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Nanomaterials are important for a wide range of applications because of their unique properties, which are 

strongly connected to their three-dimensional (3D) structure. Electron tomography has therefore been used in 

an increasing number of studies. Even atomic resolution electron tomography and in situ investigations in 3D 

have become possible. However, the majority of these studies were performed for samples that are relatively 

stable under the electron beam since the 3D characterisation process needs a larger amount of electrons 

compared to 2-dimensional (2D) imaging. Therefore, the investigation of nanomaterials that are more sensitive 

to the electron beam, requires the development of more advanced 3D characterization techniques. 

In a conventional electron tomography experiment, pre-acquisition steps, such as focusing and tracking at 

every tilt angle needs additional acquisition time and electron dose.  Recently, we proposed an acquisition 

approach where a tilt series of 2D high angle annular dark field scanning transmission electron microscopy 

(HAADF-STEM) projection images is acquired by continuously tilting the holder and simultaneously 

acquiring projection images while focusing and tracking the particle [1,2]. For HAADF-STEM, this approach 

results in an electron dose reduction of almost an order of magnitude and an acquisition time of a few minutes 

instead of an hour or longer. Furthermore, an incremental methodology was proposed for combining the 

benefits of the conventional and continuous techniques [3]. 

Fast HAADF-STEM tomography was successfully used to investigate structural and compositional changes 

in metal nanoparticles [4,5]. The question remains if samples that are more beam sensitive such as Zeolites 

and Metal Organic Frameworks (MOFs) will withstand the electron dose required for fast HAADF-STEM tilt 

series with the new acquisition methods. Hereby, the combination of fast electron tomography with novel low-

dose imaging techniques, such as integrated differential phase contrast (iDPC) imaging in STEM mode can be 

considered as a next step towards 3D imaging of beam sensitive materials. For nonmagnetic and thin samples, 

iDPC-STEM yields images that can be directly connected to the projected electrostatic potential of the atoms 

in the sample [6]. The iDPC-STEM intensity is expected to scale linearly with the sample thickness and 

therefore fulfills the projection requirement for electron tomography. 

In this contribution, the different acquisition strategies will be experimentally compared in terms of speed, 

resolution and electron dose, based on experimental tilt series acquired for SBA-16 and MCM-41 particles. 

Moreover, a quantitative comparison will be made between HAADF-STEM tilt series and iDPC-STEM tilt 

series. 

Figure 1 illustrates a comparison between 3D reconstructions for an SBA-16 particle, based on HAADF-STEM 

tilt series acquired using fast incremental tomography and electron doses/pixel of 16.96 e-/Å2 (a), 5.65 e-/Å2 

(b) and 1.70 e-/Å2 (c). From the orthoslices through the 3D reconstructions, it can be seen that the morphology 

of the particle can still be characterized for all electron doses, but the pore structure becomes difficult to 

interpret for Figure 1.c. Figure 2 presents a comparison between a 3D reconstruction based on HAADF-STEM 

and an iDPC-STEM reconstruction. Hereby, the series are simultaneously acquired using conventional electron 

tomography with an electron dose of 3.17 e-/Å2. By comparing the orthoslices through the 3D reconstructions, 

it is clear that the signal-to-noise ratio for the iDPC-STEM reconstruction is superior in comparison to the 
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HAADF-STEM reconstruction. We therefore expect that iDPC-STEM in combination with fast electron 

tomography will become an important technique for the 3D characterization of beam sensitive materials. 

Further progress can be obtained by optimization of the 3D reconstruction algorithms for these low dose tilt 

series.  

 

 

 

Figure 1. Orthoslices through 3D reconstructions of a SBA-16 particle. The reconstructions are based on fast 

incremental HAADF-STEM tomography with decreasing electron doses. Electron doses/pixel of 16.96 e-/Å2 

(a), 5.65 e-/Å2 (b) and 1.70 e-/Å2 (c). 

  

 

Figure 2. Orthoslices through 3D reconstructions of a SBA-16 particle. The reconstructions are based on 

simultaneously acquired HAADF-STEM (a) and iDPC-STEM (b) tilt series. (total dose per pixel during the 

acquisition: 1200 e/Å2). 
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