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cessing mega-pixel X-ray
fluorescence hyperspectral data: a case study on a
version of Caravaggio's painting Supper at Emmaus

Matthias Alfeld*ab and Koen Janssensa

Technical progress in the fields of X-ray sources, optics and detectors is constantly enhancing the pace of

data acquisition in XRF imaging. This enlarges the size of the hyperspectral datasets and the number of their

sub-parts. This paper describes the challenges in processing large XRF datasets featuring several million

pixels/spectra and the strategies developed to overcome them. During the investigation of historical

paintings by scanning macro-XRF the main challenges are the correct identification of all spectral

features in a dataset and its timely processing. For the identification of spectral features different

approaches are discussed, i.e. the use of sum spectra, maximum pixel spectra and of cr
2 maps. For the

time-efficient, artefact-free evaluation of XRF imaging data, different software packages are evaluated

and intercompared (AXIL, PyMCA, GeoPIXE and the in-house written datamuncher). The process of data

evaluation is illustrated on a large dataset (3.4 MPixels) acquired during the investigation of a version of

Caravaggio's Supper at Emmaus (143 � 199.5 cm2). This 17th century painting is currently the largest

object entirely scanned with macroscopic XRF.
1 Introduction

Technical progress in the elds of X-ray sources, optics and
detectors has made the acquisition of elemental distribution
images with dwell times of a few milliseconds per pixel
commonplace.1,2 Recent development in X-ray uorescence
scanning3–5 and full-eld6 imaging instrumentation is acceler-
ating this pace further, reporting XRF datasets with several tens
of million pixels.3

The hyperspectral XRF datasets acquired can encompass
several millions of pixels, each featuring a complete spectrum of
several thousand channels. The evaluation of such datasets
faces two main challenges. First a timely evaluation of the data
is desirable, as it allows considering the results of previous
experiments when planning the following and second a model
needs to be dened that accounts for all spectral features
present.

The authors faced these challenges rst hand during their
work on the investigation of historical paintings by scanning
macro-XRF (MA-XRF) from 2008 to 2013. In these experiments
large areas (up to several square meters) of historical paintings
are scanned with a focused or collimated X-ray beam, achieving
a lateral resolution of typically a few hundred micrometers.
Even a small area of 10 � 10 cm2 scanned with 100 mm step size
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will produce a dataset featuring 1 million energy dispersive XRF
spectra with typically 2048 or 4096 channels. Aer processing,
each of the resulting 10–15 elemental distribution images
comprises 1 million pixels.

On the one hand, historical paintings are favourable objects
for investigation with XRF, as the main elements of the
pigments used are present at a concentration level of several
mass percent. This allows us to acquire low-noise elemental
distribution images with dwell times of a fraction of a second,
even when employing low power X-ray tube sources of only a few
tens of Watts power.

On the other hand, historical paintings are challenging
objects to be investigated with XRF, as the distribution and
elemental composition of pigments is oen highly heteroge-
neous. Also the scattering characteristics of the material, which
contribute strongly to the shape of the spectral background,
particularly in the case of polychromatic excitation, may vary
strongly between areas of the painting. Furthermore, many
paintings are too large to be investigated in a single scan, in
which case several sub-areas need to be scanned separately,
constituting sub-parts of the dataset. The elemental distribu-
tion images obtained from these subsets need to be recombined
in order to obtain images of the entire scanned surface. The
presence of several sub-parts further complicates the interpre-
tation of the XRF data.

The intensity of the recorded X-ray uorescence radiation
and the absolute abundance of elements in a sample are
correlated; thus XRF imaging allows in principle for the acqui-
sition of quantitative elemental distribution images. However,
J. Anal. At. Spectrom., 2015, 30, 777–789 | 777
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this requires a good characterization of the instrument as well
as knowledge on the sample's composition and stratigraphy.
Historical paintings are complex samples, oen with an
unknown stratigraphy, so that their investigation by XRF
imaging is in general focused on the detection of relative, but
not absolute differences in concentration. For this reason the
following discussion will be limited to qualitative imaging.

The rst experiments on historical paintings attributed to
Vincent van Gogh, Rembrandt van Rijn and other artists were
done at synchrotron radiation sources.7–10 Synchrotron experi-
ments are in general done in short periods of time (a few days)
with oen months in between. So, while sufficient time for the
(nal) data processing and optimization of the tting model is
available, near real-time data analysis, possibly preliminary, is
needed to make efficient use of the time available for experi-
ments. The latter is supported by the availability of high
performance computing resources.

Mobile instruments, which were developed in the last years,
allow investigation of historical paintings in situ, i.e. in a
museum or gallery.9,11,12 As these scanners are nearly constantly
available, a large stream of raw spectral data is produced. This
stream of data needs to be processed in a time efficient manner,
i.e. fast, compared to the measurement time, and requiring only
a minimum amount of the evaluating person's attention. The
computing resources available during an in situ experiment for
data processing are typically limited.

It is obvious that a soware package for data evaluation is in
this case expected to provide (a) (largely) artefact-free elemental
distribution images, while it should also (b) allow for fast pro-
cessing of huge datasets, preferably with the computing hard-
ware present at the site of the experiment.

The iterative improvement of the spectral t model requires
the repeated processing of several or all sub-parts of the dataset.
A suitable soware package should (c) allow for the scheduling
of data processing batch jobs of sub-parts to avoid time loss
between the end of one tting process and the (otherwise
manual) start of the next.

Several soware packages were employed for the evaluation
of the data acquired. Initially AXIL13–15 was used, followed by
PyMCA16 and nally GeoPIXE.17–23 While all soware packages
allowed for the reliable processing of the data, none was fully
satisfying the criteria above, which motivated the in-house
development: datamuncher. A h soware package, not dis-
cussed here as the authors have no experience with it, is MAPS,
developed at Argonne National Laboratory by Stefan Vogt.24 It is
freely available as compiled IDL code, featuring a GUI.† Further,
a number of routines based on MAPS are available as open
source command line tools.‡

In the following, aer a brief recapitulation of the mathe-
matical background, the identication of relevant spectral
features in a large MA-XRF dataset with several sub-parts will be
discussed. The different soware packages available will be
presented and the motivation for the development of
† http://www.aps.anl.gov/Xray_Science_Division/Xray_Microscopy_and_Imaging/
Soware_and_Tools/maps.html

‡ http://code.google.com/p/mapspy/
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datamuncher highlighted. The features of interest of the so-
ware packages will be compared in the last section. The dataset
used for this paper is derived from a painting called Supper at
Emmaus, a 17th C. version of the painting by Caravaggio, part of
a private collection.
2 Experimental
2.1 The painting

A 17th century version of Caravaggio's Supper at Emmaus from a
private American collection is pictured in Fig. 1. An autograph
version of this composition documented as being painted by
Caravaggio is in the National Gallery, London. The painting
depicts a scene described in the Gospel of Luke (24 : 13–35).
Aer his resurrection Jesus meets two of his disciples on the way
to the town of Emmaus. The disciples, who are at rst oblivious
of his identity, recognize him at the moment he breaks and
blesses the bread. The disciples sit on the le and right of Jesus,
who is in the act of blessing. The standing man in the back-
ground is referred to as ‘the Innkeeper’.

The painting was investigated to gain insight into its crea-
tion process, which is expected to provide new arguments for (or
against) Caravaggio's authorship. As this paper is focussed on
the technical aspects of data processing, the art-historical
interpretation of the results will be subject of future
publications.
2.2 Scanning macro-XRF investigation

Supper at Emmaus was investigated with an in-house built XRF
scanner of the University of Antwerp, labelled Instrument D,
described in detail elsewhere.9 The scanner consists of a
measurement head, which is mounted on a 60 � 60 cm2 (hor �
ver) sample stage (Newport Corporation, Irvine, CA, USA). The
measurement head consists of four Vortex EX SD-detectors
(formerly: SII, Northridge, CA, USA, now: Hitachi High-Tech-
nologies Science America, Inc., Northridge, CA, USA), posi-
tioned closely around the X-ray tube to record uorescence
radiation from a large solid angle, thus enhancing the sensi-
tivity of the instrument. The analogue signals of the SD-detec-
tors are processed with a DXP-XMAP (XIA LLC, Hayward CA,
USA). The primary radiation emitted by a 10 W Rh-anode
“Magnum” X-ray tube (Moxtek, UT, USA) is collimated with a
lead pinhole.

For the measurements, the painting was xed on a height
adjustable easel and repositioned for each scan with respect to
the scanner, which was installed on a table. The entire surface
of the painting was scanned in 12 subsections of approx. 55 �
55 cm2 with a step size of 1 mm and an average dwell time of
0.42 s per pixel, resulting in a total scanning time of 17 days for
the entire painting. The 12 subsections featured together 3.4
million pixels with sufficient overlap between scans to allow for
good quality stitching of the elemental distribution images into
the nal 2.9 MPixel images. For data processing the spectra
acquired by the four individual detectors were scaled to the
same energy calibration and consequently summed. The spec-
tral data were saved for evaluation in the ESRF Data Format
This journal is © The Royal Society of Chemistry 2015
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(EDF) for all soware packages discussed with the exception of
AXIL, for which its native SPE format (ASCII text les) was used.
0.7 ms were employed as the peak shaping time, so that the
spectra were acquired with an energy resolution of approx. 200
eV. For all images shown, the soware package used to generate
them is indicated in the caption.

While for the overview scans a collimator of 0.8 mmdiameter
was used, yielding a beam size of approx. 1.2 mm, additional
details were scanned with a 0.5 mm aperture, which provided a
beam of approx. 0.7 mm diameter. The detail shown in Fig. 3
was acquired with a dwell time of 0.45 s and 0.5 mm step size in
40 hours.

The average output count rate per detector was typically
30 000 counts per second. Thus a summed spectrum of all four
detectors per pixel featured on average 50 000 counts. A sum-
med spectrum of all pixels of a sub area is shown in Fig. 7. The
rather long dwell time (0.42 s) was chosen in order to clearly
visualize also less abundant/less well detected elements such as
K and Mn. To visualize only the distribution of elements of high
abundance for which the scanner features a high sensitivity,
such as Fe, Cu, Pb and Hg, dwell times below 10 ms would have
been sufficient.12
Fig. 1 Supper at Emmaus (143� 199.5 cm2, oil and tempera on canvas), p
Fe and Hg. The red and green shapes indicate the areas discussed in deta
software (datamuncher).

This journal is © The Royal Society of Chemistry 2015
In the colour scale of all images shown a higher brightness
indicates a stronger signal. For all images the minimum and
maximum intensity values shown were selected to enhance the
readability and highlight the features that are discussed. The
nal contrast was adjusted by means of gamma-correction of
the grey value scale.
3 Results
3.1 Elemental distribution images of the entire image

Supper at Emmaus features a classical 16–17th century palette,
as shown in the elemental distribution images of Fig. 1 and 2.
Fe and Mn are present in the reddish and brownish earth
pigments, used throughout the painting. In both elemental
distribution images damaged areas of the canvas are visible,
which were lled during restoration works. These are mainly
gaps in the background of the painting, but also a cut through
the head of the le disciple is discernible, visible in the Mn
distribution image. In the bottom part of the painting, slightly
above the edge of the table cloth more restored areas are
discernible, which result from the presence of a joint in the
canvas.
rivate collection. Photograph and elemental distribution images of Mn,
il in Fig. 3 and 8, respectively. Data processed with the in-house written

J. Anal. At. Spectrom., 2015, 30, 777–789 | 779
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Fig. 2 Supper at Emmaus (143 � 199.5 cm2, oil and tempera on
canvas), private collection. Elemental distribution images of Pb and
Cu. Data processed with the in-house written software
(datamuncher).
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Hg is present in the red pigment vermilion (HgS), which
was used either in the pure form to model the red cloth, or in
mixtures with other pigments to model skin tones and to
accentuate brown tones, such as on the chair of the le
disciple, the bread and the fowl on the table. It is present
throughout the painting, probably in the ground layer to give
it a warmer touch. Pb is present in lead white (basic PbCO3)
and to a minor amount in lead tin yellow. It is present in the
ground layers and used throughout the painting mixed with
other pigments, but also in the pure form, e.g. in the table
cloth. Also in this distribution image the damaged areas
mentioned above are well discernible. Cu is present in green
and blue pigments, which can be either natural (malachite
(Cu2CO3OH2) and azurite (Cu3(CO3)2(OH)2)) or their
synthetic equivalents (green and blue verditer). Beyond that,
Cu is present in the green pigment Verdigris, which consists
of chemically ill-dened corrosion products of Cu.25 A
distinction between these pigments by XRF alone is not
possible. Cu pigments are used to model the blue clothing of
the right disciple as well as the bottles and dishes on the
table and the fruit. Further, it is used throughout the
painting in mixture with other pigments to model the
shadows, especially visible in the face of the innkeeper.
780 | J. Anal. At. Spectrom., 2015, 30, 777–789
3.2 Elemental distribution images in detail

Fig. 3 shows elemental distribution images for the sub-area
indicated by the red shape in Fig. 1. This sub-area was chosen as
it contains a wide range of elements detectable by XRF, as well
as it allows discussion of the spectral features without getting
lost in the details of the painting. The area depicts the sleeve of
the le disciple and an elaborately decorated ceramic blue jug.

K is assumed to be present in green earth, used to model the
cloth of the disciple, and the blue pigment smalt (see below). Ca
is present in bone black and in chalk and/or gypsum, which can
be found in the ground layers and was used during conservation
treatments to ll holes and gaps in the paint. Cr is not a main
constituent of pigments made before the 19th century and is
present in repaired parts. Earth pigments (containing Fe and
Mn) were used throughout the area, with the darker variant
used to model shadows. Cu pigments were not used to model
shadows in this area. Instead they were used in the bluish jug
and bottle. Vermilion (HgS) was used in combination with earth
pigments to model the loaf of bread and the glass with amber
coloured content. Lead white is used in combination with other
pigments throughout this area. It was used undiluted in the
table cloth and to set highlights in reections on the glass
vessels. Both Hg and Pb are present throughout the painting,
but to enhance the readability of the images the lowest recorded
signal is displayed as black. As Hg is present in the ground layer
of the painting, the intensity recorded of this element reects
the absorption power of covering paint layers. Thus the
elemental distribution images of Hg and the strongly absorbing
Pb are notably anti-correlated. K, Co, Ni, As and Bi are all co-
localized in the thick paint layers used to model the jug and the
bottle. This is due to the use of the pigment smalt, a ground K-
rich glass coloured blue by Co. Smalt contains, depending on
the raw material used and the manufacturing process
employed, varying amounts of minor components, such as Fe,
As, Ni and Bi.26

Bi was found present only in the smalt containing areas of the
painting at a rather low concentration level. The intensity of the
recorded Bi-L uorescence radiation in Bi hotspots is 1/30th of
that of the Pb-L uorescence. Pb and Bi are neighbours in the
periodic table, and so the intrinsic sensitivity of the scanner for
them is essentially equal. Due to the modest energy resolution
(200 eV) and shis in peak ratios due to absorption effects (see
Section 4.3.5), Pb-L and Bi-L lines cannot be completely resolved
here. Hence, the Bi-L distribution image contains visible contri-
butions of the Pb-L radiation. The contribution of the lesser
intense Bi-L radiation to the Pb-L distribution image is negligible.

The authors experienced that As elemental distribution
images of many paintings contained artefacts, due to signicant
overlaps of the As-Ka line (10.53 keV) with the Pb-La line (10.55
keV) and the As-Kb line (11.72 keV) with the Hg-Lb line (11.82
keV). If only one of Pb or Hg co-locates with As, its intensity can
be correctly determined by the interference-free As line.
However, when both Pb and Hg contribute to the same spec-
trum, the As signal is extremely difficult to quantify and oen
overestimated. In this painting As is overestimated in the bright
red clothes of Jesus and the innkeeper (not displayed).
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Elemental distribution images of the area indicated in Fig. 1 with the red square. Results were acquired with a step size of 0.5 mm and a
dwell time of 0.45 s. Results obtained with linear least squares fitting (L-LS) with PyMCA.

Fig. 4 Region Of Interest (ROI) images of Co-Ka (6.92 keV), As-Ka

(10.53 keV) and As-Kb (11.72 keV) with a ROI width of 100 eV. Images
obtained by direct integration of the raw spectral data.
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4 Discussion
4.1 Mathematical background

For spectral deconvolution the XRF spectrum S is described by a
function f (see eqn (1)). f is a linear combination of the spectral
background B and peak proles ye of the elements e included in
the t. While ye depend on the non-linear parameters p, e.g.
energy calibration, energy resolution of the detector and peak
shape parameters, the linear factors a represent the intensity of
the recorded uorescence lines and are the main result of tting
an XRF spectrum for qualitative imaging.

f ¼ Bþ
Xe
e¼0

aeyeðp0; p1; .Þ (1)

Region Of Interest (ROI) integration allows quick estimation
of a and leads to fast visualization of elemental distributions.
ROI imaging can correctly estimate the intensity of a peak e by
integrating the spectrum S over the selected channels from ROI

(0) to ROI (1)

 
ae z

Xi¼ROIð1Þ

i¼ROIð0Þ
Si

!
, if eqn (2) holds true. This is the

case, if the intensity of peak e is considerably larger than the
sum of all interfering lines k and the spectral background B.
However, if the uctuation of the spectral background B
throughout the scanned area is less than that of the element e, it
This journal is © The Royal Society of Chemistry 2015
has no signicant inuence on the qualitative ROI image of e. In
this case, a constant offset is added to all pixels of the ROI
image, which can be removed by adjusting its grey scale.

Xi¼ROIð1Þ

i¼ROIð0Þ
aeyi; e[

Xi¼ROIð1Þ

i¼ROIð0Þ
Bi þ

Xi¼ROIð1Þ

i¼ROIð0Þ

Xk; kse

k¼0

akyi; k (2)

If eqn (2) does not hold true the elemental distribution
images contain signicant contributions from interfering lines.
This is shown in Fig. 4. In the lemost image the inuence of
the Fe-Kb line on the Co-Ka elemental distribution image is
shown. Likewise, the As distribution images are either a
combination of the signals of As-Ka and Pb-La or of As-Kb and
Hg-Lb due to the interference discussed in the previous section.
J. Anal. At. Spectrom., 2015, 30, 777–789 | 781
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Fig. 5 Excerpt of the DA Matrix used to process the dataset discussed
below, featuring selected elemental profiles. The background shape
was not considered in the calculation of these profiles for enhanced
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The As-Kb ROI image contains also a broad vertical band, which
results from contributions of the primary radiation scattered by
the wooden stretcher present behind the canvas.

However, eqn (2) holds true for many elements, e.g. Fe-Ka

and Pb-Lb in the exemplary dataset. If the composition of the
investigated object is well known and when it is thus unlikely to
miss an element or mis-interpret a spectral interference, also
ROI imaging can provide imaging data of acceptable quality.27 It
is sometimes possible to largely correct for inter-element
interference by subtracting ROI images, e.g. correct the As-Ka

ROI image for the interference from Pb-La by subtracting the
Pb-Lb ROI image multiplied with a scaling factor. However,
these operations require, in general, a high degree of user
intervention.

For the investigation of historical paintings ROI imaging
was found not suitable to deduce the nal elemental distri-
bution images. However, it proved to be a valuable tool for the
interactive inspection of datasets to determine the t
parameters.

In order to determine a and p the value of the reduced
weighted squared difference cr

2, summed over a user-dened
range of channels i, is minimized (see eqn (3)). n � m are the
degrees of freedom, with n the number of channels and m the
number of parameters. This normalisation is not necessary for
determining a, but to yield an objective criterion for the quality
of the t. A detailed discussion of the physical phenomena and
mathematical operations involved can be found elsewhere.28

cr
2 ¼ 1

n�m

Xn
i¼0

wiðSi � fiða0; a1; .; p0; p1; .ÞÞ2 (3)

Commonly, as weights wi the inverse variance is used, which
is in general approximated as wi ¼ 1/Si. Yet, it has been argued
that this approach induces errors in the case of low counting
statistics and that wi ¼ 1/fi is a more suitable approach.29

Weighting the data enhances the quality of the t for peaks of
lower intensity. When not using weights, i.e. wi ¼ 1, the quality
of the t is mainly determined by the most intense peaks. In
this case, a small relative, but large absolute deviation of the
experimental data and the t function in the area of an intense
peak has more weight than a larger relative, but smaller abso-
lute deviation in the area of a lesser intense peak or the
background.

Non-Linear Least Squares tting (NL-LS) allows minimiza-
tion of cr

2 and determination of a and p. However, it presents
two limitations during the processing of low statistics datasets
with a large number of spectra. First, the individual spectrum
typically features insufficient statistics to improve the non-
linear parameters p. Second, NL-LS is an iterative process that
requires considerable computing resources and thus results in
a relatively slow data processing pace. The rst limitation can be
dealt with by starting the t of each spectrum with the same set
of non-linear parameters and thus preventing a dri of
parameters during the processing of a dataset. Given that p will
be close to the optimal values the main improvement will be in
the linear factors a, which is desired.
782 | J. Anal. At. Spectrom., 2015, 30, 777–789
To facilitate a faster processing of the dataset, the non-linear
parameters (p) can be determined by tting of a spectrum that is
representative for the entire dataset and kept xed during pro-
cessing of the dataset by Linear Least Squares tting (L-LS).16

During NL-LS the parameters p are in general constraints to
physically meaningful values. It is also possible to constrain a to
positive values in NL-LS and L-LS. This has the advantage that
unphysical results are avoided. However, if an appropriate
model is dened, the t of an XRF spectrum will not produce
signicant negative values for a. Thus, areas in elemental
distribution images featuring signicant negative values are
indicators of spectral features not included in the t model. In
the case of elements contributing weakly to a small number of
pixels in the dataset, such a constraint results in a positive bias
on the average calculated intensity. And, nally, L-LS with
constraints is more demanding in terms of programming effort
during its implementation and computing resources during the
data processing.

Unrestricted L-LS can be realised by means of a matrix
multiplication, which is a fast operation in computing systems.
This is the concept of Dynamic Analysis (DA), developed by C.
Ryan in the 1990s.17 Here a vector A, comprised of all linear
factors a, is obtained by matrix multiplication of the DA matrix
G with the full spectrum S. As an example, selected elemental
proles (Fe, Co, As and Pb-L) of the DA matrix G used for tting
the data of Supper at Emmaus are shown in Fig. 5.

A ¼ GS (4)

While mathematically sound, the working of dynamic anal-
ysis is counter-intuitive and physically unsound, as the DA
matrix contains signicant negative parts. During the operation
in eqn (4) the analysed spectrum, which has no negative
readability.

This journal is © The Royal Society of Chemistry 2015
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Fig. 6 Three cr
2 maps of the area shown in Fig. 3. In (a) As and Bi were

omitted in the model, in (b) only Bi was omitted, while in (c) both
elements were included. Remaining hotspots of cr

2 are due to
absorption effects, as discussed in the text. Results obtained with
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channel values, is channel-wise multiplied with each prole in
the DA matrix. The product of the spectrum and prole is
summed to obtain the net intensity of the group of uorescence
lines in question. Ranges where the prole is zero do not
contribute to the calculated intensity, while ranges with a
positive value add to the net intensity calculated and those with
a negative value reduce it. The Fe and Co proles in Fig. 5
feature negative ranges to take the interference with neigh-
bouring elements into account (Mn and Co in the case of Fe and
Fe and Ni in the case of Co). The As DA prole is strongly
inuenced by the interference between the As-Ka (10.53 keV)
and Pb-La (10.55 keV) lines. While the As-Ka and As-Kb (11.77
keV) lines give rise to positive ranges in the As prole, all Pb L-
lines (with the exception of Pb-La) are negative. Thus, when a
spectrum containing only Pb-L signals is multiplied with the As-
K prole, the positive and negative energy ranges cancel out, so
that the contribution to the elemental distribution image of As
is zero. Likewise the Pb-L prole takes the interference with As
into account by weighting the interference free Pb-Lb line
stronger than the Pb-La line and having a negative energy range
at the location of As-Kb. It is obvious, that DA, as presented here,
assumes xed line ratios in the elemental proles.

One particularly attractive feature of the DA analysis is that it
is equally applicable to the analysis of per-pixel spectra or
individual photons. As such, DA is a very suitable tool for real-
time data analysis. The formation of the DA matrix is described
in detail by Ryan et al.18

In eqn (1) the background B is not dened. It can be
approximated in three ways during the processing of imaging
data. (a) The background shape of the sum spectrum can be
used throughout the scan, (b) B can be estimated by digital
ltering of the spectrum and subtracted before deconvolution
and (c) it can be modelled during the t to the individual pixel
spectra.

Method (a) is suitable for homogeneous and/or weakly
scattering samples, and so is mainly suitable for paintings with
thin paint layers on a homogeneous support, e.g. a panel
painting. A lter oen used for the background estimation (b) is
Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP).30

The lter starts with the measured spectrum and erodes the
peaks on the background by setting each channel to the average
of two neighbouring channels, if the latter is less than the
channel's value: Bi ¼ min[Bi, B(i+n)/2 + B(i�n)/2] with the initial
value of B ¼ S. Typically n is set initially to a value of twice the
Full Width at Half Maximum of the peaks eroded and reduced
during later iterations. With a suitable value for n the peaks can
be eroded and the background shape estimated in less than 25
iterations.28

Method (c) uses mathematical functions to describe the
background, whose parameters are determined during the t of
the individual pixel spectra. Oen polynomials of degree d are

used, with either linear

 
Bi ¼

Xd
d¼0

adði� i0Þd
!

or exponential

variables

 
Bi ¼ exp

 Xd
d¼0

adði� i0Þd
!!

.16
This journal is © The Royal Society of Chemistry 2015
Generally speaking, background modelling is faster and less
inuenced by low statistics in the spectrum. However, it also
enhances the number of parameters in the t, making it less
stable. The authors refrain, in general, from using polynomials
with exponential variables in the processing of individual pixel
spectra, but for background correction in sum spectra featuring
good statistics these polynomials are well suited.

In the processing of individual pixel spectra, polynomials
with linear variables of 5th to 8th degree were found to be
satisfying in order to describe noisy backgrounds with a low
level of discontinuities. Depending on the statistics of the
individual pixel spectra, higher degrees of polynomials were
observed to destabilize the model and result in noisy images, at
times containing visible artefacts. Polynomials of lesser degree
were found to not correctly represent the shape of the
background.

Background estimation (and subsequent subtraction) is
better suited for complex background shapes with many
discontinuities,15,16,31 but it is also slower than background
modelling, due to its iterative nature. The main reason for
background discontinuities in XRF spectra acquired from
historical paintings is the scattered primary radiation.
4.2 Identication of minor elements

In order to correctly t a spectrum, a model is needed that
includes all spectral features present in the dataset. It is,
however, not time efficient to inspect a few hundreds of thou-
sands spectra manually. Different approaches help to identify
the elements whose signals contribute to the dataset. These
approaches notwithstanding, the design of the t model is
strongly supported by knowledge of the sample. A scientist
experienced in the investigation of 17th century paintings
knows that the blue Co containing pigment is smalt, provided it
is original paint and not a later addition (e.g. during a restora-
tion treatment), and will include its characteristic minor
components (K, Ni, As and Bi) in the t model.

In the case of homogeneous samples, the elements present
can be easily identied in a sum spectrum of all individual pixel
spectra. If the lateral distribution of elements is very heteroge-
neous and some elements are present only in a small area, they
might be easily missed. This can be due to interfering lines,
which contribute stronger to the sum spectrum, or natural
PyMCA.
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statistical uctuations of the background shape, which may
mask lines of minor elements.

A simple approach to identify elements that are only present
locally, but at a moderate to high concentration level is the
calculation of the Maximum Pixel Spectrum (MPS). Here each
channel is equal to the maximum value of that channel in the
entire dataset. This approach was already described by Bright in
2004 for EDX,32 but has found use only in part of the XRF
imaging community, in spite of its ease of application. In Fig. 7
the sum spectrum and MPS of the area shown in Fig. 3 are
shown. The elements Cr, Co, As and Bi were not included in the
t model used for the processing. Cr is not clearly discernible in
the sum spectrum as the statistical uctuations of the back-
ground mask its signals. As and Bi are not clearly discernible
due to interferences with Fe and Pb, respectively. On the other
hand, in the MPS Cr and Co are easily identied. As and Bi
contribute in their most intense pixels much less than Pb and
Hg in their hot spots and are thus hardly discernible.

Another approach to identify components not included in
the t is the inspection of cr

2 maps, as shown in Fig. 6. In (a)
both As and Bi were le out of the t model, in (b) As was
included and in (c) both. The inspection of local sum spectra of
areas with high local cr

2 thus allows for the identication of
missing elements.

Some areas of higher cr
2 value remain in (c). These are due to

absorption effects inside thick lead white layers. Here the Pb-Lg
lines (around 15.0 keV) are overestimated, as their energy is
above the Pb-L3 edge (13.0 keV) and radiation of this energy is
consequently absorbed and gives rise to secondary uores-
cence. This effect results in wrongly estimated peak proles,
which in turn results in enhanced cr

2 values. In a homogeneous
sample this self-absorption could be easily modelled, but the
heterogeneous nature of historical paintings hampers this, as a
model that would better describe these hotspots would describe
all other pixels less well.

The cr
2 maps presented here are rather favourable cases. The

spectral range was limited from 2 keV to 16.5 keV, so that the
Fig. 7 Fit of sum spectrum and Maximum Pixel Spectrum. In the fit
model Cr, Co, As and Bi are not included. Spectra fitted with PyMCA.
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scattered characteristic radiation of the Rh tube was not
included. The scattered radiation is more difficult to model and
results in structured cr

2 maps in that a distinction between
features resulting from missing elements, background shape,
absorption effects and scattered radiation is challenging. Also,
in data with low counting statistics the cr

2 map tends to be very
noisy as well, complicating its interpretation further. The
inspection of cr

2 maps aer processing the data and iterative
improvement of the t model obviously benets from fast
tting algorithms and automatic scheduling of t processes for
sub-parts of the dataset.

A third approach towards the identication of missing
elements is to perform Principal Component Analysis (PCA) on
the raw spectral data. A convenient routine is included in the
PyMCA ROI imaging tool. A close inspection of Eigenimages
and Eigenvectors provides clues of elements only weakly
contributing to the acquired dataset. Local hotspots in the
Eigenimages allow detection of their location and their identi-
cation from the corresponding Eigenspectrum and local sum
spectra. However, due to the fact that the non-negative nature of
the XRF spectral data is not preserved, the interpretation
requires some experience. Also, while it is perfectly feasible to
inspect, e.g., 10 pairs of Eigenimages/spectra for a single dataset
(or a representative sub-part), doing so for all 12 sub-parts of
Supper at Emmaus is very time consuming. For this reason PCA
was scarcely used by the authors when tting datasets of
historical paintings.
4.3 Performance of soware

Unless otherwise noted, processing speeds achieved refer to
data processing on a small server featuring 8 Intel® Core™ i7
CPUs 930 @ 2.8 GHz, 12 GB RAM and 15 WD20EARS hard disks
with 2 TB space each mounted in three Chieec SNT-3051SS
SATA backplanes. The operating system was Fedora Linux 16.

4.3.1 AXIL. AXIL was developed at the University of Ant-
werp from the end of the 1970s until the mid of the 1990s. The
limited computing resources available in the time of AXIL's
development necessitated efficient programming to allow least
squares tting of non-linear functions with a broad range of
background models. With current computing resources, AXIL
allows for the processing of 30 spectra per second with NL-LS,
which is considerably faster than the other XRF soware
packages discussed. AXIL is proprietary soware that requires
hardware keys (dongles) and its source code is not public. The
soware version used was LINUX SUSE-AXIL 1.01.

To date, the AXIL soware package does not include features
to create elemental distribution images from the tted data.
This has to be done by external routines, e.g. MICROXRF2.§

AXIL was originally intended for the deconvolution of single
spectra. This heritage is visible in a limitation of the soware:
raw spectral data and t results are read and written as human
readable ASCII text les. The writing and subsequent reading of
the saved result les to and from a local hard disk adds 20 ms
§ By Bart Vekemans (University of Gent, formerly: University of Antwerp), Version
beta April 18, 2009.

This journal is © The Royal Society of Chemistry 2015
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Fig. 8 Area around the innkeeper's head as photograph and distribution images of Fe and Mn as well as the intensity of the spectral background.
The location of the local sum spectra is indicated in the background image. GP indicates results of GeoPIXE, DM-LIN results of datamuncher
using an 8th degree polynomial with linear variables, DM-SNIP results of the same software package obtained with 15 iterations. PyMCA uses a
SNIP filter, while AXIL uses its included “LIN” background model.
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per spectrum to the processing time. This disadvantage of AXIL
is even more severe on distributed systems, where the data are
accessed via the network. This read/write access constitutes the
major bottleneck when processing data with AXIL, which can be
“widened” by the use of Solid State Disks or RAM disks.

MICROXRF2 allows for splitting the data processing into
parallel processes. While this allows enhancement of the overall
pace of data processing one has to be aware that the speed does
not linearly scale with the number of processes. With 6 parallel
processes on the above mentioned computing system the
maximum gain in performance is 2.

AXIL was initially used by the authors for the processing of
XRF imaging data acquired on historical paintings, especially
those acquired at synchrotron radiation sources. It was not
suitable for in situ data processing, but well suited for pro-
cessing on the aforementioned server. The scans acquired in
this time had typically just a few thousands to ten thousands of
spectra.

Its use was discontinued when technical progress in the
regime of scanners allowed for the routine acquisition of large
scans (>105 spectra). With somany spectra/les the access to the
folders slowed down and data processing became impractical.

4.3.2 PyMCA. PyMCA is being developed and maintained
by the Soware Group of the European Synchrotron Radiation
Facility (ESRF). Its source code is public and it is easy to install
on modern Windows and Linux systems. The fact that it is, as
opposed to the other soware packages discussed, open source
and freely available cannot be overestimated, as it allows a
widespread use of the soware.

PyMCA is based on the same mathematical routines as AXIL
and features next to a modern GUI for XRF tting and image
manipulation many convenient tools. It provides a ROI imaging
tool, which allows for the interactive inspection of data with a
range of useful plug-ins.
This journal is © The Royal Society of Chemistry 2015
Given its recent date of development, PyMCA was not under
as much pressure to fully exploit the capabilities of computing
resources as AXIL, so that in NL-LS it is considerably slower
than AXIL. When version 4.4.0 of PyMCA was evaluated in 2010,
its L-LS tting routine performed at a comparable pace to AXIL
and the quality of the results was satisfying. Given the fact that
writing and reading t results is not the bottleneck of data
processing with PyMCA, it makes better use of parallel pro-
cessing than AXIL and was found suitable for the nal data
processing on the aforementioned small server. However,
version 4.4.0 was found too slow for in situ data processing as it
did not drastically outperform AXIL in terms of processing pace.

The most recent version of PyMCA (version 4.7.3) achieves a
multiple of the pace of AXIL in L-LS with a simple model, e.g.
assuming xed line ratios of all elements. If the ratios of the
different uorescence lines of the same element are not xed (to
take shis in the line ratios due to absorption effects into
account) the pace is roughly comparable to that of AXIL, when
comparing single process operations.

Version 4.7.1 PyMCA contains a plugin to the ROI imaging
tool that allows for the fast processing of XRF imaging data at a
speed comparable to GeoPIXE (see below), which makes it
suitable for in situ data processing. The fast tting plug-in is not
discussed here, as its inner workings are not described in the
literature yet.

4.3.3 GeoPIXE. GeoPIXE has been developed at the
Commonwealth Scientic and Industrial Research Organisa-
tion (CSIRO) division of Earth Science and Resource Engi-
neering since the late 1980s. It was the rst soware package for
the evaluation of X-ray uorescence spectra to include DA and
provides a powerful GUI for data processing and evaluation.
While, as the name suggests, it was written for the evaluation of
PIXE data, it also found use in the evaluation of XRF data,
J. Anal. At. Spectrom., 2015, 30, 777–789 | 785
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especially those acquired at synchrotron radiation sources.23 It
is, like AXIL, proprietary soware and requires a licence.

Its DA approach to data evaluation allows for a data pro-
cessing pace that is far above that of the conventional L-LS
approach. The version 6.6 of GeoPIXE achieves a pace of 4800
spectra per s. However, one has to be aware of the fact that the
EDF le format is not native to it, so that in this example Geo-
PIXE was not run under optimal conditions.

GeoPIXE's approach has one major limitation when ana-
lysing samples with heterogeneous scattering properties: it
assumes the shape of the background to be constant, which can
be a major limitation in the case of excitation with poly-
chromatic X-rays.

In Fig. 8 elemental distribution images of the area around
the head of the innkeeper are shown. This area is highlighted in
Fig. 1 by the green shape. In the Mn distribution image
obtained by GeoPIXE a dark, T-shaped shadow appears, which
is not visible in those obtained by PyMCA and AXIL. The shape
is also visible as a bright area in the image of the spectral
background obtained with GeoPIXE. This T-shape is caused by
the wooden stretcher present behind the canvas, resulting in a
different shape of the spectral background due to stronger
scattered primary radiation. The two local sum spectra shown
illustrate this difference as one sums an area on top of the
stretcher, while in the second area, just air is present behind the
canvas.

The DA matrix assumes the background shape determined
in the sum spectrum to be valid in an unmodied form in every
individual spectrum. Thus, on top of the stretcher the intensity
of the uorescence lines is overcompensated for the contribu-
tion of the background. The strength of this effect is dependent
on the signal-to-background ratio. Strong signals, such as Fe in
the given case, are less affected, while weaker ones, such as Mn,
are more strongly perturbed. In the image shown the t
parameters were chosen to highlight the effect by extending the
energy range of the t from 2.2 to 30.2 keV. When tting the
local sum spectrum above the stretcher with NL-LS and DA in
GeoPIXE an attenuation of the Mn–K uorescence intensity by
33% is observed. By limiting the energy range from 2.2 to 16.4
keV (slightly below the incoherent scatter peak of the Rh-Ka

line) the visibility of the effect is reduced, but the Mn signal is
still attenuated by 14%.

The case discussed here is one of the most pronounced
observed by the authors in the investigation of more than 100
historical paintings. In Supper at Emmaus the strongly
absorbing paint layers are rather thin, compared to other
paintings investigated. In the case of thicker paint layers or a
homogeneous support (as with panel paintings) the shown
effect is oen not obvious. Also, if monochromatic excitation,
whose scattering can be modelled in GeoPIXE, is used the effect
is negligible. For this reason GeoPIXE was found satisfying for a
limited group of datasets.

4.3.4 Datamuncher. For the reasons given above, none of
the soware packages discussed was found satisfactory for the
processing of large datasets acquired in the analysis of histor-
ical paintings by scanning macro-XRF.
786 | J. Anal. At. Spectrom., 2015, 30, 777–789
AXIL satises only the rst (artefact-free elemental distri-
bution images) of the three requirements, as it is too slow for
the others. The evaluation of the entire dataset of Supper at
Emmaus by AXIL would have taken 32 hours in one process or 16
hours with six parallel ones, requiring the better part of a week
for the iterative improvement of the t model. The individual
scan of 550� 550 pixels would have been evaluated in 2.8 hours
in a single process, a time not acceptable to wait before making
a decision on the next scan.

In the past years PyMCA only satised the rst requirement;
with the recent fast tting plug-in it satises the second (fast in
situ processing). However, the use of the fast tting plug-in
requires a high degree of user intervention. A uniform pro-
cessing of several sub-parts of a dataset is time consuming and
does not satisfy the third requirement (scheduling of data
processing batches).

GeoPIXE fully satised the second requirement and partly
the rst, especially in the case of paintings with homogeneous
X-ray scattering properties. It also features a batch mode for
tting different datasets with onemodel, so it partly satises the
third requirement.

Overall none of the programs alone was found satisfying for
the processing of data, so that an in-house soware was devel-
oped at the University of Antwerp in IDL.{ It was labelled
datamuncher, as it was meant to guratively “eat” through a
series of sub-sets of a scan. It started out as a simple routine
calculating sum and maximum pixel spectra of datasets in a
user dened folder and scheduling batch ts with AXIL or
PyMCA.

Later DA routines were added. For this the sum spectrum of
the dataset is rst tted with PyMCA. The resulting peak proles
are exported and treated as described in ref. 18. This routine
allowed processing of more than 20 000 spectra per second,
allowing for the processing of the entire dataset in less than 5
minutes. However, it features the same artefacts as mentioned
above for GeoPIXE. Also, datamuncher does not include the
pile-up rejection routines GeoPIXE employs,33 as most elements
of interest in the investigation of historical paintings are in the
energy range below 20 keV and only in a few cases signicant
contributions from pile-up effects were observed.

To overcome the limits in background compensation two
approaches were followed. In the rst approach the xed
background B in eqn (3) was replaced with the members of a
polynomial with linear variables and included in the DA matrix.
The extension of the DA matrix resulted in a 20% loss of pro-
cessing pace but allowed correction for uctuations of the
background shape. The results labelled “DM-LIN” in Fig. 8 were
processed using a polynomial of 8th degree and show no arte-
facts resulting from the shape of the spectral background.

As a linear polynomial background is not suitable to model
complex background shapes also the SNIP background correc-
tion was implemented, following the worked example from ref.
28. This approach requires ca. 10 times the processing time
compared to the use of a xed background shape but allows
USA.

This journal is © The Royal Society of Chemistry 2015
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taking more complex background shapes in data with sufficient
statistics into account. The results labelled “DM-SNIP” in Fig. 8
were obtained with a SNIP lter with 15 iterations.

The soware further includes routines for the (manual)
stitching of elemental distribution images of sub-parts of the
data and the correction of acquisition artefacts similar to those
in ref. 34. Furthermore, a routine for the interpretation of two
element scatter plots of elemental distribution images is
implemented. This tool proved to be of value to distinguish
between original smalt paint and 19th century Co salts added as
a drier in Saul and David from the workshop of Rembrandt.35

datamuncher is available from sourceforge.k
4.3.5 Comparison of t quality. In the processing of the

Supper at Emmaus dataset, all soware packages yielded results
of comparable quality in the energy range discussed. While the
quality of the results is comparable, the results themselves are
not. This is due to the fact that especially for L-lines the exact
transition of which the intensity is returned differs between the
soware packages. Further, the t results of PyMCA are con-
strained to positive values and those of AXIL to integers. Both
features accurately represent the photon counting process of
XRF detection, but one has to be aware of this difference. The
non-negative restriction is biasing the average results towards a
higher value and complicating the identication of spectral
interferences in distribution images. However, it prevents the
misinterpretation of incorrectly scaled elemental distribution
images.

From our experience, PyMCA is superior when tting L- and
M-lines in the energy range below 3.5 keV. In the same soware,
the ratio of L-lines resulting from a vacancy in the same shell is
calculated based on the fundamental parameters approach. On
the one hand, this allows the user to model different detection
geometries and stratigraphies, as it was used in the study of
Leonardo da Vinci's painting technique.36 On the other hand, it
requires a certain degree of user intervention and knowledge of
the sample. The absorption effects for the model used to t the
detail shown in Fig. 3 were estimated from the sum spectrum of
the entire dataset, so that, in areas of high Pb abundance, the
Pb-Lg lines were overestimated. By modelling self-absorption
effects based on local sum-spectra of these areas a better
separation of Pb-L and Bi-L lines can be achieved at the price of
a slightly inferior description of Pb-L lines in pixels with
moderate Pb abundance.

The authors found it easier to resolve the contributions of
these two elements in AXIL. Here L-lines are not grouped by the
vacancy they result from, but by their Siegbahn name. This
allows us to treat absorption effects without the complicated
modelling. While it allows an easier processing of imaging data
of heterogeneous samples, it provides less insight into the
sample during the processing of an individual spectrum.

Neither GeoPIXE nor datamuncher is capable of tting
uorescence lines originating from the same inner shell
vacancy independently in the processing of imaging data and
thus are inferior to AXIL and PyMCA in the resolution of Pb-L
k http://sourceforge.net/projects/datamuncher/

This journal is © The Royal Society of Chemistry 2015
and Bi-L lines. Furthermore, the absence of this feature
prohibits the study of absorption effects, as discussed
elsewhere.9
5 Conclusions

The XRF dataset acquired by scanning Supper at Emmaus
constitutes a considerable challenge for evaluation, as (a) it
contains 12 sub-parts, (b) it features spectral interferences of
weakly and strongly contributing elements (Co with Fe, As and
Bi with Pb) and (c) it features, due to the heterogeneous scat-
tering properties and the polychromatic excitation, a high level
of variability in the shape of the spectral background. Supper at
Emmaus is currently the largest object entirely mapped with XRF
and the size of the dataset (3.4 MPixel) constitutes a further
challenge, although it is by far not the largest reported in the
literature.

Due to the complexity of the dataset, ROI imaging was not
found to be a suitable tool for data processing, as only a few
elemental distribution images can be obtained without signif-
icant artefacts, making full spectral deconvolution necessary.

In the case of such a complex XRF dataset the denition of
an initial t model that takes all minor elements and spectral
features into account is unlikely. The initial model is in general
based on the sum spectrum of all pixels and on a priori
knowledge. This model can be easily improved by using the
maximum pixel spectrum (MPS) to identify elements not
obvious in the sum spectrum. Aer a rst processing of the
dataset, the results are inspected for anomalies, e.g. areas of
strongly negative t results, and areas of high cr

2 values. Local
sum spectra of these areas are inspected and the t model is
improved until these anomalies are either removed from the
elemental distribution images or sufficiently explained and
found not to be misguiding.

It is obvious that for an iterative improvement of a t model
for a dataset with many sub-parts a soware package is needed
that allows for fast processing data with a minimum of user
intervention. When the authors started with the investigation of
large areas on historical paintings by scanning macro-XRF in
2008, the only soware package capable of processing the data
at a sufficient pace for this was GeoPIXE. Today PyMCA and
datamuncher also provide these capabilities.

This illustrates the constant progress that is made in terms
of data evaluation routines, which is not the least driven by
development in instrumentation. Given this constant develop-
ment, this article can only present a snapshot in time, as new
features are added to GeoPIXE and PyMCA constantly.

All three available soware packages discussed (AXIL,
PyMCA and GeoPIXE) could provide largely artefact-free
elemental distribution images of comparable quality. As all of
them have their individual advantages and drawbacks, data-
muncher was developed at the University of Antwerp to exploit
the advantages while avoiding the drawbacks, e.g. scheduling of
batch jobs for the processing of sub-parts of the dataset by AXIL
and PyMCA and the use of dynamic analysis with variable
background shapes.
J. Anal. At. Spectrom., 2015, 30, 777–789 | 787
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The authors have largely stopped using AXIL, as its unique
features (fast NL-LS and Siegbahn grouped lines) in general do
not justify the long processing times. Given the le format
employed by AXIL it also benets less from parallel processing
on modern systems than other soware packages. However,
recent development in multi-channel analyser (MCA) tech-
nology has resulted in new instruments that can handle up to
several millions counts per second, but with a count rate
dependent energy resolution, such as the Xspress3 (Quantum
Detectors, Harwell Oxford, UK) or FalconX (XIA LLC, Hayward
CA, USA). As discussed, L-LS is sufficient for the processing of
imaging data. However, as energy resolution is one of the non-
linear parameters that is kept constant during L-LS, NL-LS
might be necessary to correctly process the data acquired with
these MCAs, provided it features sufficient statistics. As AXIL
features the fastest NL-LS routines for the deconvolution of XRF
spectra known to the authors, it might be a suitable tool to treat
such data.

The ndings and conclusions presented here on different
approaches and soware packages are inevitably shaped by the
complex nature of historical paintings. While they will be of
interest to other scientists investigating, e.g., biological or
geological samples by XRF imaging, one has to be aware that
they might not be directly transferable and that of the soware
packages discussed only those features of use to the investiga-
tion of historical paintings were discussed.
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Ryan, A. Solé, B. Vekemans, P. van Espen and L. Vincze for their
fruitful discussions over the years. Furthermore, the authors
thank D. Swetzoff for his support. M. Alfeld was from 2009 to
2013 the recipient of a Ph.D. fellowship of the Research Foun-
dation-Flanders (FWO, Brussels).
References

1 M. Haschke, U. Rossek, R. Tagle and U.Waldschläger, Adv. X-
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31 V. A. Solé, Understanding and using the strip background,
http://pymca.sourceforge.net/stripbackground.html, last
accessed, 01 August 2014.

32 D. S. Bright and D. E. Newbury, J. Microsc., 2004, 216, 186–
193.

33 C. Ryan, E. van Achterbergh and D. Jamieson, Nucl. Instrum.
Methods Phys. Res., Sect. B, 2005, 231, 162–169.

34 A. Anitha, A. Brasoveanu, M. Duarte, S. Hughes,
I. Daubechies, J. Dik, K. Janssens and M. Alfeld, Signal
Process., 2013, 93, 592–604.

35 P. Noble, A. van Loon, M. Alfeld, K. Janssens and J. Dik,
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