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The response of a ballistic two-dimensional electron gas �2DEG� confined to a Hall cross and
subjected to a locally inhomogeneous magnetic field which is created by two parallel or antiparallel
magnetized cylindrical dots deposited above the 2DEG is investigated. The Hall and bend
resistances are calculated as a function of the magnetization of the magnetic dots for different
positions of the dots on the Hall bar. The Hall and bend resistances are different for parallel and
antiparallel magnetized dots and depend on the relative position of the magnetic dots on the Hall
bar. © 2007 American Institute of Physics. �DOI: 10.1063/1.2743880�

I. INTRODUCTION

Driven by the enthusiasm of possible applications in
high-density storage media, more and more research activi-
ties are directed toward nanometer-scale magnetic particles.
Using scanning tunneling microscope-induced micro-organic
vapor deposition techniques �STM-MOCVD�, the diameter
of the magnetic particles can be as small as 5 nm. But, an-
other fact restricts the achievable density of magnetic record-
ing: the interaction between the particles, which becomes
more and more important when the particles get smaller and
closer to each other. Due to the interaction, the adjacent mag-
netic particles will favor an antiparallel magnetization
orientation,1 but in the presence of an external field a parallel
magnetization orientation is expected. Here, we provide the-
oretical evidence that a Hall bar in the ballistic regime can be
used as a noninvasive tool to identify the orientation of mag-
netization of the adjacent particles and therefore give us im-
portant information on the interparticle magnetic interaction.

Geim and co-workers2,3 investigated the case where
there is only one magnetic particle at the center of the Hall
cross. They found that the Hall resistance is suppressed when
the particle has a high magnetization; and for low magneti-
zation the Hall resistance is completely determined by the
average field in the cross region, as predicted in Ref. 4 when
the Hall bar is in the ballistic regime. In the diffusive regime5

the active region is about twice the Hall cross area.
Hysteresis traces of individual magnetic nanodisks fea-

turing a magnetic vortex were obtained using the above
micro-Hall magnetometry.6,7 Vortex pinning and switching
on individual nanodisks containing nanoholes was investi-
gated recently8 using the same measuring technique.

In this article, we study the situation when more than
one magnetic particle is present in the cross region and cal-
culate the response of the Hall bar, i.e., the Hall and the bend
resistance. From these resistances we are able to determine
the relative magnetization direction of the magnetic elements
giving information on their exchange interaction. The billiard
model9 is used to simulate the electron motion inside the

Hall cross, and we calculate the Hall and bend resistances
using the Landauer-Büttiker formula10,11 for different values
of the magnetization of the two magnets and different posi-
tions of such magnets in the Hall cross.

The article is organized as follows. In Sec. II we present
our theoretical approach. The numerical results are given in
Sec. III and our conclusions in Sec. IV.

II. THEORETICAL MODEL

The system we investigate is shown in Fig. 1�a�. It is a
Hall cross with four identical leads; each of them is 2w
=1.85 �m wide �the parameters are in accordance with Ref.
2�. Cylindrical magnetic dots are put on the surface of the
cross, which are parallel or antiparallel magnetized. The field
created by the dots will influence the two-dimensional elec-
tron gas �2DEG� that is positioned 70 nm below the surface
with a density ne=3.45�1015 m−2 �see Figs. 1�c� and 1�d��,
and result in a change of the Hall and bend resistances.
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FIG. 1. �a� Schematic diagram of the systems to be investigated: Ballistic
electrons are injected into a Hall cross in the presence of two ferromagnetic
dots which are put on top of the 2DEG. �b� The cylindrical ferromagnetic
column with the relevant geometrical parameters. Magnetic field profile cre-
ated by a �c� thick and �d� thin dot deposited above the 2DEG.
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First we calculate the magnetic field profile of a mag-
netic cylinder. Note that the cylinder has an azimuthal sym-
metric magnetic field profile, and a general solution for such
a problem is12

��r,�� = �
l=0

�

�Alr
l + Blr

−�l+1��Pl�cos �� , �1�

where Al and Bl are the expansion coefficients, and Pl�cos ��
is the Legendre polynomial. The magnetic field along the
symmetry axis of the cylinder �see Fig. 1�b�� is Bz�z�=
��0Mz /2���z−z1� /�R2+ �z−z1�2− �z−z2� /�R2+ �z−z2�2�. We
expand this expression into a power series, and compare its
coefficients to the general solution Eq. �1�, from which we
obtain the coefficients Al and Bl. The resulting magnetic field
of a cylinder is

Bz =
�0Mz

2
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where ri=��z−zi�2+�2 and cos �i= �z−zi� /��z−zi�2+�2,
with F�ri , cos �i�=
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Following Ref. 11 for a four-terminal device like a Hall
cross, we assume that the current flows from lead m to lead
n, and the voltage is measured between leads k and l. The
corresponding resistance can be written as

Rmn,kl =
h

2e2

TkmTln − TknTlm

D
, �3�

where Tij is the electron transmission probability from lead i
to lead j, which is determined by using the billiard model
introduced in Ref. 9 and D is the subdeterminant of the ma-
trix of all the transmission probabilities.11,13 In this article,
we took RH=R13,24 as the Hall resistance. For the bend resis-
tance, which is defined as the ratio between the voltage mea-
sured between two adjacent leads and the current put through
the opposite pair of leads, we took RB=R14,32. The 2DEG is
assumed to be in the ballistic regime �which implies a high
mobility sample with �e	2w, where �e is the mean free path
of the 2DEG�. In the billiard model, the electrons are in-
jected into the cross region with velocity equal to the Fermi
velocity and different directions. The motion of these “clas-
sical” electrons is governed by Newton’s second law and
experiences a nonhomogeneous magnetic field profile from
the magnetic dots and specular reflected by the boundary of
the cross. Quantum effects are assumed to be negligible,
which is valid when temperature is not too small.

III. RESULTS

We found a symmetry property of the Hall resistance:
when an axis-symmetry magnetic field �ASMF� is present
with its symmetry axis transverse or longitudinal to the axis
of the Hall cross, and for the same distance to the center of

the Hall cross, then there are four possible positions �for
example, see Fig. 2�, such that the Hall resistance will be the
same for all these positions of the ASMF.

We restrict ourselves to two identical ferromagnetic dots
�r=0.65 �m, h=1.5 �m� with parallel magnetization �PM,
see Fig. 3� or antiparallel magnetization �APM, see Fig. 4�.
We calculated the Hall and bend resistances for different
relative positions of the magnetic dots above the Hall cross.
The first dot which is kept fixed is put with its center at �−w,
0� and the second at: �a� �0, w�; �b� �w, 0�; and �c� �0, −w�
�see the inset of Fig. 3�a��. The magnetization of each dot
increased from zero to 106 A/m, which yields a maximum
field strength of about 0.53 T below the dot.

If these are two PM dots, the resistances are expressed as
a function of Bav, which is the average field in the cross
region. We know from Ref. 4 that the Hall resistance will
only depend on Bav in the low field regime. Our results are in
good agreement with this conclusion, as shown in Fig. 3�a�.
When the magnetization increases, the Hall resistance be-
comes very sensitive to the position of the second cylinder;
when it is placed at position �c� it will yield a much higher
RH than when it is placed at position �a�. This is different
from the one-cylinder case, where the Hall resistance was
found to be larger when we put the cylinder at position �a�.
In Figs. 3�a� and 3�b�, we show also the RH and RB in the
case where a uniform magnetic field is applied and no dots
are present. If the two dots are APM, because the average
field is zero, we show the resistances as function of Bcen,
which is the field strength at the center of the dot in the
2DEG plane, as point O in Figs. 1�c� and 1�d�. From Ref. 4
the Hall resistance should be zero at low fields. We found
that this is only true for very small fields in the case where
the second dot is placed at positions �a� and �c�, while for dot
position �b� it is valid for arbitrary value of the magnetiza-
tion. Notice that curves �a� and �c� exhibit an interesting sign
reversal.

FIG. 2. A ferromagnetic round disk �diameter=0.75w�, which produces an
axis-symmetry magnetic field �ASMF� in the 2DEG �its symmetry axis as
shown in the figure�, is put with its center at: �a� �−1.25w, 0�; �b� �0, 1.25w�;
�c� �1.25w, 0�; and �d� �0, −1.25w�, which leads to the same Hall resistance
at all four of these positions.
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The difference in the Hall resistance for PM and APM
dots can be summarized as follows:

�1� If the second dot is placed at position �a�, at low mag-
netization, we found that the difference in the Hall re-
sistance between PM and APM dots is maximum �see
Fig. 5�, since the Hall resistance of the PM dots is posi-
tive and increases and that of the APM dots is negative
and decreases with increasing magnetization. For inter-
mediate magnetization the Hall resistances of the APM
dots and the PM dots both increase up to a point where
a maximum is reached and they start to decrease for
high magnetization. The PM Hall resistance is always
larger than the APM one; the smallest difference occurs
for Mz=6�105 A/m and is about 22.7 
.

�2� If the second dot is placed at position �b�, the Hall re-
sistance will always be zero for the APM dots, which is
a consequence of the symmetric electron trajectories due
to the antisymmetric magnetic field. For the PM dots,

the Hall resistance increases and saturates to about
120.0 
 �see Fig. 3�a��.

�3� If the second dot is placed at position �c�, the difference
in the Hall resistance at low magnetization is smallest,

FIG. 3. �a� The Hall resistance RH for two parallel magnetized dots as a
function of the magnetization of the dots or as a function of the average field
Bav in the cross region; �b� The corresponding bend resistance RB for these
two dots. The different curves correspond to different positions of one of the
magnetic dots �see the inset of �a��.

FIG. 4. The same as Fig. 3 but now the second dot has a magnetic moment
opposite to the first one. The resistances are now plotted as function of Bcen

�Bav=0 here�.

FIG. 5. Comparison of the Hall resistance in the case of PM dots and APM
dots: dashed lines, the second dot placed at position �a�; solid lines, the
second dot placed at position �c�.
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since the APM dots also have an increased positive Hall
resistance as the PM dots �see Fig. 5�. But, at interme-
diate magnetization, the difference in the Hall resistance
become very large, because RH of the APM dots de-
creases to negative values, while that of the PM dots
increases very fast. In fact, RH�a�=−RH�c� for the APM
configuration.

The bend resistances are sensitive to the details of the mag-
netic field profile, and depend very much on the position of
the magnetic disks on the Hall cross �see Fig. 3�b� and Fig.
4�b��. Notice that, while the corresponding Hall resistances
are the same in the small magnetic field regime �see Fig.
3�a��, the corresponding bend resistances can be rather dif-
ferent. This implies that the bend resistance is a more sensi-
tive quantity than the Hall resistance to detect the magnetic
field profile in the low field regime.

IV. CONCLUSIONS

Our study shows that the ballistic micron-sized Hall bar
can be used as a noninvasive tool to detect the relative di-
rection of the magnetization of ferromagnetic nanoparticles
�see Fig. 5�. The Hall resistance for two PM dots is always
larger than that for two APM dots. The size of the difference
depends on the relative position of the dots. In low magne-
tization of the dots the bend resistance is a more sensitive
quantity than the Hall resistance for the relative position of
the magnetic dots.

In our calculation we restricted ourselves to identical
ferromagnetic dots that have the same magnitude of magne-
tization. It is straightforward to generalize the present result
to nonidentical dots and to cases in which the magnitude of
their magnetization is different.
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