (= x0,— 0305 Vy:d)
=R (= y0,= %0:0: Vp:d).

In order to investigate how the maxima of the Hall resistance
and the longitudinal resistance changes with V,,, we plot the
Ry (top panel) and R; (bottom panel) as a function of barrier
position along the Hall cross diagonal for different values of
Vo/Er in Fig. 3 The maxima of the induced resistance
changes increase with increasing V. Notice that for V,/Ep
>0 the maxima move slightly toward the center of the cross
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FIG. 4. (Color online) Hall R,(r,,0,0.3,d) (left panels) and longitudinal
Ry(ry,0,0.3,d) (right panels) resistance maps for d=0.1W [(a) and (e)]; d
=0.3W [(b) and (f)]; d=0. 5W [(c) and (g)]; d=0.75W [(d) and (h)].

with increasing |V| while the opposite behavior is found for
Vol Ep<0.

In Fig. 4 we show the 2D maps of Hall [from (a) to (d)]
and longitudinal [from (e) to (h)] resistances for different
widths d of the potential barrier but fixed potential height
Vy=0.3E at zero magnetic field. The corresponding sample
parameters are for sample B given in Table I. Due to the
larger zero field conductivity of sample B, i.e., a‘g =nge,u,3
> of=njeu”, we found lower resistivities as compared to
sample A,

Rﬁ(r’oa V07d) > Rf(r’oa V()’d) )

R%,(r,0,Vo,d) > RE(r,0,V,.d).

From Fig. 4, e.g., we notice that the longitudinal resistance
pattern is very sensitive to the width d of the potential probe:
the two detached maxima which are present for d<<0.5W
merge for larger d, e.g., for d=0.75W [see Fig. 4(h)], into a
broad plateau. This feature is illustrated more clearly in Fig.
5(a), where the changes of longitudinal resistances are shown
along the y=0 axis. In contrast to the longitudinal resistance
the Hall resistance, [see Fig. 5(b)] still exhibits its camel
back profile with increasing d, but the width of the extrema
increases with increasing d. Also the position of maxima-
minima is pushed along the diagonals out of the respective
Hall cross area with increasing d.

IV. SYMMETRIC HALL CROSS FOR NONZERO
MAGNETIC FIELD

Calculations at small, i.e., nonquantizing magnetic fields
perpendicular to the 2DEG plane were performed at fixed V|,
and d. 2D maps of Hall resistance at nonzero magnetic fields
are presented in Fig. 6. Figures 6(a)-6(f) are for positive
field, and Figs. 6(g) and 6(h) are for the cases that the field
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FIG. 5. Longitudinal resistance change as a function of barrier position
along the y=0 line (a) and the induced Hall resistance change along the
diagonal of the Hall cross (b) for fixed V,/Er=0.3 and different widths of
the Gaussian potential profile.

polarity is reversed. For very small fields the results are
qualitatively similar to the B=0 case [see Fig. 6(a)] with the
difference that, e.g., for 25 mT the induced Hall resistance
change is positive. At B=50 mT [the corresponding cyclo-
tron radius R.=vp/w.=(h/e)(kp/B) with kp=v2mn,], the
two positive peaks at opposite corners in Fig. 6(a) have
started to merge across the center of the Hall cross. The
minima at the other corners are still visible in Fig. 6(c). A
similar situation is seen for B=75 mT, though the features at
the corners are less prominent. Up to this field, the maximum

FIG. 6. (Color online) Hall Rj(r,,B,0.3,0.25) resistance maps for (a) B
=0 mT, (b) B=25 mT, (c) B=50 mT, (d) B=75 mT, (¢) B=100 mT, (f) B
=250 mT, (g) B=—50 mT, and (h) B=-250 mT.
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FIG. 7. The scaled Hall resistance Ry/B for different values of B vs the
barrier position (Vy/E=0.3, d/ W=0.25) along the Hall cross diagonal. The
dashed line for B=25 mT, and the dotted line for B=50 mT. The (thick)
lines are incremented by steps of (75 mT) 25 mT from (B=75 mT) B
=25 mT to B=300 mT.

variations in the Hall resistance as a consequence of the pres-
ence of the potential barrier are always around 12 (). At B
=100 mT the two maxima are moved closer to the center
along the diagonal. Two maxima between the corner and the
center are surrounded by global high resistance points at
250 mT, and any minima or maxima at the corners have
vanished at B=300 mT [see, e.g., Fig. 10(a)]. In this image
one finds a maximum elongated along the diagonal which
connects the maxima at B=0, with a smooth drop outside the
Hall cross area.

We compare the images obtained at positive magnetic
fields to those calculated for reversed magnetic fields.
A selection of maps is shown in Figs. 6(g) and 6(h) for
B=-50 mT and B=-250 mT. The following symmetry rela-
tions are found:

RH(XO’yO;B7VO7d) == RH(_ X0, Y05~ B’VO’d)
= _RH(XO’_yO;_B’V()ad),

Ry(x0,y0:B:Vo:d) = Ry(=x0,— 03B V3 d)
= Ry(=yo,— %058 Vy;d),

which are identical to those recently found'? for the ballistic
regime.

In order to see more clearly how the Hall resistance
changes with B, we plot in Fig. 7 the scaled Hall resistance
Ry/B for different values of B versus the barrier position
along the Hall cross diagonal. We notice the qualitative dif-
ferent behavior for low magnetic field values. It is clearly
shown that the zero field image is preserved for 25 mT (see
dashed line in Fig. 7) and that the two positive peaks occur-
ring at opposite corners in Fig. 6(a) merge across the center
of the Hall cross with increasing magnetic field.

The corresponding 2D maps for the longitudinal resis-
tance at nonzero magnetic fields are presented in Fig. 8 with
the same parameters as in Fig. 6. The longitudinal resistance
R, is seen to increase with field. Maxima (minima) are found
in the voltage (current) probes. Besides the above symme-
tries, another symmetry can be observed from Figs. 8(c),
8(g), 8(f), and 8(h):
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R [0]

FIG. 8. (Color online) Longitudinal R;(r,,B,0.3,0.25) resistance maps for
(a) B=0 mT, (b) B=25 mT, (c) B=50 mT, (d) B=75 mT, (¢) B=100 mT,
(f) B=250 mT, (g) B=-50 mT, and (h) B=-250 mT.

RL(rO’B’ V()’d) = RL(rOa_ Ba V()»d) s

thus the longitudinal resistance is an even function of the
magnetic field as expected. Next we investigate the effect of
the magnetic field on the longitudinal resistance when the
potential barrier is put in the center of the Hall cross (see Fig.
9). The effect of the position of the barrier along the middle
of the voltage probe is shown by inset (a) of Fig. 9. In the
small B region the longitudinal resistance at the center is
found to be quadratic in B. The behavior of the maxima is
similar as can be seen in inset (b) of Fig. 9.

To investigate the effect of the height of the potential
barrier, we performed similar calculations at a fixed magnetic
field of B=300 mT and at fixed half-width d for different
barrier heights. Selection of data is presented in Fig. 10. With
negative barrier heights (right panels of Fig. 10) the Hall

R,(0,0)[2/100

100 150
BImT]

FIG. 9. The longitudinal resistance at the center of the Hall cross vs B. The
insets show (a) longitudinal resistance as function of barrier position along
the y=0 line R, (x,y=0) for different B. (b) The R, (x,y=0) scaled by
R;(0,0). The (thick) lines are incremented by steps of (100 mT) 50 mT
from B=0 mT to B=300 mT.
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750

FIG. 10. (Color online) Hall Ry(ry,300 mT,V,,0.25) resistance maps for
(a) Vy=0.2Eg, (b) Vy=0.5E, (c) Vy=0.7E, (d) Vy=Ep, (e) Vy=1.5E, (f)
Vo==02Ep, (g) Voy=-05E, (h) Vo==0.7Ep, (i) Vo=—Ep and (j) V,
=—1.5E.

resistance decreases when the barrier approaches the center
of the Hall cross and its minimum value is found when the
barrier is in the center of the Hall cross. Notice that the
maxima in the four corners are independent of the barrier
strength and the minima decrease with increasing |V;|. For
positive barrier height it behaves differently (left panels of
Fig. 10): with low barrier height the Hall resistance has a
global maximum in the center. Increasing the barrier height
one can recover those images which correspond to the low
magnetic field map, that is, the double butterfly pattern (see
Figs. 2 and 6).

V. CONCLUSION

We calculated the changes in the longitudinal and Hall
resistances of a Hall cross in the diffusive regime in the
presence of a local potential barrier which was modeled by a
Gaussian function. The effect of the position of such a local
potential probe at the Hall cross on the Hall and longitudinal
resistances was obtained leading to two-dimensional (2D)
resistance maps. The real-space patterns of the induced resis-
tance changes are manifestations of the symmetry properties
of such a Hall system. At zero magnetic field a double but-
terfly Hall resistance pattern arises around the corners of the
Hall cross with positive and negative resistances. The size of
the induced Hall resistance changes and the positions of the
maxima and minima depend on the barrier height. The latter
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are also influenced by the width of the potential barrier. The
largest changes in the longitudinal resistance are found when
the center of the potential probe is positioned outside the
Hall cross area and toward the current leads. The maxima
(minima) are in the current (voltage) probe and are inter-
changed for negative V,. For small magnetic fields (less than
50 mT) the results are qualitatively similar to the B=0 case
with the difference that the induced Hall resistance change is
positive. The double butterfly structure disappears for higher
magnetic field and the two maxima between the corner and
the center are surrounded by global high resistance points.
But this process can be inverted for a fixed magnetic field
value: increasing the barrier height one can recover those
images which correspond to the low magnetic field map, but
the Hall resistance values are higher. The longitudinal resis-
tance increases with field and in the center of the Hall cross
is found to be quadratic in B for small B values.

From the present calculation we found that the Hall
cross can be used to locally probe electric fields (or charge).
This may also be used to calibrate the potential profile in-
duced by, e.g., an AFM tip. The present results tell us that the
Hall cross area has an inhomogeneous sensitivity where re-
gions near the corners of the Hall cross are more sensitive
than other regions in the Hall cross.*

The obtained resistance maps are those found in the ab-
sence of any potential fluctuations which may be inherently
present in the 2DEG (e.g., due to fluctuations in the position
of the dopants and/or interface fluctuations). Conversely, any
experimental found deviations from the theoretical images
presented in this paper may learn us about the static inhomo-
geneities that are present in the 2DEG of the Hall cross.
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