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The response of a ballistic mesoscopic Hall bar to a local potential barrier is investigated in the
presence of an external magnetic field. The effect of the position of the local potential probe in the
Hall cross on the Hall and bend resistance is investigated leading to two-dimensional �2D� resistance
maps. The Onsager–Casimir symmetry relations and symmetry relations between resistance
measurements when interchanging the current and voltage leads, is obtained numerically for such
2D resistance maps. Symmetry properties are derived for the Hall and bend resistance maps with
respect to the position of the local potential barrier. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2713365�

I. INTRODUCTION

In present day microelectronics the determination of lo-
cal electric fields is of paramount importance. Such fields
influence the conductance properties of the device and its
operating characteristics. Using the nanopotentiometry tech-
nique it has been demonstrated that the distribution of the
electrical potential on a surface1,2 can be mapped. One uses a
conductive atomic force microscope �AFM� tip in contact,1

or noncontact2 mode, as a local voltage probe to map the
local potential landscape. The latter determines the electron
scattering and consequently the electrical resistance. On the
other hand, such tips can also be used to induce potential
variations in the sample in order to influence the conductance
locally.3 Measuring the change in the resistance of the device
gives information on the local transport properties and tells
us how effective such a local perturbation is in disturbing the
electron motion. In small devices as, e.g., a mesoscopic Hall
bar the current is non homogeneously distributed over the
sample and as a consequence the effect of a local potential
will depend on its spatial position. The Hall resistance and
longitudinal resistance of a Hall bar were recently measured4

while an AFM tip scanned at constant height over the Hall
cross. The measurements showed a characteristic distribution
of the Hall and longitudinal resistances which is a measure
of the sensitivity of the Hall bar to a local potential.

Ballistic transport of electrons in a cross-shaped Hall
junction placed in a homogeneous magnetic field, containing
a local potential profile in the cross junction was studied by
Baelus and Peeters5 using a semiclassical formalism for elec-
tron transport. They demonstrated theoretically5 that the two-
dimensional electron gas could be used as a probe to mea-
sure the induced potential profile. This potential profile was
fixed at the center of the Hall cross. Here we relax this con-
straint and obtain a full two-dimensional �2D� map of the
Hall bar resistances. Furthermore, we present a numerical
check of the Onsager–Casimir6,7 symmetry relations and

confirm the symmetry relations between conductance mea-
surements when interchanging the current and voltage leads
of the Hall bar �see Fig. 1� as predicted theoretically by
Büttiker8 for a four terminal conductor but now for the case
that a local potential profile, as created by a scanning AFM
tip, is present. We also find symmetry relations for the resis-
tance maps.

II. MODEL

In order to calculate the Hall and the bend resistances of
the Hall cross, we will use the billiard model9 which was
proven to be applicable in the ballistic regime. The electrons
are considered as point particles which is justified when the
Fermi wavelength �F�W , d where 2W is the width of the
Hall probes and 2d is the half width of the potential profile
which acts as a scatterer for the electrons. We assume that
temperature is not extremely low such that interference ef-
fects are averaged out due to thermal smearing. This tem-
perature smearing will make the condition �F�W , d less
restrictive. The electron motion is governed by Newton’s
law, which is justified at low temperatures and in the case of
high mobility samples where the mean-free path �e�W , d.
In a typical GaAs heterostructure the electron density is n
�3�1011 cm−2 with a typical low temperature mobility �
�106 cm2/V s, which gives �F=450 Å and �e=5.4 �m.
This billiard model was applied9 and described, e.g., the ex-
periments of Ref. 10 and explained11 the response of the
ballistic magnetometer.12

Applying the Landauer–Büttiker formalism8 for the four
terminal conductor with identical leads, the R�= �R31, 24

+R24, 31� /2, R�= �R14, 32+R32, 14� /2, R�= �R12, 43+R43, 12� /2
resistances fulfill the R�+R�+R�=0 relation and contains the
RH Hall resistance

RH = R31, 24 = �h/e2��T23T41 − T21T43�/D , �1�

and the RB bend resistancea�Electronic mail: pgy@physx.u-szeged.hu
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RB = R14, 32 = �h/e2��T31T24 − T34T21�/D , �2�

where D= �h /e2�2��11�22−�12�21�S with S=T12+T14+T32

+T34=T21+T41+T23+T43, �11= �e2 /h���1−T11�S− �T14+T12�
��T41+T21�� /S,�12= �e2 /h��T12T34−T14T32� /S, �22= �e2 /h�
���1−T22�S− �T21+T23��T32+T12�� /S, and �21= �e2 /h�
��T21T43−T41T23� /S. Tij�B� is the probability for carriers in-
cident in the lead j to be transmitted into the lead i. They
satisfy the symmetry property: Tij�B�=Tji�−B� which follows
from current conservation and time-reversal invariance. This
symmetry relation guarantees the reciprocity relation:
Rmn, kl�B�=Rkl, mn�−B�, where Rmn, kl= ��l−�k� /eInm. So the
reciprocity relation states that the resistance measured in the
presence of a magnetic field B is equal to the resistance
measured in the presence of a reversed magnetic field −B if
the reversal is accompanied by an interchange of the current
and voltage leads. The reciprocity relation follows from the
Onsager–Casimir relation:6,7 ��B�=�T�−B� for the resistivity
tensor �here T denotes the transpose�.

The probabilities Tij�B� are calculated for the Hall bar
using the ballistic billiard model.9,11 We inject a large num-
ber of electrons �Ne�105� toward the junction through, e.g.,
lead 1, and follow their classical trajectories to determine the
probabilities: Tj1=Nj /Ne, where Nj is the number of elec-
trons collected in lead j. Note that for the case of nonidenti-
cal leads or in the presence of an asymmetric local potential
profile, similar procedures should be followed for each of the
four leads. The electrons are injected uniformly over lead 1,
with Fermi velocity vF=�2mEF, and angular distribution
P�	�=cos�	� /2, where 	� �−
 /2 , 
 /2� is the injection
angle with respect to the channel axis. Here the angular dis-
tribution weight function P����cos��� simply results from
the slight shift of the Fermi surface of the reservoirs in the
linear response regime and the factor 1/2 is due to normal-
ization.

In the following we will express the magnetic field in
units of B0=mvF /2eW, and the resistance in R0

= �h /2e2�
 /2kFW, where W is the half width of the leads, m
is the mass of the electron, kF=�2mEF /�2, and vF=�kF /m
the Fermi velocity. For electrons moving in GaAs �m

=0.067me� and for a typical channel width of 2W=1 �m and
a Fermi energy of EF=13 meV �ne=3.65�1011 cm−2�, we
obtain B0=99 mT and R0=270.5 
.

In order to demonstrate the main physics involved, we
model the functional form of the probing potential by a
Gaussian potential barrier: V���=V0 exp�−�� −�0�2 /d2� with
height V0, 2d width at half height and �0 is the center posi-
tion of the potential on the Hall bar. This potential barrier is
schematically shown in Fig. 1 by the shaded circular area.
The effect of the potential barrier is to locally reduce the
kinetic energy of the electrons to EF−V���. Hence, the elec-
tron velocity v, the density n of the electrons, and also the
radius Rc of the cyclotron orbit, are reduced by the potential.
For V0�0 a potential dip is induced in the Hall bar and the
opposite occurs. The presence of the potential barrier will
result in changes in the transmission probabilities Tij and the
size of the change will result in, e.g., a Hall resistance
RH��0 , B� which not only depends on the magnetic field but
also on the position of the potential scatterer.

III. RESULTS AND DISCUSSIONS

First we demonstrate the Onsager relations for the case
of a Hall bar when the tip is scanned over the Hall cross.
Suppose the current flows from lead 1 to lead 3. The mea-
sured potentials are �2=eV2 and �4=eV4 under the condition
that the current in leads 2 and 4 is zero. In this configuration
the measured resistance is R31, 24= �V4−V2� / I13. Now we
switch the current and voltage leads but keep the magnetic
field fixed. In this case the measured resistance is R24, 31

= �V3−V1� / I24. We calculated those resistances as function of
the tip position for: V0 /EF=0.5 and d /W=0.25. Figure 2
shows contour plots of the resistances in the presence of an
applied field of B=50 mT �left panels� and B=−50 mT �right
panels�. Since both R31, 24 �top panels� and R24, 31 �bottom
panels� are off-diagonal Onsager coefficients their asymme-
try is completely compatible with the Onsager symmetry re-
lations. Furthermore, we find the following symmetry rela-
tions from Fig. 2:

R31, 24�x0, y0; B� = − R31, 24�− x0, y0; − B�

= − R31, 24�x0, − y0; − B� , �3a�

R31, 24�x0, y0; B� = R31, 24�− x0, − y0; B�

= R31, 24�− y0, − x0; B� �3b�

R31, 24�x0, y0; B� = R24, 31�x0, y0; − B� . �3c�

There are two additional possibilities of feeding two cur-
rents into the Hall cross of Fig. 1. Each of these four probes
obeys the Onsager relations with a set of resistances which
are the terms in R� and R�. Namely, the terms in R� are the
bend resistances: R14, 32= ��3−�2� /eI14, R32, 14= ��1

−�4� /eI32; and the terms in R� are: R12, 43= ��4−�3� /eI12,
R43, 12= ��1−�2� /eI43. These resistances are shown in Fig. 3
for the Hall bar with the same potential parameters as used in
Fig. 2 for B=50 mT. It is apparent that these figures exhibit
the following symmetries:

FIG. 1. The Hall cross with the four reservoirs at chemical potentials �1, �2,
�3, and �4. A potential barrier is applied �shaded area� and the dotted square
indicates the scanning area considered in the calculations.
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R14,32�x0,y0;B� = R32,14�− x0,− y0;B� , �4a�

=− R12, 43�x0, − y0; B� , �4b�

=− R43, 12�− x0, y0; B� . �4c�

For the same magnetic field value, the six resistances
having a different distribution �i.e., a different �0= �x0 , y0�
dependence� can be combined to give R���0 , B�, R���0 , B�,
and R���0 , B�. The resistances, R�, R�, R� are symmetric
�even function of the magnetic field, see Fig. 4�:
R��x0 y0 ; B�=R��x0 , y0 ; −B�, as a result of the property
�21�B�=�12�−B�. Moreover, the resistances of the top and
the bottom panels of Fig. 4 exhibit the following symmetries,
respectively,

R��x0, y0; B� = R��− x0, − y0; B� = R��− y0, − x0; B� ,

�5a�

FIG. 2. �Color online� The Hall resistances: R31, 24 �top
panels� and R24, 31 �bottom panels� for B=50 mT �left
panels� and for B=−50 mT �right panels� with V0 /EF

=0.5 and d /W=0.25. The value of the resistances is in

.

FIG. 3. �Color online� The bend resistances appearing in R� �top panels�:
R14, 32 �left�, R32, 14 �right� and appearing in R� �bottom panels�: R12, 43 �left�,
R43, 12 �right� for B=50 mT with V0 /EF=0.5 and d /W=0.25.

FIG. 4. �Color online� The contour plot of R� �top panels� for B=50 mT
�left�, and for B=−50 mT �right�, and the contour plots of R� and R� �bottom
panels left and right, respectively� for B=50 mT with V0 /EF=0.98 and
d /W=0.5.

FIG. 5. �Color online� The contour plot of R�+R�+R� for B=50 mT with
V0 /EF=0.98 and d /W=0.5.
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R��x0, y0; B� = − R��− x0, y0; B� = − R��x0, − y0; B� .

�5b�

But importantly, it is clear that the relation R�+R�+R�

=0 is no longer satisfied in every point �0= �x0 , y0� as is
clearly demonstrated in Fig. 5 where a contour plot of this
quantity is plotted. But a less restrictive relation is valid,
namely the average, i.e., �

�S�

�R�+R�+R��d2�=0, is zero.

It is interesting to see what the effect is of an increase of
the strength on the magnetic field. In Fig. 6 we show the
distribution of resistances for B=100 mT with V0 /EF=0.5
and d /W=0.25. The top panels contain the terms contained
in R�, the middle panels those of R�, and the bottom panels
those of R�. Notice that the fine structure in the 2D map of
Ri�x0 , y0 ; B� is washed out but the symmetry properties are
unaltered. Note also that the absolute values of the Hall
�bend� resistances are larger �smaller� than those for the 50
mT case.

IV. CONCLUSIONS

In conclusion, we calculated the influence of a local po-
tential barrier on the different resistances of a ballistic meso-
scopic Hall bar. The change in resistance depends on the
exact position of the potential barrier and symmetry relations
were obtained for the 2D resistance maps. We showed nu-
merically that the Onsager relations and those derived by
Büttiker for a four terminal device are also satisfied for the
2D resistances maps. We found that: �1� the bend resistance
is more sensitive to a local potential barrier then the Hall
resistance and �2� the sensitivity of the Hall bar is larger near
some of the corners of the Hall bar. These conclusions are
important when such Hall bars are used as local electric field
detectors.
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