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Abstract

To understand the structure-property relationship of nanostructures, reliably quantifying parameters, such as the number of atoms,
is important. Advanced statistical methodologies have made it possible to count the number of atoms for monotype crystalline
nanoparticles from a single ADF STEM image. Recent developments enable one to simultaneously acquire multiple ADF STEM
images. Here, we present an extended statistics-based method for atom counting from a combination of multiple statistically
independent ADF STEM images which improves the accuracy and allows one to retrieve precise atom-counts, especially for images
acquired with lower electron doses and multiple element structures.

1. Introduction

Nanoparticles have been the focus of many research stud-
ies due to their unique properties and potential applications in
various fields. The physical properties of nanomaterials such
as their electronic, optical, magnetic, and mechanical proper-
ties are highly dependent on the size, shape, chemical composi-
tion, and structure. Therefore, understanding the relationship
between the structure and properties is crucial for designing
and optimizing their performance for specific applications. For
this purpose, aberration-corrected scanning transmission elec-
tron microscopy (STEM) has emerged as a powerful tool for
the characterization of nanostructures.
The STEM technique provides different imaging modes based
on the size of the inner and outer angles of the annular de-
tector [1, 2]. High-angle annular dark-field (HAADF) STEM
imaging is one of the most popular modes since it provides Z-
contrast and thickness contrast in the images. Over the past
years, many quantification procedures have been developed to
determine thickness or composition from HAADF STEM im-
ages. One valuable quantification procedure is atom counting
[3–6], which reveals the number of atoms at each atomic col-
umn. These atom-counts can even be used to construct a three-
dimensional (3D) atomic model based on a single 2D STEM
image [7–10]. This analysis is for example important when
studying catalysts, where the surface morphology is crucial for
their applications.
To perform atom counting, both simulations- and statistics-
based methods have been proposed [3, 11, 12]. The statistics-
based methodology introduced by Van Aert et al. [4], is ad-
vantageous as it enables atom counting without requiring any
prior information about the structure from simulations. The so-
called scattering cross-section (SCS) is used as a measurement
in this method, which is defined as the total intensity of elec-
trons of each atomic column scattered toward the ADF detector
[13, 14]. This measurement is advantageous for the quantita-
tive interpretation of HAADF STEM images since it is sensi-

tive to the number and type of atoms while it is robust to ex-
perimental parameters such as defocus, source size broadening,
and slight sample mistilt [15, 16]. The scattering cross-section
can be computed either by using Voronoi cells [8, 17] or by es-
timating the volume of Gaussian functions which are fitted to
the atomic columns in the image [5, 12, 13, 18]. The traditional
statistics-based method which is introduced for the analysis of
a single ADF STEM image is very reliable and provides atom
counts with single atom sensitivity if the signal-to-noise ratio in
the underlying images is sufficiently large [12]. The capabilities
and inherent limitations of the methodology when investigating
images acquired under low electron dose conditions or for small
nanoparticles are discussed in [5, 19].
In the past, HAADF STEM imaging with its incoherent na-
ture has often been considered to be the best detector set-
ting for quantification purposes due to its direct interpretability
[3, 11, 12, 20, 21]. However, other annular detector geome-
tries possess unique strengths. For example, low-angle annu-
lar dark-field (LAADF) and medium-angle annular dark-field
(MAADF) STEM images provide valuable information due to
the larger amount of electrons collected in this region. For ex-
ample, it has been demonstrated that, despite the higher con-
tribution of coherent scattering, LAADF and MAADF imaging
are optimal for counting the number of atoms in relatively thin
mono-atomic samples [18]. Our recent study suggested that the
combination of scattering cross-sections originating from mul-
tiple ADF STEM detector regions is advantageous when un-
scrambling the number of atoms and type of elements in hetero-
geneous nanostructures [22]. When the detector regions have
a different scattering behaviour, they have independent com-
position and thickness information. With the development of
pixelated direct electron detectors, the 4D STEM technique en-
ables reconstructing these multiple STEM images belonging
to arbitrary annular detector regions without the need for pre-
configured instrumental settings [23].
Therefore, in this study, we extend the statistical atom-counting
procedure enabling the analysis of multiple scattering cross-
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sections signals. Apart from the expected advantage for quan-
tifying heterogeneous materials, this approach is envisaged to
be beneficial under lower dose conditions in the case of mono-
atomic nanocrystals. Within the traditional statistical approach
introduced for a single STEM image, the distribution of scatter-
ing cross-sections is modelled by a one-dimensional Gaussian
mixture model (1D GMM). This Gaussian mixture model is a
probabilistic distribution model which assumes that the dataset
under investigation is generated as a statistical random draw
from a mixture of normal distributions. By estimating the pa-
rameters of the mixture model, one can decompose the dataset,
i.e. the distribution of scattering cross-sections, into overlap-
ping normal distributions [24]. This approach is widely used
in various applications such as pattern recognition, clustering,
image segmentation and is also the main procedure of the sta-
tistical atom-counting method. When two statistically indepen-
dent sets of scattering cross-sections from multiple images are
available, a multivariate approach is required. Therefore, in this
study a two-dimensional Gaussian mixture model (2D GMM)
is explored for the classification of the two-dimensional distri-
bution of the scattering cross-sections for atom counting.
The organisation of the paper is as follows. In Section 2, the
two-dimensional Gaussian mixture model will be described in
terms of atom counting. In Section 3, the methodology will be
applied to a simulated spherical Ni nanoparticle and the per-
formance of the methodology will be presented by compar-
ing the estimated atom counts with the traditional statistical
atom-counting procedure based on the one-dimensional Gaus-
sian mixture model. Then, in Section 4, the advantages and
limitations of the methodology will be discussed. In Section 5,
the prospects of the methodology for multiple element nanos-
tructures will be presented. Finally, in Section 6 conclusions
will be drawn.

2. Methodology

The traditional statistical atom-counting procedure using a
single ADF STEM image consists of two steps [12]. In the first
step, an experimental image is described as a superposition of
Gaussian functions which are peaked at the atomic column po-
sitions. The unknown parameters of this model are estimated
by minimising the least squares criterion. From the estimated
parameters, the volume under each Gaussian function is deter-
mined, corresponding to the so-called scattering cross-section
for each projected atomic column [5, 13]. In the second step,
the estimated scattering cross-sections serve as an input for a
Gaussian mixture model (GMM) analysis combined with the
use of an order selection criterion. This second step will be ex-
tended here from 1D to 2D and will be explained in detail in
this section.

2.1. Probability distribution of the 2D scattering cross-sections

The estimated scattering cross-sections obtained from a sin-
gle ADF STEM image, denoted as S CS 1,n with n the atomic
column index, can be visualised in a one-dimensional his-
togram as shown in Fig. 1(a) which is generated based on a

simulated Au nanoparticle. Similarly, if a combination of two
ADF STEM images is considered, the scattering cross-sections
extracted from both images, i.e. S CS 1,n and S CS 2,n, can be vi-
sualised in a 2D distribution plot as illustrated in Fig. 1(b). In
analogy to the 1D case, the 2D dataset ideally consists of in-
dividual components where each component corresponds to a
set of atomic columns with the same number of atoms located
on top of each other for monotype nanostructures or to a set of
atomic columns with the same number of atoms of each atom
type for heterostructures consisting of a mixture of elements.
As demonstrated in Fig. 1, the components are smeared out due
to the presence of unavoidable experimental noise. Therefore,
the estimated scattering cross-sections fluctuate around their ex-
pectation values causing a smearing effect of the components.
This complicates the assignment of the number of atoms in each
atomic column by means of visual inspection only. One method
for solving this problem is to consider the estimated scatter-
ing cross-sections as independent statistical draws from an un-
known probability distribution. For a 1D dataset, a univariate
GMM consisting of a superposition of 1D normal components
has been shown to work. For a 2D dataset, this model will be
extended to a multivariate GMM consisting of a superposition
of 2D normal components describing the probability of observ-
ing a particular combination of scattering cross-section values
resulting from the two images. From the observed scattering
cross-section values, the parameters of this 2D GMM including
the locations, widths, and the number of components will be es-
timated. Once the 2D GMM is known, the number of atoms per
atomic column can be identified by assigning the pair of scatter-
ing cross-sections to the component of the estimated probability
distribution with the highest probability of generating this pair
[5, 12].
The probability density function of a 2D GMM with G compo-
nents can be written as

fmix (SCSn;ΨG) =
G∑

g=1

πgN
(
SCSn;µg,Σg

)
, (1)

with SCSn =
(
S CS 1,n, S CS 2,n

)T the 2D stochastic variable for
the scattering cross-sections of the nth atomic column corre-
sponding to the two detector regions. The 2D normal distribu-
tion function N

(
SCSn;µg,Σg

)
is generated by atomic columns

having the same number of atoms and composition and can be
described as [4, 12, 24]:

N
(
SCSn;µg,Σg

)
= 1

2π
√

det (Σg)
exp

(
− 1

2 (SCSn − µg)TΣ−1
g (SCSn − µg)

)
(2)

with µg =
(
µ1,g, µ2,g

)T
the 2D location vector of the gth compo-

nent. The covariance matrix, Σg, is given by:

Σg =

(
σ2

1,g 0
0 σ2

2,g

)
(3)

with σ1,g and σ2,g the width of the gth normal component cor-
responding to the two detector regions, respectively. These ef-
fective widths σ1,g and σ2,g of the components can be described
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Figure 1: Example of (a) the distribution of the scattering cross-sections estimated from a single ADF STEM image in the form of a 1D histogram and (b) a
2D distribution of scattering cross-sections estimated from two ADF STEM images represented in a scatter plot together with the 1D histograms of each dataset
projected along the x- and y-direction.

as [10, 25]:

σ1,g =

√
σ2

1,di +
µ1,g

d
(4)

and

σ2,g =

√
σ2

2,di +
µ2,g

d
(5)

with

Σdi =

(
σ2

1,di 0
0 σ2

2,di

)
(6)

describing the dose-independent contribution to the compo-
nent’s width along both axes and d the incoming electron dose.
The unknown parameters in the mixture model with G compo-
nents are summarized in the vector ΨG:

ΨG = (π1, ..., πG−1, µ1,1, ..., µ1,G, µ2,1, ...µ2,G,Σdi)T (7)

with πg the mixing proportion of the gth component. Since the
mixing proportions sum up to unity,

∑G
g=1 πg = 1, the Gth mix-

ing proportion is omitted in the parameter vector.

2.2. Maximum likelihood estimation
In order to evaluate the unknown parameters of the mixture

model, the maximum likelihood estimator is used [24, 26–28].
Estimates are found by maximizing the log-likelihood function
of the unknown parameter vectorΨG for a given set of observed
scattering cross-sections ˆSCSn, which is defined as

log L(ΨG) =
N∑

n=1

log

 G∑
g=1

πgN
(

ˆSCSn;µg,Σg

) . (8)

A solution for the parameters ΨG for a fixed number of
components G can be found in an iterative manner using the
so-called expectation-maximization (EM) algorithm. The
algorithm proceeds in two steps: the E-step for expectation
and the M-step for maximisation. In practice, starting from an
initial set of parameters Ψ(0)

G , the posterior probability that the
nth scattering cross section with observed value ˆSCSn belongs

to the gth component of the mixture is calculated in the E-step,
i.e.:

τg

(
ˆSCSn;Ψ(k)

G

)
=

π(k)
g N

(
ˆSCSn;µ(k)

g ,Σ
(k)
g

)
∑G

h=1 π
(k)
h N

(
ˆSCSn;µ(k)

g ,Σ
(k)
g

) (9)

for g = 1, ...,G and n = 1, ...,N. The iteration step is denoted
by k.
The M-step calculates the updated estimate Ψ(k+1)

G . The update
formula for the mixing proportions is given by:

π(k+1)
g =

∑N
n=1 τg

(
ˆSCSn;Ψ(k)

G

)
N

(10)

for g = 1, ...,G. Updates for the unknown parameters µ(k+1)
g

and Σ(k+1)
di are given by:

µ(k+1)
g =

∑N
n=1 τg

(
ˆSCSn;Ψ(k)

G

)
ˆSCSn∑N

n=1 τg( ˆSCSn;Ψ(k)
G )

, (11)

Σ
(k+1)
di =

∑G
g=1

∑N
n=1[τg(SCSn;Ψ(k)

G )(SCSn−µ
(k+1)
g )(SCSn−µ

(k+1)
g )T ]−

µ
(k+1)
g

d

N
(12)

The iterative algorithm continues until convergence of the
log-likelihood is achieved based on the difference between con-

secutive log-likelihood values log L(Ψ(k)
G )−log L(Ψ(k−1)

G )

log L(Ψ(k−1)
G )

< ϵ where

ϵ > 0 is the pre-defined tolerance level. The value of the like-
lihood is improved for every successful iteration of the E- and
M-steps.

2.3. Initialisation for the EM algorithm

Although the EM algorithm is a standard tool for maximum-
likelihood estimation, the method has some drawbacks such as
trapping on a local maximum and slow convergence in some
situations. However, it is reported that the performance of the
algorithm can be improved by an appropriate choice of initial
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values for the parameters [24]. In practice, selecting appropri-
ate starting values for the EM algorithm is often a challenging
task requiring prior knowledge of the data and the model pa-
rameters. Since the model order G is not known beforehand,
GMMs with increasing number of components are estimated,
starting from 1 component up to a maximum number of com-
ponents which will depend on the sample under study. For a 1D
GMM, the estimated parameters of the models with order G can
typically be used for the model with order G + 1. The most ef-
ficient starting values, providing unbiased estimates, have been
derived in previous studies for the conventional atom-counting
procedure which is performed by using the 1D GMM approach
based on a set of scattering cross-sections extracted from a sin-
gle ADF STEM image [5]. For the multivariate approach, the
starting values for mixing proportions and covariance matrix
can be chosen accordingly

π(0)
g =

1
G

(13)

Σ
(0)
i,di =

max(S CS i,n) −min(S CS i,n)
2 ·G

(14)

where i = 1, 2 for the two dimensions. The starting value for
the covariance is only used when estimating the GMM with one
component. For the models with increasing number of compo-
nents, i.e. G + 1 components, the starting values for Σ(0)

i,di are
equal to the estimated covariance matrix of the model with G
components. To define reasonable starting values for the loca-
tions of components, various approaches are proposed in the
literature [24, 29–33]. In some cases, the selection of random
initial locations ranging between the minimum and maximum
of the data set is suggested where the algorithm can run multi-
ple times with different starting values to explore the solution
space and reach to the global maximum. For a one-dimensional
dataset, such a random partitioning approach is proven to be
useful. However, when a combination of two sets of scattering
cross-sections is investigated, the complexity of the problem in-
creases and different strategies are required. In this study, the
so-called emEM algorithm that was proposed by Biernacki et
al., is implemented [29].
The emEM is a stochastic initialization strategy which is based
on the idea of running short EM (em) algorithms before a long
EM evaluation. In this manner, a rough estimate for the prop-
agation of the component locations is obtained. The algorithm
consists of the following steps. First, for a given number of
components G, the algorithm is started by selecting G ran-
dom values from the 2D dataset. Subsequently, the remain-
ing dataset is partitioned into G groups based on the minimum
Euclidean distance from each observation SCSn to one of the
selected G values. The means of the resulting subsets are then
assigned as starting locations for the short EM calculation. The
short EM algorithm is then run for a few iterations or until
some rough convergence criterion is met. Here, the criterion
for convergence is defined by a relatively high tolerance value
(i.e. ϵ = 10−2 and maximum 100 iterations). This process is
repeated several times, here 5 times, to determine the optimal
candidate locations in terms of the maximum likelihood. The
estimated candidate locations with the best likelihood from the

5 short EM runs are then used as starting values for the main
EM algorithm, also known as the long EM. The long EM runs
until final convergence is reached by assigning a high number
of iterations and a low convergence threshold ϵ (i.e. ϵ = 10−8

and maximum 1000 iterations). This combination of 5 short
EM runs and one long EM run is repeated several times, here
40 times. This is also noted as 40emEM. The estimated model
parameters for the 2D GMM then correspond to the model max-
imizing the likelihood. It should be noted that the required num-
ber of repetitions for both short and long EM runs to estimate
the most accurate component locations would differ depending
on the nature of the dataset and the number of Gaussian com-
ponents in the mixture model.

2.4. The number of components in the 2D Gaussian mixture
model

The previous paragraphs describe how to estimate the param-
eters of the 2D GMM with a given number of G components.
To determine the order of the mixture model describing the un-
derlying distribution of the scattering cross-sections, the mod-
els with different number of components are evaluated using an
order selection criterion. For this purpose, the integrated clas-
sification likelihood (ICL) criterion is proposed as the optimal
methodology for the 1D GMM approach because it outperforms
other order-selection criteria [4, 5, 34]. Therefore, in this study,
the ICL criterion will be adapted for 2D GMM. The ICL crite-
rion is formulated as

ICL(G) = −2 log L(ΨG) + [2EN(τ̂) + ν log N], (15)

where the negative log-likelihood term −2 log L(ΨG) measures
the model fit and decreases with an increasing number of Gaus-
sian components. The model fit is expected to improve with in-
creasing number of components, as more details in the dataset
are described. However, this does not mean that the quality
of the model would improve since the details described by the
model would be random. Therefore, the term in brackets penal-
izes the high-order models by measuring the complexity of the
model and increases with increasing number of components.
The first term EN(τ̂) represents the entropy and the second term
consists of the sample size N and the number of parameters ν
in the mixture model. The entropy for the model with G com-
ponents is evaluated by

EN(τ̂) = −
G∑

g=1

N∑
n=1

τg (SCSn;ΨG) log τg (SCSn;ΨG) . (16)

The correct number of Gaussian components often corresponds
to a local minimum at the evaluated ICL curve as a function of
the number of components. Since multiple local minima might
be present, a validation step through a comparison with image
simulations is often recommended.

3. Atom counting from a combination of ADF STEM im-
ages for a Ni nanoparticle

In this section, the atom-counting procedure from a combi-
nation of two ADF STEM images is illustrated using a sim-
ulated spherical Ni (Z=28) nanoparticle. The input structure
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is presented in Fig. 2(a). The thickness of the nanoparticle
varies from 1 up to 16 atoms. Two ADF STEM images are
reconstructed from a simulated 4D STEM dataset by using the
MULTEM software [35]. The parameters of the multislice sim-
ulation using the frozen-phonon approximation are listed in Ta-
ble 1. It should be noted that the contributions from inelastic
plasmon excitations are not included in the simulations which
would be important for quantitatively matching simulated and
experimental intensity values at low scattering angles, espe-
cially for thicker samples [36]. The annular detector collection
regions of the virtual ADF STEM images are chosen as 21-
40 mrad and 40-170 mrad based on the optimal experiment de-
sign [22]. Details of this analysis are provided in Appendix A.
In this section, these images will be referred as ‘Image-1’ and
‘Image-2’ respectively. The images are convolved with a Gaus-
sian function with a given FWHM to account for source size
broadening. The two reconstructed ADF STEM images for an
incident electron dose of 104e−/Å2 are shown in Fig. 2(b)-(c),
respectively. The simulated images are fitted by a superposi-
tion of Gaussian peaks and the scattering cross-section values
are measured from the volume under each Gaussian peak [37].
Additionally, the effect of scan distortion is introduced to the
measured scattering cross-sections as a normal distribution with
zero mean and standard deviations equal to σ1,di = 0.0047 and
σ2,di = 0.0016 for Image-1 and Image-2.

Parameter Value

Zone axis orientation [100]
Acceleration voltage 120 kV
Defocus -17.184 Å
Spherical aberration 0.001 mm
Semi-convergence angle 20 mrad
Real space probe sampling distance 0.15 Å
Number of pixels in real space
(K × L) 368 × 368
Pixel size in reciprocal space 0.0137 Å

−1

Number of pixels in reciprocal space
(M × N) 882 × 882
Maximal outer detector angle 170 mrad
Debye-Waller B factor Ni 0.3783 Å

2

FWHM of the source image 0.7 Å

Table 1: Settings used for the Ni nanoparticle multislice simulations with the
MULTEM software.

The two sets of scattering cross-sections are presented as a
2D distribution plot in Fig. 2(d). The associated 1D histograms
of the scattering cross-sections for each ADF STEM image are
represented by the projections of the 2D dataset along the x- and
y-axis of the figure. It is important to note that only the scat-
tering cross-sections from the 40-170 mrad detector region ex-
hibit a monotonically increasing behaviour with thickness. This
behaviour is usually exploited in order to assign the number
of atoms to the clustered scattering cross-section. For the 21-
40 mrad detector a non-monotonic increase is observed which
is attributed to the coherent contributions becoming dominant

in this regime.
Based on the set of scattering cross-section values, the number
of components and the parameters of the 2D Gaussian mixture
model are estimated. Fig. 2(e) compares three ICL curves to
assess the number of components in the GMM. The ICL curves
correspond to the evaluation of the individual ADF STEM im-
ages using a 1D GMM and the combination of images using a
2D GMM. The correct number of components G is equal to 16
and is marked by the grey dashed line along the three curves.
The blue and orange curves demonstrate that the information
from the single images is insufficient for determining the cor-
rect number of components, whereas the yellow curve, with a
minimum at G = 16 components, shows that the combination of
two images can enhance the performance of the order selection
criterion. Fig. 2(d) displays the estimated probability distribu-
tion using 16 Gaussian components describing the observations
for scattering cross-sections. The projections of the estimated
2D probability distribution are shown onto the 1D histograms
by the Gaussian components with solid lines. For 21-40 mrad
it is impossible to decompose the dataset correctly due to the
highly overlapping components. Also for the 40-170 mrad de-
tector, it is likely to underestimate the number of components
due to the higher overlap of the Gaussian components for larger
scattering cross-sections. In this example, the combination of
the two datasets helps to identify the correct number of Gaus-
sian components as the overlap between different components
is reduced in the 2D scatter plot.
From the estimated 2D GMM, the number of atoms can be
counted from 1 to the number of estimated Gaussian compo-
nents in Fig. 2 (d). For this purpose, the monotonic increase
of the scattering cross-sections along the axis corresponding to
40-170 mrad detector can be used. The number of atoms for
each atomic column is determined by assigning each scattering
cross-section to the component of the estimated probability dis-
tribution with the highest probability for that scattering cross-
section. In Fig. 2(f)-(h) the difference between the true and the
estimated atom counts is shown for the information obtained
from Image-1, Image-2 and the combination of both images, re-
spectively. The atom-counting error is significantly reduced by
using the information from the two images, resulting in a cor-
rect estimation of the number of atoms for 90% of the atomic
columns. On the other hand, for the individual images only
29% of the atomic columns in Fig. 2(f) and 70% of the atomic
columns in Fig. 2(g) could be counted correctly.

4. Possibilities and limitations

In this section, we present an evaluation of the atom-counting
performance using a combination of two ADF STEM images
with a 2D GMM procedure in comparison to the 1D GMM
approach based on measurements from a single ADF STEM
image. The accuracy of the atom-counting results highly de-
pends on the estimation of the correct number of components
using the ICL. Thus, determining the limiting factors to obtain
the correct number of components is of high relevance. Here,
we explore the two dominant factors that affect the accuracy
of atom counting: the number of observations and the amount
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Figure 2: (a) Input structure for a simulated Ni nanoparticle with thickness up to 16 atoms. (b) ADF STEM image of a Ni nanoparticle with 21-40 mrad (Image-1)
and (c) 40-170 mrad (Image-2) detector collection region for an electron dose of 104e−/A2. (d) The 2D distribution of the scattering cross-sections together with the
estimated 2D GMM. The projections of the 2D GMM onto the 1D histograms of the scattering cross-sections extracted from Image-1 and Image-2 are displayed
with the solid lines. (e) The ICL evaluation from each single dataset (blue and orange curves) and from the combination of the two datasets (yellow curve). (f) The
difference between the input and the estimated atom-counting results from Image-1 (21-40 mrad), (g) Image-2 (40-170 mrad), and (h) the combination of the two
images for an incident electron dose of 104e−/A2.

of overlap of the components in the GMM. The latter can be
directly related to the presence of (electron counting) noise in
experiments.
First, the average number of observations per Gaussian com-
ponent in the GMM needed to obtain reliable results from the
evaluation of the ICL is derived as a function of the average
relative width of the Gaussian components. This relative width
is a critical parameter that strongly affects the performance of
the ICL evaluation. When investigating a single ADF STEM
image, the relative width in a 1D GMM is defined as the ratio
of the average width of the Gaussian components to the av-
erage increment between successive components, i.e. the σ/δ-
ratio. This ratio determines the degree of separation between
the Gaussian components. From a physical point of view, a
higher overlap of components corresponds to imaging condi-
tions with a low signal-to-noise ratio which decreases the accu-
racy of ICL evaluation. For the case of scattering cross-section
values corresponding to two detector regions, a σ/δ-ratio can
now be defined for both axes as illustrated in Fig. 3(a). The
statistical draw in this figure originates from a 2D probability
distribution with 10 components corresponding to the scatter-
ing cross-section values of a Ni column in a unit cell with 1 up
to 10 atoms for collection angles 21-40 mrad and 40-170 mrad.
The number of observations is equal to 50 for each component.

The relative width of the components equals 0.16 for both axes,
denoted as Σ/∆ = 0.16. This small relative width would cor-
respond to high-dose imaging conditions resulting in perfectly
distinguishable components. For this example, the reliability of
the ICL as a function of the relative width, varying from 0.1 to
0.3, is evaluated. This example allows for a simple interpreta-
tion of the average relative width, which is the same for the two
axes, and allows for a fair comparison of the performance of the
2D GMM with respect to the 1D GMM. The necessary number
of observations per component N/G to achieve a percentage
of 95% of correctly assigned number of components are pre-
sented in Fig. 3(b) for the 2D GMM and the 1D GMM based
on the 40-170 mrad detector. For both cases, it is observed that
the required number of observations increases with the relative
width. However, for higher relative widths, the combination
of two images can provide a high percentage of correctly as-
signed number of components for a limited number of observa-
tions. This result illustrates the benefit of the extension of the
statistics-based atom-counting method to two dimensions, for
a small nanoparticle with a limited number of atomic columns
(i.e. small N/G) imaged at low dose conditions (i.e. high rela-
tive width).

Next, the performance of the ICL is investigated as a func-
tion of the incident electron dose and for a higher number of
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Figure 3: (a) Estimated 2D GMM generated with N/G = 50 observations,
G = 10 components, and Σ/∆ = 0.16. σi and δi are illustrated for both axes. (b)
The average number of observations per component N/G required to achieve
95% correctly identified number of components as a function of the relative
width Σ/∆.

components, i.e. up to 30 atoms thickness. In this case the scat-
tering cross-sections corresponding to the 21-40 mrad detector
show a non-monotonic behaviour. In Fig. 4(a), the impact of
Poisson noise on the two ADF STEM images is demonstrated
for two different incident electron doses (Nd = 105e−/Å2 and
Nd = 104e−/Å2). In Fig. 4(b) the distribution of scattering
cross-sections obtained from the combination of ADF STEM
images under both conditions is displayed along with the esti-
mated 2D GMM. For both datasets the number of observations
per thickness value equals N/G = 15. From the scatter plots,
it is clear that the dataset corresponding to the higher dose
(Nd = 105e−/Å2), with well separated components, enables
a more accurate estimation of the number of components as
compared to the lower dose (Nd = 104e−/Å2). The overlap of
the components at the lower dose will challenge the correct
determination of the number of components and therefore also
the assignment of the correct number of atoms. In Fig. 4(c)
the fraction of correctly identified number of components from
the ICL is presented as a function of electron dose. To do that,
100 noise realisations are generated for both datasets under
different electron dose conditions. The blue and orange curves
are obtained from the ICL evaluation for single ADF STEM
measurements using a 1D GMM while the yellow curve is
calculated based on the ICL evaluation using a 2D GMM. The
percentage of correctly assigned number of components from
ICL evaluation increases with increasing electron dose when
measurements from the 40-170 mrad detector (orange curve)

and a combination of two images (yellow curve) are used.
However, despite the high amount of electrons collected in the
low angle detector regions, the datasets corresponding to the
21-40 mrad detector only is unable to retrieve the correct num-
ber of components. This is because of the high contribution of
coherent scattering in this LAADF STEM setting that results in
a non-monotonic increase of the scattering cross-sections as a
function of thickness. As a result, it is impossible to cluster the
data correctly. However, despite the unreliable measurement
obtained from this detector region only, this set of scattering
cross-sections helps the classification process, as the accuracy
of model order selection is consistently higher than that of the
single ADF STEM measurement. These results indicate the
potential benefit of analysing multiple ADF STEM images for
a mono-atomic nanostructure when low electron dose settings
are required.

Subsequently, also the percentage of correctly counted
atomic columns and the root-mean-square error (RMSE) for
the atom-counting results can be evaluated. This evaluation
was done for the nanoparticle shown in Fig. 2. Also here,
100 noise realisations were generated for the pair of scatter-
ing cross-section values at each of the different incident elec-
tron doses. The results are presented in Fig. 5. The fraction
of correctly counted atomic columns is computed for the scat-
tering cross-sections resulting from the single detectors (blue
and orange curves). Those fractions are compared to the frac-
tion for the combination of the scattering cross-section values
resulting from the two detectors. As expected, the percentage
of correctly counted atomic columns increases with increasing
incident electron dose for all sets of measurements. Similarly,
the RMSE decreases with increasing dose. In particular, the
combination of two images yields a higher percentage of cor-
rectly counted atomic columns and a lower RMSE. The key
factors for obtaining accurate atom-counting results from the
combination of the scattering cross-sections from two detector
regions is both the higher percentage of correctly determining
the model order using the ICL and the accurate estimation of
the locations of the components in the GMM. This result im-
plies that the statistics-based atom-counting method using the
2D GMM provides a dose-efficient analysis.

5. Prospects for heterogeneous nanomaterials

In many cases, the observations obtained from a single ADF
STEM image yield accurate and precise estimations for atom
counting in mono-atomic nanostructures [5, 12]. In the previ-
ous paragraph, it was shown that the atom counting reliability
can be further improved when analysing a combination of two
images. However, it should be noted that the benefit of com-
bining two images is limited for mono-atomic nanostructures,
as a single image may already be sufficient for most cases. The
most significant advantage of using two images is therefore
expected when analysing heterogeneous nanostructures where
information obtained from a single ADF STEM image would
lead to an ambiguous classification of the components in the
GMM. Indeed, for mixed columns, all type of elements will
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Figure 4: (a) Simulated ADF STEM images for a Ni unit cell in [100] orientation of 30 atoms thick including Poisson noise accounting for an electron dose of
105e−/Å2 (above) and 104e−/Å2 (bottom). (b) Distribution of the scattering cross-sections obtained from the combination of two images for an electron dose of
105e−/Å2 (above) and 104e−/Å2 (bottom). (c) Fraction of correctly identified number of components (G = 30) as a function of the incident electron dose based on
the scattering cross-sections corresponding to detector collection regions from 21-40 mrad (blue curves), 40-170 mrad (orange curves) and from the combination of
two images. A set of 100 noise realisations was generated for each STEM image.

Figure 5: (a) Fraction of correctly assigned number of atoms with the 1D GMM from Image-1 (blue), Image-2 (orange), and the 2D GMM estimation from the
combination of the two images (yellow) as a function of the incident electron dose. (b) The root-mean-square error for the estimated atom-counting results as a
function of the incident electron dose.

contribute differently to the scattering cross-sections thus
significantly complicating the quantitative interpretation as
compared to monotype nanostructures. In practice this means
that a plenitude of combinations of mixed element atomic
columns will lead to similar scattering cross-section values.
To unravel both the type and number of atoms, additional
images are indispensable. Therefore, we will here focus on
the benefits of combining two images and using the 2D GMM
methodology to count the number of atoms for different types
of elements in a heterogeneous nanostructure.
We evaluate the performance of this approach under different
incident electron dose conditions, using an exploratory exam-

ple of a bulk nanostructure containing two types of atomic
columns, i.e. pure Ag (Z = 47) and Au (Z = 79), with varying
thicknesses ranging from 1 to 15 atoms. The annular detector
collection regions used to reconstruct the ADF STEM images
are chosen as 21-43 mrad and 43-170 mrad since they have
been derived as optimal for this type of structure in [22]. In
Fig. 6(a), the distribution of scattering cross-sections obtained
from two ADF STEM images is presented for an incident
electron dose of 104e−/Å2. The scattering cross-section
measurements corresponding to Au atomic columns are shown
in yellow, while the Ag atomic columns are shown in grey.
Additionally, the probability distribution functions of the
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scattering cross-sections corresponding to the 30 different
types of pure Ag and Au atomic columns are shown on both
the x- and y-axis. The probability distributions clearly show
that the scattering cross-sections of a significant number of Ag
and Au atomic columns overlap on both axes. This explains
the difficulty of accurately identifying the number of different
types of atoms in a heterogeneous nanostructure using only
a single ADF STEM image since the number of components
would be underestimated. From the scatter plot in Fig. 6(a)
with the scattering cross-sections of the second detector
plotted as a function of the scattering cross-sections of the first
detector, it is clear that the overlap of scattering cross-sections
is reduced allowing for a unique classification of the atomic
columns with the same type and number of atoms in 2D. In
Fig. 6(b), the estimated 2D Gaussian mixture model for the
simulated scattering cross-sections of Fig. 6(a) with an incident
electron dose of 104e−/Å2 is presented.
Using 100 noise realisations for the scattering cross-sections
at different dose values, the percentage of correctly identified
number of components using the ICL criterion is evaluated.
In Fig. 6(c), this percentage is shown for the single scattering
cross-section datasets and the combination of the scattering
cross-sections from the two detectors. The blue and orange
curves obtained from the 1D analyses illustrate that the correct
number of components cannot be obtained. In contrast,
the yellow curve obtained from the 2D analysis provides a
significantly higher percentage when the incident electron dose
is larger than 103e−/Å2.
The benefit of the 2D Gaussian mixture model can also be
proven based on a set of scattering cross-sections correspond-
ing to a Au@Ag core-shell nanoparticle. For this type of
structure, the total number of atoms and the number of Ag and
Au atoms in the column varies. For this example, the thickest
columns contain 10 atoms. In Fig. 6(d), the scattering cross-
sections are shown in a scatter plot for an incident electron
dose of 2 · 104e−/Å2. The scattering cross-sections of the pure
Ag columns, from the shell, are indicated by the grey dots,
whereas the scattering cross-sections of the mixed columns,
containing both Au and Ag atoms, are indicated in turquoise.
The optimal angles for the two detectors are 21-27 mrad and
27-170 mrad as derived in [22]. The corresponding estimated
2D Gaussian mixture model is presented in Fig. 6(e). From
the analysis in Fig. 6(f), it is clear that the 2D Gaussian
mixture model helps to cluster the atomic columns with the
same composition in a correct manner. In general, for both
examples in this section, the combination of the two datasets
from the two detectors enables the differentiation between the
overlapping measurements along one axis and as such a correct
assessment of the number of components in the GMM.

6. Conclusions

In this paper, we presented the extension of a 1D GMM to
a 2D GMM to analyse a two-dimensional dataset of scatter-
ing cross-section values resulting from two ADF STEM images

with non-overlapping collection angles. In order to obtain reli-
able estimates for the parameters of the 2D GMM, the emEM
algorithm is used. This algorithm consists of several short and
long runs (in terms of convergence tolerance levels) of the tra-
ditional expectation maximisation algorithm. This is an elegant
workaround for the high dependence of the EM algorithm on
the starting values, which becomes more complex in 2D.
Although the atom-counting method from a single ADF STEM
image proposed in [4] provides reliable results for monotype
crystalline nanostructures, some limitations associated with the
imaging and statistical conditions have been reported [5]. The
number of atomic columns available in the observed STEM
image, the number of components in the estimated probability
distribution, and the width of the components of the probabil-
ity distribution, directly affect the accuracy and precision with
which the number of atoms in a particular atomic column can
be estimated. Using a detailed simulation study, it is shown that
these criteria are less strict for our extended method. The ad-
ditional information originating from a second detector regime
improves the performance toward lower doses and for smaller
nanostructures.
Although the two-dimensional Gaussian mixture model (2D
GMM) methodology has advantages for analysing homoge-
neous nanostructures, our results indicate that the most signif-
icant benefit of this methodology is obtained for the identifica-
tion of atomic columns of multi-element nanostructures. Since
the scattering cross-section measurements of different elements
and thicknesses would coincide, it is challenging to distinguish
even how many different types of atomic columns exist in the
structure by using a single STEM image. In such cases, the
differences in scattering behaviour from low and high angle de-
tector regions would be beneficial and it has been shown that
the large amount of electrons collected in LAADF STEM im-
ages would be helpful to unscramble the information that can
not be obtained using a single HAADF STEM image [22]. It is
shown that the 2D GMM will be a very powerful tool to classify
the different types of atomic columns for this purpose.
In conclusion, we have shown that our methodology has poten-
tial applications not only for mono-atomic nanostructures but
also for the analysis of heterogeneous nanostructures. Further-
more, this methodology can be extended to the analysis of a
combination of more than two ADF STEM images obtained
from different non-overlapping detector regions which could
provide an even more accurate analysis. Thus, our multivari-
ate statistical approach for atom counting has the flexibility to
be applied to various scenarios, making it a valuable tool for
diverse atom-counting analyses.
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Appendix A. Probability of error and optimal setting for
ADF STEM images

To obtain reliable atom-counting results, one can predict the
optimal collection angles of the annular detector. For this pur-
pose, the probability of error was introduced and applied [22].
Using statistical detection theory, the atom-counting problem is
then formulated as a statistical hypothesis test, where each hy-
pothesis corresponds to a specific number (and type) of atoms
in an atomic column. The probability of error corresponds
to the probability to choose the wrong hypothesis. To com-
pute the probability of error, realistic 4D STEM simulations of
the Ni nanoparticle are used from which multiple 2D STEM
images were generated with varying inner and outer detec-
tor angles.The probability of error is computed based on the
scattering cross-section values extracted from these virtual 2D
STEM images. The result of the probability of error for an
incident electron dose of 103e−/Å2 is illustrated in Fig. Ap-
pendix A.1. The probability of error is here computed for
two non-overlapping detectors with a shared angle x which is
the outer angle for the inner detector (21-x mrad - red detec-
tor) and the inner angle for the outer detector (x-170 mrad -
blue detector). The optimal settings for the combination of two
non-overlapping detectors correspond to 21-40 mrad and 40-
170 mrad, a indicated by the minimum of the yellow curve.

Figure Appendix A.1: Probability of error as a function of the outer angle of
a single ADF detector with fixed inner angle (red), the inner angle of a single
ADF detector with a fixed outer angle (blue), and the common angle x for two
non-overlapping detectors (yellow) for an incident electron dose of 103e−/Å2
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