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Abstract

A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring
only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new
probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such
as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly
integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality
reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source
implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This
method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional
high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for
beam-sensitive samples at the lowest possible dose.
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Introduction

Scanning transmission electron microscopy (STEM) is one of the
most powerful tools for inspecting materials with sub-nanometer
or even sub-angstrom-level resolution. By scanning with a sharply
focused electron probe, the information of the sample from each
scan position is collected and images that contain features at the
atomic level are generated. There are several methods to form
images using the data collected from such experiments.
Traditionally, detectors that capture electrons from certain ranges
of scattering angles are used in the microscope. They generate a
value based on the sum of received electrons at each probe posi-
tion and result in 2D images. Images formed by detectors that col-
lect signals at high scattering angles are even capable of detecting
the scattering power experienced by the electron probe at the cor-
responding probe position (Pennycook, 1989).

A pixelated detector does not generate a single value, but
instead records a convergent beam electron diffraction (CBED)
pattern for each probe position by using a large number of pixels,
where each pixel can be seen as an individual detector. This
results in a 4D dataset (2D CBED patterns on a 2D scan grid).
More importantly, these advanced direct electron detectors
(Müller et al., 2012; Plackett et al., 2013; Tate et al., 2016) record

CBED patterns at a much higher rate than traditional charge-
coupled device detectors and allow collecting a regular-sized 4D
dataset before a serious sample drift can happen.

To process 4D datasets, one can define virtual detectors by
selecting specific groups of pixels on the detector plane for sum-
mation, which result in similar 2D images to those of traditional
detectors or seek solutions from more advanced and complex
methods. Most of these methods take into account the distribu-
tion of the electrons on the detector plane, as well as the relation-
ship between CBED patterns and their corresponding probe
positions, allowing extra information to be extracted from the
dataset. This enables reconstructions with resolution beyond the
limitation imposed by the optical system (Nellist et al., 1995)
and can reduce the dose needed for microscopists to obtain the
necessary information to analyze their samples. Within the cate-
gory of 4D dataset processing methods, iterative optimization
approaches (Rodenburg & Faulkner, 2004; Maiden &
Rodenburg, 2009; Odstrčil et al., 2018; Chen et al., 2020, 2021)
reconstruct subsets of the full dataset one region at a time. The
process repeats and reprocesses each subset until the algorithm
converges to an estimated version of electric potential distribu-
tion. Other methods that handle 4D datasets without an iterative
process, for example, single sideband ptychography (SSB)
(Pennycook et al., 2015; Yang et al., 2015), or integrated center
of mass (iCOM) or integrated differential phase contrast (iDPC)
(Müller et al., 2014; Yang et al., 2015; Lazić et al., 2016;
Yücelen et al., 2018) reconstruction methods, have also proved
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to be much more dose efficient than traditional imaging methods.
Compared with iterative processes, they are less computationally
demanding and guarantee unique solutions since they do not
depend on optimization algorithms. Also, some prior knowledge,
such as the prediction of a phase distribution that may arise from
astigmatism and defocus, can be provided to this post process for
acquiring more detailed information (Pelz et al., 2021). However,
the ability to achieve fast reconstructions, regardless whether they
are iterative or not, usually relies on accelerators (e.g., GPUs), as
well as large amounts of computer memory in order to accommo-
date the whole dataset, or some reduced version of it. With an
exception of iCOM, most of these post processing methods are
thus limited by the hardware to a certain number of probe
positions.

Even though the reconstruction methods may be further opti-
mized to reduce the processing time, users still need to wait for
the recording of the dataset to be completed before a resulting
image can be generated. This waiting time varies, but for datasets
composed of a large number of scan points or in situations where
the detector has a slow frame rate, this delay would hinder the
process of searching for features of interest, as well as adjusting
the optical system based on the observations. Some rather simple
approaches, such as traditional imaging methods, COM shift, or
some of its derivatives such as COM shift divergence (Haas
et al., 2021), can effectively reduce or eliminate this delay.
However, these methods also require a higher number of electrons
to generate images with adequate quality, compared with more
complex methods such as SSB, iCOM, and iDPC. As proposed
by Strauch et al. (2021), a dose-efficient reconstruction with live
image update can be done by first allocating memory for the data-
set and then gradually filling it with collected and processed data
during the scanning process. An update of the reconstructed
image can be generated anytime by SSB reconstruction, even
before the dataset is complete. However, this also indicates that
the number of probe positions in a dataset is limited by the
GPU memory, as it needs to store data for later processing. At
the current state of technology, this approach is limited in
terms of processing rate to about 1,000 probe positions per second
in the implementation of Strauch et al. (2021), while the collec-
tion frame rate of direct electron detectors is approaching 100
kHz (Pelz et al., 2021) and even the MHz range for event-driven
cameras at suitable conditions (Jannis et al., 2021).

To overcome these hardware and speed limitations, we hereby
propose a new live reconstruction method based on iCOM, which
does not rely on storing the entire 4D dataset in memory, does not
require accelerators of any kind, and thus greatly reduces the com-
putational requirements, as well as allowing reconstructions of
images of a larger scale. In this paper, the physical formulation
of real-time iCOM (riCOM) is first derived, and details of the
software implementation of the reconstruction algorithm are dis-
cussed. This software implements a direct interface to the electron
camera, and several real-time reconstructed results are recorded,
from which one can see that the tuning of the imaging conditions
is immediately reflected in live-updated images. RiCOM recon-
struction from existing experimental datasets is also shown.
These datasets are recorded frame-by-frame or per-event (Guo
et al., 2020; Jannis et al., 2021). Both formats can be processed
with the riCOM method with little alteration of the algorithm.
Reconstruction results with different ranges of integration and
integrated filters are also displayed. They are compared with
each other and with other reconstruction methods to put the pro-
posed method into context.

Methods

Physical Formulation

In 4D STEM, the distribution of the electron intensity at each
probe position is recorded. The COM of this distribution can
then be calculated, resulting in a vector image �ICOM(�rp) or two
scalar images describing its x component ICOMx(�rp) and y compo-
nent ICOMy(�rp) . For the x-component,

ICOMx(�rp) =
∫ ∫1

−1
kxI(�k, �rp) d

2�k, (1)

where �rp is the probe position, �k indicates a point on the detector
plane with components kx and ky , and I(�k, �rp) is the intensity at �k
while the probe is situated at �rp. From previous work (Lazić et al.,
2016), it follows that (derivation in the Supplementary Material)

�ICOM(�rp) = 1
2
|cin(�r, �rp)|2 w ∇f(�r)

= 1
2
∇(|cin(�r, �rp)|2 w f(�r))

= ∇O(�rp).

(2)

In equation (2), the COM shift signal is understood as the gra-
dient (∇) of a function O(�rp), which is the local projected poten-
tial f(�r) cross-correlated (w) with the intensity distribution of the
incoming electron beam at a given probe position |cin(�r, �rp)|2.
Note that this result is achieved under the phase object approxi-
mation, which assumes that the electron probe remains unmodi-
fied while passing through the object. With this approximation,
the 3D potential established by the material is simplified to a pro-
jected potential in a 2D plane. It clearly fails for thicker objects,
but it allows a simple derivation and easy understanding of how
experimental conditions can affect reconstructed images.

To solve for a scalar function describing the object, path inte-
gration is performed on the COM shift signal to remove the gra-
dient from the right-hand side of equation (2). For an ideal case,
the path of the integration can be taken arbitrarily, since the inte-
gral is only dependent on the end point of the path integration.
However, in realistic cases, the measurement of COM shift con-
tains noise, and thus it would give better estimation of the noise-
free result by taking the average of all possible path integrals. By
the assumption that equipotential can be found at infinity, this
can be achieved by averaging path integrals at all possible azi-
muthal angles, from infinity toward the probe position. In order
for this concept to work with a 2D grid of probe positions, the
averaged integral can be expressed in a discretized form:

O(�rp)

=
∫�rp
1
�ICOM(�r) · d�r

= 1
2p

∫2p
0

∫rp
1
�ICOM(�r) · n̂ dr du

= a
2p

∑+1

x=−1

∑+1

y=−1

�rp − �rxy
|�rp − �rxy|2

· �ICOM(�rxy).

(3)

In the continuous representation of the radial averaged path
integral (third line of equation (3)), n̂ is a unit vector pointing
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toward �rp. In the discrete representation (fourth line of equation
(3)), �rxy describes a vector pointing at each probe position that
composes the 2D array, and a describes a factor proportional to
the square of the step size taken to discretize the integration.

The discrete representation in equation (3) states that the sum-
mation has to go over an infinite amount of points, or at least all
probe positions in the dataset (as for iCOM reconstructions) in
order to acquire or to approximate the desired object function.
This would require the full dataset to be collected first, and ren-
dering a live update of the partially reconstructed dataset is there-
fore impossible. However, it is found that by limiting the spatial
range of the summation, the algorithm results in similar recon-
structions as iCOM, but with more emphasis on local variations
of the object function. This behavior can be understood qualita-
tively. The term (�rp − �rxy)/|�rp − �rxy|2 describes an odd function
since the vector distribution on both sides of the probe position
�rp is the same in magnitude but opposite in the direction as the
sign changes for �rp − �rxy . For a global homogeneous COM shift,
or for cases where the variation is negligible within the range of
the kernel size, it results in an even function for �ICOM(�rxy), and
thus the sum of the product of the two will always be zero. But
for short-range variations of the object function, which results
in local fluctuations of the �ICOM distribution, it would generate
non-zero contribution to the summation result. By replacing the
infinite sum in equation (3) with a finite sum considering a kernel
of n× n pixels, it results in:

IriCOM(�rp)

= a
2p

∑r p,x+n−1
2

x=r p,x−n−1
2

∑r p,y+n−1
2

y=r p,y−n−1
2

�rp − �rxy
|�rp − �rxy|2

· �ICOM(�rxy)

= kn(�rp) w �ICOM(�r p)

kn(�rp) = a
2p

∑r p,x+n−1
2

x=r p,x−n−1
2

∑r p,y+n−1
2

y=r p,y−n−1
2

�rp − �rxy
|�rp − �rxy|2

.

(4)

Equation (4) shows the summation with a range n centered at
the probe position �rp = (rp,x , rp,y). With this constraint on the
range, the iCOM at one point can be found by only processing
COM data from its limited surrounding (Fig. 1a), allowing data
processing to begin and results to be generated during the scan-
ning session. This reconstruction method is thus given the
name “real-time iCOM” or “riCOM,” as indicated in the same
equation by IriCOM(�rp). This process is equivalent to a cross-
correlation between an array kn(�rp) of size n× n that stores vec-
tors (�rp − �rxy)/|�rp − �rxy|2 and the COM shift map �ICOM(�rxy).
This array will be referred to as the “kernel” throughout this man-
uscript, and images generated by processing COM shift maps with
such kernels will be denoted as “riCOM results’ or “riCOM images.”

Since the kernel processes a group of data points and outputs a
value corresponding to the probe position at the center of the ker-
nel, the collection of data has to lead the reconstruction by
(n− 1)/2 scan lines to fill up the kernel (when scanning in a tra-
ditional line by line fashion). This delay between the data collec-
tion progress and reconstruction result can be troublesome for
operations that highly rely on real-time feedback from the scan-
ning process. Since the summation in equation (4) describes a lin-
early independent process, the contribution from multiple probe
positions to a common pixel in the riCOM array can be separately

calculated. Furthermore, by collecting the contribution from the
COM shift at a specific probe position to its vicinity, an update
to the riCOM image can be generated in the form of an array
of the same size as the kernel. Since this reconstruction scheme
depends on one CBED pattern at a time, it leads to a live update
of the riCOM result without any delay (Fig. 1b). Although this
does not reduce the time differences between the latest scanning
point and the fully updated riCOM pixel, the partially recon-
structed fraction of the riCOM image can already show atomic
features,1 and therefore, valuable information at the newly
scanned probe position appears with minimal delay. This way
the user can also get a quick feedback of their operation.
Another advantage is that once the contribution from one
probe position is calculated and the corresponding update to
the riCOM array is made, the CBED pattern can be discarded,
freeing up memory. This effectively removes any memory
imposed restriction on scan size if the user is only interested in
the resulting riCOM image.

Kernel Design

As mentioned in the previous section, summation carried out by a
smaller kernel emphasizes local object function variations. In
other words, it gives more weights to components of higher spa-
tial frequency. To show the relationship between this effect and
the kernel size, we start with the Fourier transform of the function
O(�rp) for the case of a perfect COM shift measurement (the sec-
ond line of equation (3)).

F {O(�rp)} = F
∫�rp
−1

�ICOM(�r) · d�r
{ }

= F {�ICOM(�rp)} · 1

i�kp
.

(5)

Here the symbol F indicates Fourier transform and �kp is a vec-
tor in the Fourier domain. As seen in equation (5), each of the
Fourier components of the COM shift map is transferred to the
final image with a weight 1/i�kp after the path integration. This
transfer function decays fast with the frequency, and thus low-
frequency components are attenuated much less than high-
frequency ones. By integrating over a finite range, an analytical
expression for the riCOM result can be obtained as follows:

F {IriCOM(�rp)}

= F
∫�rp
�rp−D�r

�ICOM(�r) · d�r −
∫�rp+D�r

�rp

�ICOM(�r) · d�r
{ }

/2

= F {�ICOM(�rp)} · 1

i�kp
× [1− cos (D�r · �kp)]

= F {O(�rp)}× [1− cos (D�r · �kp)].

(6)

In equation (6), the riCOM result is approximated by the con-
tribution from both sides of the probe position �rp in a single line,
within the range of 2D�r. The result shows that by limiting the
integration range, it reproduces the function O(�rp) with an extra
weighting function 1− cos (D�r · �kp). This function is close to

1See supplementary documents for example images/videos.
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zero when D�r · �kp is small, and thus strongly suppresses the low-
frequency signal in the retrieved object function. Also, it peaks at
�kp = p/D�r, which implies that by choosing smaller D�r, or shorter
integration range, one can put more weight to the high-frequency
components. By using kernels with sizes smaller than the real-
space dimension of the dataset, this effect of limiting integration
range can be achieved. Although the actual frequency spectrum of
a 2D kernel deviates, the weight of a kernel of size n at each fre-
quency k can be well approximated with the formula derived from
line-integration:

N
2kp

× 1− cos
n− 1
2

× 2kp
N

( )[ ]
. (7)

Here N is the number of pixels of the image in one direction, and
the extra factor 2p/N scales with the pixel size in the Fourier
transformed result.

This effect is not equal to but can be compared with a high-
pass filter as it emphasizes high-frequency details in the recon-
structed image. However, other filtering effects, such as low-pass
or band-pass filtering, cannot be created simply by altering the
kernel size. A filter can be seen as a mask that reduces or elimi-
nates a certain range of frequency signals of an image. This is
done by a piece-wise multiplication between the filter and the
image in the frequency domain, which is equivalent to a convolu-
tion between their real-space counterparts. For riCOM images,
which can be seen as a cross-correlation between a COM shift
map and a kernel, the application of such a filter can be included
to the design of the kernel:

IriCOM(�rp)∗f (�rp) = [�ICOM(�rp) w kn(�rp)]∗f (�rp)
= �ICOM(�rp) w [kn(�rp)∗f (�rp)].

(8)

With

f (�rp)) = F−1{F(�kp)}

F(�kp) = 1, kmax ≥ |kp| ≥ kmin

0, otherwise

{
. (9)

In equation (8), f (�rp) is the filter function and the symbol ∗ indi-
cates convolution. Equation (9) writes one of the possible ways to
design such a filter, with a hard cutoff at two frequency limits
kmax and kmin, that is, a band-pass filter. The real-space counterpart
of the filter can be found by performing an inverse Fourier trans-
form F−1 to the filter function in the Fourier domain. This real-
space filtering effect can be incorporated to the kernel due to the
associative property of cross-correlation and convolution. It is
worth noting that the last part of equation (8) only holds for cen-
trally symmetric filters that treat frequency components at different
azimuthal angles equally, which is indeed the case for the filter
shown in equation (9). We also want to point out that to create a
sharp cutoff at the frequency domain, one would need a filter
matching the size of the COM shift array. But in order to keep
the size of the kernel, the outcome of the convolution is reduced
in size. In other words, the outcome of k(�rp)∗f (�rp) is kept at the
same size as k(�rp). This would make the cutoff appears in the
fashion of a slope and also distorts the rest of the frequency
spectrum.

In Figure 2, the frequency components of different kernel
designs are illustrated. From bottom to top, the curves correspond
to the template kernel with the size of 101× 101, a smaller kernel
with the size of 41× 41, and the template kernel with a high-pass
filter (kmin = 12.19

2 px−1), a low-pass filter (kmax = 12.19 px−1),
and a band-pass filter (kmin, kmax same as before). For the bottom
two curves, the result of the corresponding line-integration
approximation (dashed lines), with �D�r chosen to be half of the
kernel size, is also drawn to show their similarity in oscillation fre-
quency and magnitude.

Fig. 1. (a) The kernel takes multiple data points from the COM shift map to calculate the value for one pixel in the riCOM image. (b) The riCOM image is being
updated based on the contributions of the COM shift at one probe position. The yellow triangles indicate the scanning probe position. (c) X and Y components of a
kernel of size 21× 21.
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By comparing the blue and gray curves in Figure 2, it is clear
that Kernel 41 peaks at a higher frequency than Kernel 101, as
predicted by the analytical formula, and that the cutoff of the
lower frequency due to a smaller kernel happens approximately
at the inverse of the kernel size, as indicated in the gray circle.
This value is then used for kmin of the high-pass filter incorpo-
rated to Kernel 101-HP (orange curve), which indeed shows a
similar overall frequency spectrum as the one of Kernel 41.
Note that the size reduction after convolution between kernel
and the decorating filter causes a smooth decrease of frequency
components below kmin, and the spectrum differences beyond
kmin compared with Kernel 101. Similarly, a kernel with a low-
pass filter Kernel 101-LP (green curve) and a kernel incorporating
a band-pass filter Kernel 101-BP (pink curve) are created. Both of
them are showing a suppression of the higher frequency ranges.
Kernel 101-BP also shows a shift of the spectrum peak to a higher
frequency because of its high-pass characteristic.

Despite the fact that it is not always possible to recreate the
exact characteristics of common post-processing filters, the incor-
poration of filters into the kernel, as well as the choice of kernel
sizes allows for a great flexibility for frequency tuning and yields
consistent and predictable solutions. Combining the kernel and

the filter in real space also enables these image processing func-
tions to be applied before the complete riCOM image is rendered
and thus compatible with the live update algorithm.

Data Processing

Due to the simplicity of the algorithm, the processing can be car-
ried out completely by CPU with a very limited usage of memory.
However, in order to reach real-time reconstruction that is limited
only by the frame rate of the camera, an efficient implementation
of the algorithm is crucial. The benchmark shown in Figure 3
shows that an optimized implementation using C++ can easily
achieve the maximum speed of ≈14 kHz of a MerlinEM camera.
Additionally, the pre-processing of binary live data benefits from the
low-level features of C++ (e.g., adapting endianness and efficient
conversion of binary into numerical arrays). An implementation
of the algorithm tailored to event-driven cameras and their corre-
sponding sparse datasets is even significantly faster. Depending on
the dose, >100 kHz have been obtained. The live visualizations at
such rates also benefit from using C++ through the possibility of
directly accessing and modifying OpenGL textures across threads.

The program was developed as a cross-platform application
that can be run through a command-line-interface (CLI) or inter-
actively through a graphical user interface (GUI) as shown in
Figure 4. The core functionality of the algorithm is implemented
in a single C++ class object. Visual interfaces interact with an
instance of that class across threads through pointers, which
allows live updates to be displayed immediately while maintaining
a responsive interface without interrupting the reconstruction
process. Furthermore, kernel settings for riCOM reconstruction
and virtual STEM (vSTEM) settings, such as rotation angle due
to Lorentz force, kernel size, filter, and the virtual detector size,
can be changed during the process without interruption, which
is helpful to find suitable settings interactively while spending
the lowest amount of dose on the precious sample area.

The riCOM base class is independent of specific camera mod-
els and data types, while additional dedicated classes provide live
and file interfaces for given camera types/file formats. This allows
for easy extendability of the program by simply including further
interface classes. The current implementation includes a live and
data interface for the MerlinEM as an example for frame-based
data and a file-type interface for the event-based Timepix3 camera
and is available on GitHub under a GPL license.

Experimental Details

The results presented in this paper are produced from data col-
lected in two experiments. In the first experiment, a SrTiO3

Fig. 2. Frequency components of a set of kernels acting on a COM shift map of size
500× 500. The presented examples include, from bottom to top, the template kernel
with the size of 101× 101, a smaller kernel with the size of 41× 41, and the template
kernel with a high-pass filter, a low-pass filter, and a band-pass filter. The dashed line
shows the predicted transfer function with the line-integration approximation. The
two vertical lines indicate the cutoff frequency of the filter or the inverse of the kernel
size, and the circles at the intersection of the vertical lines and integral indicates
whether a cutoff frequency is applied to the specific design.

Fig. 3. Speed (frame rate in kHz) versus implementation benchmark for the compu-
tation of riCOM signal with the Kernel size of 61× 61, data type unit 16 and camera
size of 256× 256 pixels, run on a single thread of an Intel i5-10210U @ 4.2 GHz pro-
cessor. Comparison of a simple implementation in Python, a just-in-time compiled
optimization of the same code, using Numba, and a version written completely in
C++ (compiled with GNU gcc-11).
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Fig. 4. Layout of the GUI. The menu column on the left allows the user to change various settings, such as scan size, riCOM Kernel and filter settings, virtual STEM
settings, and interfaces for live mode and file dialogues. During a running reconstruction, a CBED pattern is plotted at the bottom of this menu to visually assist
interactive tuning of pattern center and integration area for vSTEM. All other windows are floating panels and can be moved and resized.
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focused ion beam (FIB) lamella is examined with a probe-
corrected Thermo Fisher Titan3 (X-Ant-TEM) operated in a
STEM mode. The resulting CBEDs are collected with a
MerlinEM direct electron detector (Ballabriga et al., 2011) and
form 4D datasets for further analysis, as well as movies demon-
strating the real-time processing power of the method. The exper-
iment is performed with a beam energy of 300 keV and a
convergence angle of 20 mrad.

The second STEM experiment is performed on a silicalite-1
zeolite sample with a Thermo Fisher Themis Z (Advan-TEM).
The data are collected with a custom-made Timepix3 detector
(Poikela et al., 2014) based on an Advapix TP3 camera unit
and is recorded in the event-based format. The beam energy
and convergence angle used in the second experiment are 200
keV and 12 mrad, respectively.

All the datasets and movies recorded in both experiments,
including necessary parameters for the reconstruction, can be
found in the online repository (Yu & Friedrich, 2021).

Results and Discussion

Real-Time Reconstruction

To demonstrate riCOM imaging, the software for real-time recon-
struction is run directly on incoming data during live experi-
ments. The computer receives frames of CBED patterns from
the detector, and the software reads the data through a TCP
socket. Throughout the process, the only extra prior knowledge
to be provided to the algorithm is the COM of an undiffracted
pattern in vacuum, so that the relative shift of COM at each
probe position can be computed. Alternatively, it can also be

approximated by averaging the COM from multiple probe posi-
tions, thereby omitting any calibration steps, making this method
equivalent to more traditional imaging methods regarding the
ease of use. This step also inherently corrects for systematic shifts
of the CBED pattern away from the center of the detector. While
scanning, some of the most basic parameters of the microscopic
imaging system are tuned, for example, changing the defocus,
astigmatism, and magnification, as shown in Figures 5a–5c. The
live-updated results are recorded in Supplementary Movies.

Defocus broadens the intensity distribution of the electron
probe, and astigmatism has the effect of creating two focal points,
making the beam to be first focused in one direction and then the
other when traveling along the optical axis. This would reduce the
electron beam sharpness and make the beam elliptical if out of
focus, resulting in stretched atomic features in the images, as
can be seen in Figure 5b in the region scanned before achieving
the correct focus.

According to equation (3), the intensity in the iCOM image
equals the cross-correlation between the projected electric poten-
tial of the material and the probe function, and therefore, the
reduction in contrast as well as distortions of the atomic features
in the riCOM reconstruction is directly related to these beam
aberrations. Hence, users can tune optical conditions intuitively
to maximize contrast and produce circular atoms with the live-
updated results.

By changing the magnification during the scanning process,
the step size is changed accordingly. The live process can still con-
tinue, although the intensity needs to be adjusted since a is
changed as the scan step size is changed, as shown in equation
(4). Besides, the optimal kernel size changes with the magnifica-
tion, as the spatial frequency of the desired features will be shifted

Fig. 5. Real-time reconstruction of SrTiO3 while tuning the magnification, defocus, and stigmator. (a) The magnification is increased during the scanning. In the top
most part, the contrast reveals a layered structure of the FIB lamella, and with increasing magnification the atoms can be captured in the image. (b) Tuning focus is
reflected by the change of the shape of atomic columns. (c) Tuning the stigmator affects the electron probe sharpness and also the contrast between atom and
vacuum. (d) Simultaneous imaging using riCOM, ADF, and iCOM. RiCOM successfully images the crystalline structure in the center of the image and the O columns,
which is missing in the ADF image. The small kernel size used in the riCOM reconstruction reduces long-range intensity distribution shown in iCOM.
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when the step size is changed. However, since the kernel size can
be adjusted during the process, a suitable choice can always be
found by tuning the kernel size according to the quality of the
live-updated reconstruction image.

In Figure 5d, a riCOM image rendered with a kernel size of 21
is compared with the annular dark field (ADF) image and the
iCOM result. Apparent differences can be found in the center
of the images, which appears to have a hole according to the
ADF result but shows some crystalline structure in the riCOM
and iCOM images, indicating possible extension of the crystalline
material with lower thickness. ADF gives more significant con-
trast for differences in scattering ability, making it easier to distin-
guish Sr columns from Ti+O columns, but also reduces the
intensity of weak scatterers, such as thin regions and the pure
O columns, to a level that is completely invisible, while riCOM
and iCOM successfully image all three types of columns with a
trade-off of less distinction between the columns. On the other
hand, atomic structures are blurred by the long-range intensity
variation in the iCOM result. The origin of this variation could
be local strain, misorientation, contamination, charge

accumulation, etc., but it is very difficult to pinpoint the actual
cause. RiCOM with an appropriate kernel size suppresses these
low-frequency signals and shows a clear image of atomic columns.

The examples shown in Figure 5 show how riCOM images can
be used to fine tune optical systems in a similar manner as using
ADF. Moreover, the method is superior to ADF imaging in terms
of required electron dose and provides contrast also for the weak
scatterers in the object, including thinner regions or atomic col-
umns composed of lighter atoms. The high-pass characteristic
of the suitable kernel size has shown to be helpful in highlighting
features of higher spatial frequency and reduce low-frequency
components, but it also means that the contrast interpretation
has to be evaluated carefully, especially for quantitative analysis,
as they can be affected by multiple factors unknowingly.

Comparison of Reconstruction Methods

In this section, results from the riCOM reconstruction are com-
pared with other reconstruction methods that have the potential
to provide real-time imaging. For 4D datasets, ADF images can

Fig. 6. Reconstructed image from an experimental zeolite dataset with different doses (full dose: 1.27e+4e/Å2). ADF images are generated by integrating the inten-
sities in the detector area beyond the convergence angle at each probe position. For SSB reconstruction, a frame-based dataset is first generated from the event
array, with the detector space binned down to 32× 32 (eight times smaller). For riCOM reconstruction, three different kernels are used: 21×21, 61×61, and 61×61
with a band-pass filter. The effect is, however, much less significant in other reconstruction methods. The insets show magnified versions of the center of their
respective images, and the red arrows point out intensity fluctuations within the holes. The last row shows the Fourier transform of each reconstructed result. The
radial averaged frequency spectra are represented with yellow curves, the frequency components of each kernel in red, and the line-integration approximation in a
black dashed curve.
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be computed using a virtual detector which integrates all electrons
in a specified region of the detector. The summing process is
independent of the probe position and does not require informa-
tion beyond the scope of a single diffraction pattern, thus making
virtual ADF reconstruction possible for the real-time visualization
of the dataset. To showcase the performance of riCOM recon-
struction, it is compared with both ADF as a traditional imaging
mode and SSB, which is generally considered as a highly dose effi-
cient and quantitative ptychography method. For riCOM recon-
struction, three results generated using different kernels are put
into comparison, including two kernel sizes and one kernel incor-
porating a band-pass filter.

The dataset used for the comparison is a 4D dataset recorded
from a silicalite-1 zeolite specimen. The dataset is recorded in a
sparse array, in which the location where electrons hit the detec-
tor and the arrival time is recorded. This type of data format has
several advantages over more commonly seen frame-by-frame
types at suitable experiment conditions. For instance, in the
case of low-dose imaging, sparse arrays result in datasets many
times smaller than full-frame arrays, since only the pixels of
the detector that successfully capture an electron generated
data, while other inactive pixels remain silent. For riCOM recon-
struction, this format also shows its strength in terms of process-
ing speed. Yet another important feature of this format is that the
arrival time can be used to adjust the dose in the post reconstruc-
tion stage. Since the arrival time of each electron is recorded, the
amount of dose put into the reconstruction algorithm can be
post-adjusted by reducing the acceptance time from each probe
position. For example, with a dataset recorded with a beam
dwell time of 6,000 ns, the dose for the post reconstruction can
be reduced to one-third of the original dose if the acceptance
time is set to be 2,000 ns since any electrons that arrive to the
detector after the acceptance time for each probe position will
be discarded.

Accordingly, five data treatment algorithms/setups are used for
the experimental data at three different dose levels. The results are
presented in Figure 6. Comparing the images generated by a vir-
tual ADF detector with other reconstruction methods, it is obvi-
ous that even with the maximum dose, it is not enough to
generate an interpretable ADF image. The vertical lines in the
ADF image are a result of the camera being inactive for an
unknown reason, which is discussed in previous work (Jannis
et al., 2021). This, however, makes almost unnoticeable difference
to other reconstruction methods, since the value of each pixel in
the reconstructed image not only depends on the corresponding
probe position but also on its surroundings. For SSB reconstruc-
tion, it includes a process to integrate specific regions in the
CBED patterns according to their spatial frequency by performing
Fourier transformation with respect to the probe position. Certain
spatial frequencies are weighted more strongly from a larger inte-
gration area, thus creating a band-pass filtering effect (Yang et al.,
2015; O’Leary et al., 2021). The riCOM images of a smaller kernel
size (riCOM-21) are shown to be similar to the SSB results, also
manifested by the similarity of their frequency spectra, as low-
frequency signal is suppressed. For the riCOM-61 result, by
using a larger kernel size, more components at lower spatial fre-
quencies can be found in the image. These components greatly
increases the contrast for the long-range structure in the material,
such as the pores and framework of the zeolite crystal, but reduces
high-frequency components, making the short-range structures
such as atomic columns less clear. This is especially highlighted
in the result of 1/10 dose. However, by integrating a band-pass

filter to the big kernel (riCOM-61-BP), noise from the high-
frequency parts is removed and weights are redistributed to mid-
range components from the low-frequency end. It results in a
much clearer image of the atomic structure even at 1/10 dose.
The filter used for the last column is designed to remove signals
from 3.8 to 1.14 nm−1, with kmax = 60 px−1 and kmin = 18 px−1.

In the third row, only 1/100 of the electrons in the dataset is
used for imaging. The insufficient number of electrons introduces
a large amount of noise and hides the atomic structure in the
images. Yet, for the reconstruction result of riCOM-61, the
pores within the zeolite framework are preserved in the image.
This is possibly due to the fact that features of a larger scale are
reconstructed from more data points and is thus a result averaged
over more possible integration paths. This kind of low-frequency
components are only supported by kernels of larger size, explain-
ing why other reconstruction methods shown here do not benefit
from them and fail to present any meaningful information in the
images.

Imaging of zeolites at atomic resolution with iDPC, a similar
method as iCOM, has been demonstrated to be successful at
low dose between 100 and 1,000 electrons/Å2 (Liu et al., 2020,
2021). In a similar dose range, riCOM is capable of presenting
structural features of the sample at different spatial frequencies,
showing that the dose efficiency of the method is not sacrificed
to enable real-time reconstruction.

Fig. 7. Components of the noise images at different frequencies. The noise images
are rendered by applying the virtual ADF detector, riCOM with kernel size 21, and
riCOM with kernel size 61. Three levels of dose for noise realization are chosen,
and the curves are drawn by averaging 30 random noise configurations at each
dose. The weighting functions given by the line-integration approximation are also
presented for the riCOM results in dashed lines. The reconstructed noise-free images,
noise-included images, and the noise images can be found in the Supplementary
Material.
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While riCOM benefits from amplifying signals at specific fre-
quencies so that clearer images of the lattice structures and atomic
features can be captured, one has to bear in mind that the same
effect is also applied to the statistical noise present in the experi-
mental data. To study how noise affects the reconstructed images,
one could compare results from ideal data with results from data
with noise. However, for many reconstruction methods, it does
not mean that the effect of noise can be simply acquired by sub-
tracting one from the other since noise is not additive. Luckily,
due to the linear independent nature, it is indeed the case for
riCOM. In other words, the reconstructed image from a COM
shift map with noise is exactly the same as the combination of
the reconstructed image from a noise-free COM shift map and
the one from pure noise. The latter is thus a suitable candidate
for further noise analysis.

To demonstrate how noise is transferred to a reconstructed
image at each frequency, a 4D dataset of a 20-nm-thick zeolite
sample is simulated according to the condition used in the second
experiment (see Experimental Details). The noise is separated
from the dataset to reconstruct an ADF image of pure noise,
and the noise-induced COM deviation is calculated by subtracting
the COM shift map from the noise-included dataset from the one
without noise. The COM deviation map is then used for riCOM
reconstruction with a kernel size of 21 and 61. The reconstructed
images of the ideal data and the noise are presented in the
Supplementary Materials. The components at different radial fre-
quencies of these images are plotted in Figure 7. Two major dif-
ferences between ADF and riCOM images can be found. First, the
noise amplitudes of ADF images are higher when the dose is

higher, but the opposite for riCOM reconstruction is observed.
It is due to the fact that the ADF intensity values follow a
Poisson distribution, where the noise increases with the square
root of the dose, while the signal scales linearly with the dose.
The COM shift on the other hand is based on the spatial distribu-
tion of electrons, rather than the cumulative intensity, and thus is
not directly linked to this kind of shot noise. However, the error of
the COM estimation still decreases when more electrons are used.
Therefore, despite different noise behaviors, the signal-to-noise
ratios of both methods increase with dose. The second difference
lies in the distribution of noise at different frequencies. For the
ADF noise image, the noise is distributed equally at different fre-
quencies, yet for riCOM, the noise is amplified according to the
approximated weighting function based on the kernel size (equa-
tion (7)). Through this analysis, it is clear that not only the signal
from the examined object but also the noise is affected by the
weighting in frequency domain. This greatly changes how noise
appears in the reconstructed images compared with traditional
imaging methods, such as ADF, and is worthy of the attention
of microscopists in order not to misinterpret features created by
noise.

The different reconstruction results in Figure 6 show a dis-
agreement about the content inside of the pores that exist in
the zeolite framework. Results from methods that give more
weight to the high-frequency components, such as SSB and
riCOM-21, show some intensity fluctuation inside of the pores,
indicating the possible existence of dopants, yet these do not
appear in the riCOM-61 image. In order to understand the
cause of the difference, another simulation is run with the same

Fig. 8. (a) Reconstruction results of a simulated zeolite dataset with different kernel sizes. The red and blue lines indicate the locations of intensity line profiles
drawn in subplots (b). (b) The intensity profile shows that the intensity inside the hole area increases in riCOM-21 results but decays in riCOM-61 toward the center.
(c) Step function for analogy shows that removing low frequency components may cause imaging artifacts similar to the ones seen in reconstruction results from
smaller kernel sizes.
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condition to compare the reconstructed results with different ker-
nel sizes in Figure 8. To eliminate the possibility that this differ-
ence originates from the presence of noise, the reconstruction is
done without adding noise to the dataset. From each recon-
structed image an intensity profile is drawn over the atom frame-
work into the pore (Fig. 8a), which is indeed vacuum as designed
for the simulation. The profile reveals that for riCOM-21, the
intensity increases, while riCOM-61 shows a monotonic decay
toward the center of the pore (Fig. 8b). The intensity increase
for riCOM-21 cannot be explained by the projected atomic poten-
tial, since it can only decay when moving further away from the
atoms.

To investigate the origin of this false intensity, the Fourier
transformed riCOM images are analyzed (Fig. 6). The bright
spots at the lowest frequency correspond to the periodic structure
of the pores and the framework. The intensity of these spots are
greatly reduced in riCOM-21 but supported in riCOM-61, indi-
cated by the approximated weighting function as red curves.
This causes major differences to features that necessarily rely on
such low-frequency signals. To illustrate the principle, we simplify
the atom framework and the pore using a step function (Fig. 8c).
By removing the low-frequency components, the step becomes a
curve with a concave and a convex segment in the regions of the
high and the low step, respectively. This step function analogy
conceptually captures the differences between the zeolite frame-
work and the holes and explains the protruding intensity in the
hole for riCOM-21 as the effect of reduced low-frequency compo-
nents. For riCOM-61, such components are included by the larger
kernel size, so that no such phantom intensity can be found in the
same area.

These examples show that the proposed method, like many
other reconstruction methods, is capable of providing extra infor-
mation compared with traditional imaging methods. RiCOM also
shows great dose efficiency, allowing high-quality reconstruction
results under low-dose conditions. The freedom to use different
kernel sizes grants users the ability to tune the desired spatial fre-
quency range, which is very important in order to avoid the mis-
interpretation of details in the image. Including more
low-frequency components has shown to enable the reconstruc-
tion of long-range structures of the object with even lower
amounts of electrons. This could be very useful for microscope
operators when imaging objects of a larger scale.

Conclusion

In this paper, we propose and demonstrate a reconstruction
method for real-time STEM based on the iCOM that is applicable
to any kind of segmented detector dataset, including but not
limited to 4D STEM. Through the derivation of the physical
formulation, we illustrate the physical relevance and the
benefits for numerically efficient implementations of this
approach, motivating the application particularly in real-time
imaging scenarios. The freedom to change the size of the kernel
or incorporating filters are also discussed, with examples showing
their effect.

It is shown that riCOM can effectively reproduce iCOM results
but allows for more flexibility in terms of selecting contributing
spatial frequencies. The method, including frequency band-pass
filtering, depends only on the individual intensity distribution
(or CBED pattern) at its corresponding real space location,
which, in combination with a rather simple algorithm, creates a
uniquely flexible and fast reconstruction method that requires

very little user input. We further present a well optimized, inter-
active GUI implementation, developed in standard C++, and pub-
lished open source on GitHub.

Demonstrations of the method on an operating microscope
shows that firstly, the process is fast enough to keep up with
the highest frame rate supported by currently available detectors,
and secondly, providing a dynamic feedback to the microscope
operator when tuning and optimizing the microscope parameters.
This ability enables swift search of the sample, or region of inter-
est, as well as adjustments of the imaging conditions, at poten-
tially very low-dose conditions. The algorithm can run on any
kind of data from which the COM of the electron diffraction pat-
tern, or derivatives of COM such as DPC signals, can be calcu-
lated, and therefore, it is by no means limited to the hardware
demonstrated in this paper.

Comparisons with results of other non-iterative reconstruction
methods show that riCOM renders high-quality images on par
with established methods, even at very low doses. The pros and
cons of using different frequency components are discussed.
Users can accordingly choose the most suitable designs of kernels
and run simultaneously other imaging forming methods, in order
to reach the highest dose efficiency or extract the most amount of
knowledge from the investigated sample in real time.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927622000617.
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