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Abstract 
We developed an innovative machine learning (ML) model, including a supervised 
learning (SL) and reinforcement learning (RL) model, to predict and optimize the 
plasma-catalytic dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a 
dielectric barrier discharge (DBD) reactor based upon experimental data. To tackle its 
intricate and non-linear characteristics, the SL model uses artificial neural networks 
(ANN) to accurately predict the performance, achieving excellent consistency with the 
experimental results. The RL model subsequently investigates the optimal optimization 
policy, namely starting with a coarse tuning of the more influential parameters, 
followed by fine-tuning of the less important parameters, to obtain the best performance. 
The optimal results show that a discharge power at lowest bond (i.e., 20 W) but 
CO2/CH4 ratio at highest bond (i.e., 1.5) result in the minimum energy cost (21 
eV/molec), validated by our SL model and experimental data. Furthermore, we also 
investigated the simultaneous optimization of total conversion and energy cost, 
resulting in a maximum total conversion of 36%, combined with a minimum energy 
cost of 34 eV/molec, at a Ni loading of 9.5 wt%, discharge power of 60 W, and total 
flow rate of 74 mL/min. Our ML model showcases an impressive capacity to derive 
advantageous insights from existing datasets, thereby advancing and optimizing 
plasma-catalytic chemical processes. 
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1. Introduction 
Carbon dioxide (CO2) and methane (CH4) are the two major greenhouse gasses that 
significantly contribute to climate change [1]. Currently, there is an urgent need for their 
conversion into value-added chemicals [2,3]. Dry reforming of methane (DRM) 
presents an emerging method for the concurrent conversion of both CO2 and CH4, 
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yielding valuable syngas (i.e., CO and H2), as shown in Eq. (1). The syngas can serve 
as a hydrogen source or to further process to produce higher-value chemicals, e.g., 
methanol and formaldehyde [4,5].  

  (1) 

Non-thermal plasma (NTP), a cutting-edge technology, enables this reaction 
operating at mild temperatures and ambient pressure [6–8], providing a valuable 
approach to traditional methods. Indeed, a recent techno-economic analysis, applied to 
a pilot plant producing 100 tCO/day, revealed that the energy cost of plasma-based CO2 
conversion is 43% less than for electrolysis and conventional CO2 conversion methods, 
and that using a post-plasma carbon bed is crucial for this cost-effectiveness, to 
facilitate additional CO production from O2 and enhancing the CO2 conversion [9]. 

Plasma is a partially (or fully) ionized gas, containing charged species, radicals and 
exited species that exhibit collective behavior. The presence of radicals and highly 
energetic electrons enables reaction pathways that would otherwise be impossible, 
making plasma reactors valuable for converting thermodynamically stable molecules 
like CO2 and CH4. The catalyst can further promote the selective syngas production, 
while combining it with plasma holds significant promise for generating a synergistic 
effect that boosts overall efficiency, although synergy is not always reached and more 
insight is needed in the underlying mechanisms [10,11]. Furthermore, plasma is 
generated with electricity, and can be rapidly switched on and off, thus facilitating its 
integration with the fluctuating nature of renewable energy sources [12]. 

Over the past few decades, a wide range of plasma reactors have been thoroughly 
tested for plasma-based DRM applications, such as glow discharge [13], corona 
discharge [14], gliding arc [15], microwave discharge (MW) [16] and dielectric barrier 
discharge (DBD) [17–20]. Because of its simple design and user-friendly nature, 
especially when combined with packing materials, most plasma catalysis research so 
far has utilized DBDs, within a coaxial reactor [7]. In general, the reaction performance 
and cost-effectiveness of plasma reactors are considered for evaluation, both of which 
are very important. Although the total conversion for DBD reactors can be quite high, 
the energy cost is often excessively high [21,22]. On the other hand, it is complicated 
to select for optimal performance as the input parameters also requires balancing 
chemical performance and cost-effectiveness [7]. Therefore, combining high 
conversions with relatively low energy costs is really challenging due to the many 
interacting parameters in complex plasma-catalytic systems [10,11].  

To address these challenges, machine learning (ML) methods offer a novel pathway 
for exploring intricate scientific phenomena, and they are receiving growing attention 
for plasma processes, such as in plasma medicine [23–25], for the synthesis of 
chemicals [26,27] and in pollution control [28]. In general, ML methods can be broadly 
divided into two categories: (a) supervised learning (SL), which uses both input 
(predictors) and output (predicted variables) data, to effectively learn a mapping 
between them, but it requires large amounts of data; and (b) unsupervised learning, 
which relies solely on input data to learn patterns or correlations for finding hidden 
patterns or structures in input data, but the results are often harder to interpret and 
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validate. In plasma catalysis, previous studies have primarily utilized SL (referred to as 
ML in many papers) models, typically by artificial neural network (ANN) algorism, for 
chemical performance prediction. For example, Liu et al. [29] successfully predicted 
the reaction performance in plasma-based CH4 conversion to hydrocarbons. Similarly, 
Zhu et al. [30] elucidated the relationships between operation parameters and 
performance of CH3OH oxidation. Wang et al. [31] revealed that both higher gas 

conversion and energy efficiencies were favor at optimal conditions of 10-20 W and 5-
20 ℃. Recently, Cai et al. [32] found the optimal condition led to the maximum energy 
yield in plasma-catalytic DRM by a hybrid SL model. Despite the promise of ML in 
catalysis, the optimization of plasma-catalytic DRM by ML is however still in its 
infancy.  

The complex plasma–catalyst interactions can be divided into two categories: the 
effects of plasma on the catalyst, and the effects of the catalyst on the plasma. Hence, 
changing one of the effects may have unpredictable influence on the other effects. In 
addition, the optimization process for the operating conditions likely leads to trade-offs 
among conflicting objectives (e.g., higher conversion and product yields, or higher 
energy efficiency), and the SL approach is not always accurate and robust enough for 
solving such multi-target problems. To achieve a cost-effective plasma-catalytic system 
with good reaction performance, it is crucial to obtain a thorough understanding on how 
the interconnected operating parameters can be optimized [13]. However, no studies 
consider the optimization of both total conversion and energy cost in plasma-catalytic 
DRM. Considering traditional trial-and-error efforts in experiments have reached their 
limit, and the simultaneous multi-objectives optimization, based on many interacting 
parameters, is challenging. 

Reinforcement learning (RL), another major subset of ML, is a goal-direct 
approach, which involves how to maximize the outcome by mapping actions, to steer 
future experimental work [33]. The RL agents can learn to achieve specific goals by 
actively interacting with the environment, bypassing the necessity to a priori develop 
an accurate mathematical physico-chemical model [34]. This approach leverages RL's 
two strengths - obtaining performance via experience and preventing reliance on exact 
models, are especially beneficial for complex plasma-surface reactions, where it is not 
yet feasible to construct a precise dynamic model based on first principles, and the 
dynamic characteristics are highly variable [35]. However, the quality and quantity of 
training dataset matter most in the performance of RL models. In previous work, Cai et 
al., [32], carried out a comprehensive investigation, involving 100 distinct reaction 
conditions, to ensure the robustness and relevance for further RL model development.  

In this work, we designed a very first RL model to simultaneously maximize the 
total conversion and minimize the energy cost in plasma-catalytic DRM, in an attempt 
to develop an artificial intelligence (AI) method for plasma catalysis. Firstly, we 
developed the prediction model for reaction performance (CO2 and CH4 conversion, H2 
and CO yield, total conversion) and cost-effectiveness (energy cost) by the ANN 
algorithm. Subsequently, we designed RL controllers (agents) by using the prediction 
model as simulation environment for learning interactions. Finally, the output from the 
RL model is compared with the actions chosen from four operating parameters, 
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including Ni loading, total gas flow rate, CO2/CH4 ratio and discharge power. Therefore, 
by mapping these operating parameters, the RL model can determine the fine-tuning 
steps that achieve cost-effectiveness as well as good reaction performance in plasma-
catalytic DRM. 

2. Methodology 

In this work, we used two ML methods, i.e., SL and RL, to develop the model describing 
the plasma-catalytic DRM process, as schematically illustrated in Figure 1, and detailly 
elaborated in the subsequent sections.  

 
Fig.1 Overview of the ML model for plasma-catalytic DRM. A SL model predicts the output variable 
y by mapping input variables x through a function f(x); A RL optimization model involves how to 
map states to actions based on policy (π). 

2.1 Data collection and processing 

Fig. S1 shows the experimental setup for DRM, which is detailly described in Ref. [20]. 
The total conversion χtotal is of great importance, and obviously more complicated for 
optimization, which is defined by the summing of the effective CO2 and CH4 
conversions [36]: 

  (2) 

where the absolute CO2 conversion  times the inlet CO2 fraction  and the 
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absolute CH4 conversion  times the inlet CH4 fraction . The energy cost (EC 

in unit eV/molec) is defined as [7]: 
 (3) 

By varying the above-mentioned process parameters, the actual reaction 
performance and EC were collected as the dataset, which can be found in the 
supplementary material (Table S2, S3). Before model development, all datasets were 
pre-process by a Min-Max normalization method [37]. The normalized data is confined 
to the same interval, which accelerates the convergence of the network and avoids the 
saturation of neurons, as shown in Eq. S1 and Eq. S2 in supplementary information (SI). 
The complete dataset was divided into 70% training subset and 30 % testing subset. If 
the ratio between training and test set would be reduced, the ML prediction capability 
and quality will be lower, as less data will be used for training and more data will be 
used for testing. The ML model may fail to learn the underlying structure of the data, 
leading to underfitting and poor generalization ability. Also, if the ratio would be 
increased, the ML prediction capability and quality will be also lower. Although more 
data is used for training to identify learning patterns, there will be less test data, which 
may affect the reliability and stability of the evaluation results, as a smaller test set may 
not fully represent the diversity of the overall dataset. 

2.2 Description of the artificial neural network 

The artificial neural network (ANN), a conventional SL algorithm, was utilized to 
estimate the performance of plasma-based DRM under various operating conditions, as 
it exhibits remarkable predictive accuracy to solve the nonlinear problems. The network 
contains numerous artificial neurons inside, with connection weights between them, 
serving as learnable parameters. Typically, an ANN model comprises multiple layers, 
each of which consists of numerous nodes. Each node corresponds to one dimension of 
input and output data. In this work, each layer is fully connected to the previous and 
subsequent layers. The four above-mentioned operating parameters are used as inputs, 
while six above-mentioned performances are selected as the targets for prediction.  

Table 1. Detailed parameters of the ANN model 

Parameter ANN model 
Number of input layers 4 
Number of hidden layer 1  15 
Number of hidden layer 2 10 
Number of output layers 4 
Activation function tanh 
Optimizer lbfgs 
Loss function MSE 
Evaluation indicator MSE and R2 

We used the backpropagation (BP) algorithm to optimize the network parameters 
by gradient descent [38]. To address the nonlinear problem and mitigate the gradient 
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disappearance issue, we used the tanh function as the model’s activation function. To 
enhance the gradient descent algorithm's efficiency, we used the mean square error 
(MSE) as loss function, which ensures faster convergence and performs well in solving 
regression tasks. Meanwhile, MSE and coefficient of determination (R2) as evaluation 
metrics to measure the performance of the ANN model, respectively [39]: 

  (4) 

  (5) 

where yi denotes the actual value,  denotes the predicted value and  indicates the 

average of the actual value. Generally, higher R2 and lower MSE are desirable to 
enhance the model accuracy [40]. Furthermore, we employed the grid search method 
to fine-tune the hyperparameters for the ANN algorithm, as it effectively processes 
intricate models with multiple parameters [41]. After the optimization (see MSE plotted 
in Fig. S2), we listed the parameters of the ANN model in Table 1. 

2.3 Methods of significance analysis 

The Pearson’s Correlation Coefficient (PCC) was utilized to access the linear 
dependency between different input variables, which is given by [42,43]: 
  (6) 

where ρxy represents PCC value between the input feature and output target ranging 
from -1 (negative) to +1 (positive). The xmean denote the averages of input feature x and 
ymean denotes the averages of output target y. According to the absolute values of the 
PCC, we can evaluate the relative importance of four operating parameter for all reactor 
performance, as shown in Fig. S3.  

2.4 Description of the RL model 

SL models are designed to predict patterns, but they do not involve decision-making 
process. In contrast, RL models develops the optimal decision policy by interacting 
with the environment [34]. Since the RL system’s actions will impact its future inputs, 
it can be treated as a feedback control system based on rewards. The learner, so-called 
agents developed by RL, is not guided on specific actions, rather it must explore which 
actions maximize the rewards. A reward signal determines the goal in an RL problem, 
which is affected by the agent’s current action and the current state of the environment, 
and in turn, the agent can directly influence on reward, or indirectly influence through 
changing the environment’s state. Accordingly, a policy is used to guide the agent on 
the appropriate action to take in those states, to maximize the return (the expected 
accumulated discounted reward over the course of an episode). It is the job of the 
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algorithm to automatically figure out how to choose good actions. 
As shown in Fig.1, RL typically involves four essential steps to train an agent. More 

details on the RL agent are described in Fig. S4. Our goal is to design such RL agents 
that determine the four above-mentioned operating parameters to explore the maximum 
reaction performance and minimum EC both within and outside the investigated range. 
In this work, the agent was trained by the Proximal Policy Optimization (PPO) 
algorithm built on the Actor-Critic (AC) framework (see Fig. S5 and S6 in SI), which 
has good performance within the continuous data space [44]. By observing the agent’s 
behavior, one can conclude the optimal policy of reaction performance and cost-
effectiveness based on its decision process. The detailed parameters of the RL model 
are listed in Table S4. 

3. Results  

3.1 ANN model evaluation 

 
Fig. 2. Predicted data versus experimental results (R² plot). (a) CO2 conversion; (b) CH4 conversion; 
(c) CO yield; (d) H2 yield; (e) total conversion and (f) energy cost. 
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We assess the ANN model’s performance by comparing its prediction values and actual 
values for reaction performance and cost-effectiveness, as shown in Fig. 2 and Fig. S7. 
This ANN prediction model exhibits impressive accuracy through the complete dataset, 
achieving an R2 consistently near 1 and an MSE of only 0.000026. This highlights the 
ANN model has exceptional ability in forecasting the plasma-catalytic DRM process, 
providing a robust basis for developing the RL model. To further evaluate the model’s 
generalizability, we conducted additional experiments using new operating parameters 
within the investigated ranges. As presented in Fig. S8, the model's predictions on 
unseen data aligned well with the actual data, thereby confirming its reliability.  

3.2 Significance and trend analysis of parameters  

The relative significance of each factor and the trend between input operating 
parameters and output performance parameters are demonstrated in Table 2. The most 
important factor is total flow rate for CO2 conversion (56.6 %), CH4 conversion (43.5%), 
CO yield (49.5%) and H2 yield (51.0%), as well as for total conversion (57.3%). 
Additionally, the discharge power has a considerable positive influence (>20%) on all 
these reaction performances. For the EC, the relative significance of total flow rate 
(43.1%) and discharge power (39.1%) are very close to each other. The CO2/CH4 ratio 
and discharge power exerts similar influences on gas conversion and product yield. It 
should be noted that Ni loading has minimal influence on overall process performance 
indicators (less than 7%), indicating that the plasma characteristic plays a more critical 
role. 

Table 2. Relative significance of different input parameters on various output parameters 
Output Parameter 1st IF 2nd IF 3rd IF 4th IF 
CO2 conversion Flow (56.6%) 

(-) 
Power (22.8%)  
(+) 

Ratio (17.2%)  
(-) 

Loading (3.3%)  
(↗↘) 

CH4 conversion Flow (43.5%) 
(-) 

Ratio (26.6%) 
(+) 

Power (23.5%) 
(+) 

Loading (6.4%)  
(↗↘) 

CO yield Flow (49.5%) 
(-) 

Ratio (25.6%) 
(+) 

Power (21.0%) 
(+) 

Loading (3.9%)  
(↗↘) 

H2 yield Flow (51.0%) 
(-) 

Ratio (23.5%) 
(+) 

Power (21.6%) 
(+) 

Loading (3.8%)  
(↗↘) 

Total conversion Flow (57.3%) 
(-) 

Power (27.9%) 
(+) 

Ratio (9.1%) 
(↗↘) 

Loading (5.8%) 
(↗↘) 

Energy cost Flow (43.1%) 
(↘↗) 

Power (39.1%) 
(+) 

Ratio (14.6%) 
(-) 

Loading (3.2%) 
(↘↗) 

List of the abbreviations included in the table: Important factor (IF), Total flow rate (Flow), 
Discharge power (Power) and CO2/CH4 ratio (Ratio). Positive factor and negative factor are 
represented by (+) and (-), respectively. Some output parameters first increased and then decreased 
with rising input parameters, indicated as (↗↘), while other output parameters first decreased and 
then increased with rising parameter, indicated as (↘↗). 

 

3.3 RL model evaluation  



9 
 

The investigated range of the four input parameters is as follows: Ni loading (5-15 wt%), 
CO2/CH4 ratio (0.5-1.5), discharge power (20-60 W) and total flow rate (25-125 
mL/min). It would be interesting to first discover the theoretically (or potentially) 
maximum performance RL agents could reach without any physical limitation of input 
parameters (i.e. outside the investigated range). We will now establish the RL models, 
based on input parameters first outside and then within the investigated range. 

3.3.1 Input parameters outside the investigated range 

Fig. 3 shows the testing curve of the RL models of total conversion and EC with its 
corresponding actions, respectively. The total conversion (Fig. 3 (a) and 3 (b)) can reach 
a maximum of 55 %, while the agent first optimized the total flow rate until it converges 
to a negative value. Next, the agent optimized the discharge power, followed by the 
CO2/CH4 ratio, which converge to positive values. The Ni loading parameter also 
converges at a negative value, but it has low impact (< 7%) on the outputs compared 
with the other input parameters. Fig. 3 (c) shows that the minimum value of EC can 
reach almost 12 eV/molec, while the agent first optimized the discharge power to 
converge at a negative value, followed by the CO2/CH4 ratio. Figure 3 (d) shows the Ni 
loading and total flow rate already had their optimal value (i.e., not converged to the 
boundary of the operating range), while the CO₂/CH₄ ratio reached 1.9, which exceeds 
the current operating range (0.5-1.5). We notice that the actions on Ni loading and total 
flow rate are in line with the trend on EC shown in Table 2. Their trends are first 
decreasing and then increasing, so the actions of the agent fluctuated to find its optimal 
value. Since the EC decreases with increasing CO₂/CH₄ ratio, the action on CO₂/CH₄ 
ratio increases and even exceeds the current operating range to obtain the minimum EC. 
It should be noted that the actions of total flow rate for the total conversion and of 
discharge power for the EC are not physical, as their value should be higher than 0 in 
reality.  

We can also see that the discharge power converges to positive and negative values 
for total conversion and EC, respectively. Even though the input parameters are not 
restricted within their boundary, the positively and negatively correlated parameters 
reach their boundary value, as the dataset in the training process has upper and lower 
bounds as the time step progresses.  

In real application of plasma-catalytic DRM, both total conversion and EC should 
be considered, and they are often affected in different ways by the input parameters (cf. 
also Table 2 above), so the best trade-offs should be determined. We simulate three 
cases, setting different weights between total conversion and EC, i.e., 1 (total 
conversion and EC are equally important), 2 (total conversion is twice as important), 
and 0.5 (EC is twice as important). The weighted superposition of total conversion and 
EC with its corresponding actions is shown in Fig. 4. The CO2/CH4 ratio is still 
proportional to the weighted superposition of total conversion and EC, since it 
monotonically converges to a positive value, even changing the weight (Fig. 4 (b), (d) 
and (f)). A similar pattern can also be seen for the discharge power in Fig. 4 (b) and (d). 
However, when the weight is 0.5, the power shows inverse effect on the weighted 
superposition of total conversion and EC. Moreover, the actions of flow rate and Ni 
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loading present little difference, which means changing the flow rate and Ni loading is 
not effective for both total conversion and EC optimization. 

 

Fig. 3. Testing curve of the RL models of (a) total conversion and (c) energy cost, by plotting them 
as a function of time step, as well as the corresponding actions (b) and (d), outside the investigated 
range. The y-axis representing the input parameters (for (b) and (d)) shows the normalized values. 
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Fig. 4. Superposition of total conversion and energy cost, showing the best trade-offs (a,c,e), as well 
as the corresponding actions of the four input parameters outside the investigated range (b,d,f), for 
different weights, i.e., weight = 1: (a) and (b), weight = 2: (c) and (d), weight = 0.5: (e) and (f). 
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3.3.2 Input parameters within the investigated range 

 
Fig. 5. Testing curve of the RL models of (a) CO2 conversion and (c) CH4 conversion, by plotting 
them against time step, as well as the corresponding actions (b) and (d), within the investigated 
range. The y-axis representing the input parameters (for (b) and (d)) shows the normalized values. 

To avoid the actions of agents reaching non-physical conditions, we now limit the input 
parameters within the investigated range of the training dataset (the reason will be 
further discussed in section 4.1). Fig. 5 shows the testing curve of the RL models of 
CO2 conversion and CH4 conversion, including their corresponding actions within the 
range of input parameters. Fig. 5 (a) and Fig. 5 (b) present that the CO2 conversion can 
reach its maximum value of 42% when the total flow rate first reaches its lower 
boundary (i.e. 25 mL/min), and then the discharge power reaches its upper boundary 
(i.e. 60 W), followed by the CO2/CH4 ratio reaching its lower boundary (i.e. 0.5). 
Nevertheless, the CH4 conversion can reach its maximum value of 68 % when the total 
flow rate first reaches its lower boundary (i.e. 25 mL/min), followed by the CO2/CH4 
ratio and discharge power reaching their upper boundary (i.e. 1.5 and 60 W). 
Furthermore, the actions of discharge power coincide very closely with the trajectory 
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of CO2 conversion and CH4 conversion, indicating a fine-tuning step. As shown from 
the relative significance in Table 2, the most significant factor is the total flow rate for 
gas conversion, so the agent first optimized the total flow rate. While the discharge 
power is the second important factor for the CO2 conversion, the agent optimized it as 
the second parameter. Moreover, the Ni loading keeps fluctuating within its range to 
seek its optimal value for both the CO2 and CH4 conversion, in line with the trend in 
Table 2 above, because of its low impact. 

 
Fig. 6. Testing curve of the RL models of (a) CO yield and (c) H2 yield, by plotting them as a function 
of time step, as well as the corresponding actions (b) and (d), within the investigated range. The y-
axis representing the input parameters (for (b) and (d)) shows the normalized values. 
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A similar regulation policy can be found in Fig. 6, which presents the time step-
dependence of the CO yield and H2 yield, with the corresponding actions, within the 
range of input parameters. Fig. 6 (a) and Fig. 6 (c) show that the CO yield can reach its 
maximum value of 28 % and the H2 yield can reach its maximum value of 26 % when 
the total flow rate first reaches its lower boundary (i.e. 25 mL/min), followed by the 
CO2/CH4 ratio and the discharge power reaching their upper boundary (i.e. 1.5 and 60 
W) (Fig. 6 (b) and Fig. 6 (d)), respectively. On the other hand, the Ni loading keeps 
fluctuating within its range to seek its optimal value for both the CO and H2 yield, in 
line with the trend in Table 2 above, again because of its low impact. 

 
Fig. 7. Testing curve of the RL models of (a) total conversion and (c) energy cost, by plotting them 
as a function of time step, as well as the corresponding actions (b) and (d), within the investigated 
range. The y-axis representing the input parameters (for (b) and (d)) shows the normalized values. 



15 
 

 
Fig. 8. Superposition of total conversion and energy cost, showing the best trade-offs (a,c,e), as well 
as the corresponding actions of the four input parameters within the investigated range (b,d,f), for 
different weights, i.e., weight = 1: (a) and (b), weight = 2: (c) and (d), weight = 0.5: (e) and (f). 
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The testing curve of the RL models for the total conversion and EC, with the 
corresponding actions within the investigated range, is presented in Fig. 7. From Fig. 7 
(a) and Fig. 7 (b), we can see that the total conversion can reach its maximum value of 
47% when the total flow rate first reaches its lower boundary (i.e. 25 mL/min), followed 
by the discharge power reaching its upper boundary (i.e. 60 W), while the Ni loading 
and CO2/CH4 ratio have their optimal value at around 7.5 wt% and 1.3, respectively. 
The EC can reach its minimum value of 21 eV/molec when the power first reaches its 
lower boundary (i.e. 20 W), followed by the CO2/CH4 ratio reaching its upper boundary 
(i.e. 1.5). It is worth to point out that the discharge power yields a trade-off between 
total conversion and EC. Notably, eq. 3 suggests there is an inversely linear dependence 
between the total flow rate and the EC, but the total flow rate does not reach the upper 
boundary. The reason will be further clarified in section 4.2. 

In addition to separately investigating the total conversion and EC, we need a 
comprehensive understanding of the effect of all operating parameters for optimizing 
both performance metrics of the plasma-catalytic DRM process. Similar as in section 
3.3.1, we present in Fig. 8 the superposition of total conversion and EC for different 
weights, with the corresponding actions. When the total conversion is more or equally 
important than the EC, the discharge power is a positive factor and is near-linearly 
proportional to the weighted superposition. Especially when the total conversion is 
equally important to the EC, the total conversion reaches 36%, while the EC reaches 34 
eV/molec, when the discharge power reaches its upper boundary (i.e. 60W), the Ni 
loading is 9.5% and total flow rate is 74 mL/min. When the EC is more important than 
the total conversion, the power is a negative factor and is near-linearly but inversely 
proportional to the weighted superposition. Furthermore, the CO2/CH4 ratio has a 
positive correlation with the weighted superposition and fluctuates within the range to 
seek its optimal value, while the total flow rate and Ni loading seems at their fixed value. 

4. Discussion 

4.1 Effect of investigated range on the RL model 
The investigated range of the training dataset has a noticeable effect on the RL model’s 
performance. By comparing the two RL models of total conversion and energy cost 
outside and within the range in Fig. 3 and Fig. 7 (b and d), the total flow rate and 
discharge power converge to negative values and reach their lower boundary for total 
conversion and energy cost, respectively. We notice that the actions of agents reach 
negative values (i.e., -50 mL/min of total flow rate and -20 W of power), which is not 
in line with scientific knowledge, and impossible to implement as their value should be 
higher than 0 in reality. This phenomenon can be explained as follows: the total flow 
rate and discharge power are the negative factors and exhibit a near-linear decrease with 
total conversion and EC within the investigated range. The RL agent is trained on the 
current dataset and learned such near-linear patterns within the investigated range. 
However, it is not trained by the dataset outside the investigated range. When this very 
same model is subjected to predictions outside the investigated range, the patterns 
learned within the investigated range are not effective, which induces an inaccurate RL 
model. Thus, the agent decreases the negative factor as much as possible, even to a 
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negative value, to obtain the maximum return. This result demonstrates that the RL 
model can only be effective on patterns prediction and policy optimization within the 
investigated range. 

A similar optimization policy can also be applied to the positive factors. In Fig. 5 
and Fig. 6 (b and d), the power is the positive factor for the gas conversion and product 
yield, and the actions of agent are to reach their upper boundary, i.e. at the maximum 
value of the investigated range. Although the actions of agent are not to reach negative 
value this time, the maximum value of input parameters depends on the capability of 
the equipment (e.g. the power supply). Specifically, the RL model might predict that a 
discharge power of 1 MW is super-efficient for the conversion, but it is impossible to 
implement. In addition, the safety boundary to implement in experiments should also 
be considered (e.g. explosion limit when considering CO2/CH4/O2 gas mixture for 
future study). This means that the RL model can only optimize the input parameters 
within the range of experimental capability. 

4.2 Optimal policy developed by the RL model 

Table 3. Regulation sequence of various input parameters within their range  
Objectives 1st order 2nd order 3rd order 4th order 
CO2 conversion ↑ Flow (↓) Power (↑) Ratio (↓)  Loading (optimal) 
CH4 conversion ↑ Flow (↓) Ratio (↑) Power (↑) Loading (optimal)  
CO yield ↑ Flow (↓) Ratio (↑) Power (↑) Loading (optimal)  
H2 yield ↑ Flow (↓) Ratio (↑) Power (↑) Loading (optimal)  
Total conversion ↑ Flow (↓) Power (↑) Ratio (optimal); Loading (optimal) 
Energy cost ↓ Power (↓) Ratio (↑) Flow (optimal); Loading (optimal) 
Total conversion + 
energy cost (1+1) ↑ 

Power (↑) Ratio (optimal) Flow (near stable)  
Loading (near stable) 

List of the abbreviations included in the table: Total flow rate (Flow), Discharge power (Power), 
CO2/CH4 ratio (Ratio) and Ni loading (Loading). When the factors reach their upper and lower 
bounds, it is represented by (↑) and (↓), respectively. The expected objective is to maximize the 
reaction performance and minimize the energy cost, which is represented by (↑) and (↓), respectively. 

Comparing the relative significance of the input parameters in Table 2, we can 
summarize two regulation policies in Table 3: 1) the agent’s actions on the input 
parameters are in line with the concluded trend toward the output parameters. To 
maximize the reaction performance, the positive factors should reach upper bounds and 
the negative factors should reach lower bounds. When the factors first increase 
(decrease) and then decrease (increase), they would have an optimal value. To minimize 
the EC, the power should reach lower bounds and the CO₂/CH₄ ratio should reach upper 
bounds, since the EC decreases with decreasing power and increasing CO₂/CH₄ ratio. 
2) To build the bridge between the agent’s actions on the operating parameters and the 
reaction performance within the investigated range, the optimal sequence can be 
concluded as follows: the agent ideally starts with a coarse tuning of the more 
influential parameters, followed by fine-tuning of the less important parameters, to 
obtain the maximum rewards. In other words, the regulation sequence exhibits good 
agreement with the predicted significance results. This indicates that the RL agent 
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mimics human experience in the decision-making process. However, the optimization 
sequence on EC (alone or in combination with total conversion) seems different from 
the summarized policy, due to the limited training dataset. The most important factor, 
i.e., total flow rate, which is inversely proportional to energy cost, is not effective, as it 
is fixed at 75 mL/min in the training dataset near the optimal value for energy cost. If 
more data could be used for training with different flow rates, the agent can learn a 
more comprehensive regulation in the current dataset, which is interesting for further 
investigation.  

4.3 Comparison between SL model and RL model 

To make a clear comparison between the SL and RL models in terms of performance 
and application, we list here the advantages and disadvantages of these two approaches:  

1) Training efficiency: Training a SL model can be relatively efficient, especially 
with large datasets and powerful computing resources, while training a RL 
model is generally less efficient, due to the need for exploration and the 
potentially long sequences of actions required to learn an optimal policy. 

2) Interactivity and adaptability: SL models are generally static, meaning they do 
not adapt to changes in the environment after training, while RL models are 
inherently interactive and adaptive, as they learn from the consequences of their 
actions, so they are well-suited for dynamic environments. 

In conclusion, SL models are suitable for tasks that require high precision and 
accuracy in predictions from static data, while RL models are more appropriate for tasks 
that involve complex sequences of actions and interactions with a dynamic environment. 
In many real-world scenarios, a hybrid approach, combining elements of both SL and 
RL, may offer the best performance and adaptability. Hence, it is interesting to compare 
the predictions of the SL model (static) with those of the RL model (dynamic) when 
combining SL and RL models in this work. 

To evaluate the RL model’s effectiveness, we firstly compare the minimum value 
of the EC obtained by our RL model with the real experimental dataset, considering 
that the EC is the most important factor for industrial-scale DRM [45]. According to 
our RL model, the EC can reach values as low as 21 eV/molec when the discharge 
power is 20 W and the CO2/CH4 ratio is 1.5. This outcome aligns with prior work on 
the optimal energy yield (EY), which was predicted at same conditions by SL model, 
and also consistent with the experimental result on EC, reaching 21.3 eV/molec at the 
same conditions [32].  

Similarly, our RL model reveals that the total conversion reaches 36%, while the 
EC reaches 34 eV/molec, when the discharge power reaches its upper boundary (i.e. 60 
W), the Ni loading is 9.5 wt% and the total flow rate is 74 mL/min. This result is also 
validated by the experimental dataset on total conversion of 34.0 % and EC of 35.2 
eV/molec, at a near same conditions [32]. Therefore, the final results of the actions by 
the agent and the desired outcome (both maximum total conversion and minimum EC) 
are in line with the real experimental dataset. 

 

4.4 DBD reactor used for DRM  
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The Ni loading, the only non-linear factor among these input parameters, has an optimal 
value at approximately 7.5 % for the performance of plasma-catalytic DRM. This is 
because the catalyst’s specific surface area is larger at lower Ni loading [46], but it can 
be reduced at higher Ni loading, which in turn diminishes the performance [47], as 
indicated by studies based on similar preparation method in literature [46,48]. Despite 
its significant effect, Ni loading is not the dominant factor on the performance, indicated 
by the relative significance analysis in our work.  

Besides Ni loading, the other three factors have much impact on the performance, 
particularly affecting the reaction kinetics, thermodynamics, and mechanisms, as 
revealed from literature [7]. As indicated in Fig. 5 to Fig. 7, the reaction performance 
and EC exhibit a near-linear increase with discharge power. In general, higher discharge 
power leads to more micro-discharges, thereby producing more reaction channels and 
reactive species, which play an active role in both catalytic surface and gas-phase 
reactions to boost the CO and H2 yield [49]. On the contrary, only the EC (alone or in 
combination with total conversion when the EC weights more than total conversion) 
hope to reach lower discharge power as the conversion rises less than linearly with 
rising power, as can be deduced from eq. (3) above [50]. 
 The CO2/CH4 ratio positively influences the (absolute) CH4 conversion and 
product yield, but it reduces the CO2 conversion because there are less CHx radicals that 
can contribute to the CO2 conversion, as indicated in Table 2 [50,51]. With higher CO2 
contents, more oxygen atoms generated by CO2 dissociation can efficiently react with 
the H atoms produced from CH4 dissociation through electron impact, thus limiting the 
backward reaction, CH3 + H → CH4, enabling higher CH4 conversion [51]. In the 
meanwhile, the total conversion reaches its maximum for a CO2/CH4 ratio of around 
1.3. Indeed, the CH4 conversion is typically higher than the CO2 conversion (cf. Fig. 5 
(a) and (c)), suggesting that a CO2/CH4 ratio below 1 would be beneficial for the total 
conversion, but on the other hand, prior works have also demonstrated that CO2/CH4 
ratios below 1 lead to carbon deposition and catalyst deactivation [52]. By integrating 
these findings with our model predictions, it is suggested to set a CO2/CH4 ratio 
between 1 and 1.5 for plasma-catalytic DRM applications and it also corresponds with 
the common composition of biogas [53].  

In our work, the EC can reach a minimum value of 12 eV/molec without any 
limitation (i.e., when we vary the parameters outside the investigated range) and 21 
eV/molec when the parameters are kept within the investigated range. These values are 
however much higher than the EC target, i.e. 4.3 eV/molecule defined by Snoeckx and 
Bogaerts [7], to be contentious with traditional DRM, and other promising technologies. 
The same conclusion about too high energy cost for DBD plasmas was also made in 
[7], and is generally found in literature (see details in [6]). It should be noted that the 
task of RL is to aid scientists to optimize the energy cost based on the patterns learned 
within the investigated range, but they cannot lead to a breakthrough of the physical 
limitation in DBD reactors. Therefore, we should consider other plasma reactors to 
enhance the cost-effectiveness of DRM, i.e., warm plasmas like gliding arc, microwave, 
spark discharge and atmospheric pressure glow discharge (APGD). Indeed, these 
plasmas can combine energy costs below this target of 4.3 eV/molec with relatively 
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high conversions. For instance, a recent paper from PLASMANT shows that a confined 
APGD (cAPGD) reactor can reach an EC of 3.5 eV/molec, for a total conversion of 62% 
(and at other conditions, an EC of 4.2 eV/molec, for a total conversion of 74%) [13], 
while O2 addition could even reach a lower EC of 1.98 eV/molec for a total conversion 
of 67% [54]. These values are clearly lower than the EC target of 4.3 eV/molecule, 
showing the superior performance of an APGD, and other warm plasmas (yielding 
similar performance) for DRM. On the other hand, although a DBD reactor cannot 
reach such excellent performance, it is the most suitable reactor to apply ML, due to 
the much larger dataset available, because of the much more extensive literature. That 
is the reason why we applied our ML model to the DBD results. In the future, we also 
plan to investigate the performance of ML for the other plasma reactor types. 

4.5 ML applied to plasma catalysis 

ML is crucial in advancing plasma applications that require an accurate description and 
control of complex plasma-surface interactions, e.g., plasma catalysis [10]. While our 
data-driven ML model shines at prediction, it cannot explain the fundamental reaction 
mechanisms, where plasma chemical kinetics models is required, e.g., in Ref. [11] and 
the specific role of the catalyst for the synergy effect was not considered. Moreover, the 
results of ML models are mostly validated based on their effectiveness by the 
experimental dataset and they cannot optimize the reactor performance exceeding its 
potential [55]. This suggests that the interpretability and potential of ML model can be 
limited, emphasizing the necessity of prior knowledge in evaluating ML results. 

Nevertheless, our ML model demonstrates significant potential for predicting and 
optimizing other chemical processes, for instance, thermal catalytic DRM. Since 
catalyst compositions and reactor operation in thermal catalysis have been well-
explored through various modeling approaches, our ML methods offer beneficial 
insights from existing experimental data, achieving enhanced reliability and 
consistency, to further optimize industrial-scale DRM process.  

5. Conclusion 

We developed a ML (SL and RL) model to both predict and optimize the plasma-
catalytic DRM process, respectively. The SL model utilizes a typical ANN algorithm 
for reaction performance and cost-effectiveness prediction with a strong connection to 
the experimental data, indicated by R2 values close to 1 for all output. However, we go 
one step further, by also developing a RL model for process optimization. For optimal 
regulation policy on single output revealed by our RL model, the agent starts with a 
coarse tuning of the more influential parameters, followed by fine-tuning of the less 
important parameters. Furthermore, our RL model effectively pinpointed the ideal 
conditions for achieving the lowest energy cost of 21 eV/molec at lowest bond of 
discharge power (i.e., 20 W) but highest bond of CO2/CH4 ratio (i.e., 1.5), which is in 
line with our SL prediction and the experimental dataset. For the combined optimization 
of total conversion and energy cost, our RL model reveals that the discharge power 
yields a trade-off between both performance metrics. However, an optimal discharge 
power of 60 W, Ni loading of 9.5 wt% and total flow rate of 74 mL/min resulted in both 
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maximum total conversion and minimum energy cost. Overall, our ML model excels at 
deriving new insights to facilitate the optimization of intricate nonlinear and dynamic 
systems, like in plasma-based gas conversion process. 
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1. List of all abbreviations in the paper 

Table S1. List of all abbreviations 
Original description Abbreviations 
Dry reforming of methane DRM 
Microwave discharge MW 
Dielectric barrier discharge DBD 
Artificial intelligence AI 
Machine learning ML 
Supervised learning SL 
Reinforcement learning RL 
Artificial neural network ANN 
Mean square error MSE 
Coefficient of determination R2 
Reinforcement learning controllers RLC 
Energy cost EC 
Backpropagation BP 
Pearson’s Correlation Coefficient PCC 
Proximal Policy Optimization PPO 
Actor-Critic AC 
Energy yield EY 
Atmospheric pressure glow discharge APGD 
Temporal difference TD 
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2. Experimental setup  
Fig. S1 shows the schematic overview of the experimental setup, which was detailly 
described in Ref. [1]. The catalyst preparation and reaction performance diagnostics 
were described in detail in Ref. [2].  

 
Fig. S1. Schematic overview of the experimental setup [2]. 

3. The database for the ML model development 

Table S2. Operating parameters for the plasma-catalytic DRM process 

No. 
Ni loading 

(wt%) 
Discharge Power 

(W) 
CO2/CH4  

molar ratio 
Total flow rate 

(mL/min) 
1 5 20 1 75 
2 7.5 20 1 75 
3 10 20 1 75 
4 12.5 20 1 75 
5 15 20 1 75 
6 5 20 1.25 75 
7 7.5 20 1.25 75 
8 10 20 1.25 75 
9 12.5 20 1.25 75 
10 15 20 1.25 75 
11 5 20 1.5 75 
12 7.5 20 1.5 75 
13 10 20 1.5 75 
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14 12.5 20 1.5 75 
15 15 20 1.5 75 
16 5 20 0.75 75 
17 7.5 20 0.75 75 
18 10 20 0.75 75 
19 12.5 20 0.75 75 
20 15 20 0.75 75 
21 5 20 0.5 75 
22 7.5 20 0.5 75 
23 10 20 0.5 75 
24 12.5 20 0.5 75 
25 15 20 0.5 75 
26 10 20 1 75 
27 7.5 30 1.25 100 
28 7.5 30 0.75 100 
29 12.5 30 0.75 100 
30 12.5 30 1.25 100 
31 7.5 30 0.75 50 
32 7.5 30 1.25 50 
33 12.5 30 0.75 50 
34 10 40 1.5 75 
35 10 40 0.5 75 
36 10 40 1 75 
37 10 40 1 75 
38 15 40 1 75 
39 5 40 0.5 25 
40 7.5 40 0.5 25 
41 10 40 0.5 25 
42 12.5 40 0.5 25 
43 15 40 0.5 25 
44 5 40 0.75 25 
45 7.5 40 0.75 25 
46 10 40 0.75 25 
47 12.5 40 0.75 25 
48 15 40 0.75 25 
49 5 40 1.5 25 
50 7.5 40 1.5 25 
51 10 40 1.5 25 
52 12.5 40 1.5 25 
53 15 40 1.5 25 
54 5 40 1.25 25 
55 7.5 40 1.25 25 
56 10 40 1.25 25 
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57 12.5 40 1.25 25 
58 15 40 1.25 25 
59 5 40 1 25 
60 7.5 40 1 25 
61 10 40 1 25 
62 12.5 40 1 25 
63 15 40 1 25 
64 7.5 40 0.5 125 
65 7.5 40 0.75 125 
66 7.5 40 1 125 
67 7.5 40 1.25 125 
68 7.5 40 1.5 125 
69 15 40 0.5 125 
70 15 40 0.75 125 
71 15 40 1 125 
72 15 40 1.25 125 
73 15 40 1.5 125 
74 5 40 0.5 125 
75 5 40 0.75 125 
76 5 40 1 125 
77 5 40 1.25 125 
78 5 40 1.5 125 
79 12.5 40 0.5 125 
80 12.5 40 0.75 125 
81 12.5 40 1 125 
82 12.5 40 1.25 125 
83 12.5 40 1.5 125 
84 10 40 0.5 125 
85 10 40 0.75 125 
86 10 40 1 125 
87 10 40 1.25 125 
88 10 40 1.5 125 
89 15 40 1 75 
90 7.5 50 1.25 50 
91 12.5 50 0.75 100 
92 7.5 50 0.75 100 
93 7.5 50 0.75 50 
94 7.5 50 1.25 100 
95 12.5 50 1.25 100 
96 12.5 50 1.25 50 
97 7.5 60 1 75 
98 7.5 60 1.5 75 
99 10 60 1 75 
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100 10 60 0.5 75 
 

Table S3. Experimental results for the plasma-catalytic DRM process 

No. 
CO yield 

(%) 
H2 yield 

(%) 
CO2  

conversion (%) 
CH4  

conversion (%) 
Total 

conversion (%) 
Energy cost 
(eV/molec) 

1 8.4 6.5 13.3 20.1 16.7 23.87604731 
2 9.5 7.2 14.8 21.4 18.1 22.02928122 
3 9.9 7.4 15.2 21 18.1 22.02928122 
4 9.3 7 14.5 19 16.75 23.80477552 
5 7.9 6.1 12.8 15.4 14.1 28.2787227 
6 9.8 7.9 11.7 25 17.552 22.71706871 
7 11 8.6 13.3 25.7 18.756 21.25879665 
8 11.3 8.7 13.7 24.9 18.628 21.40487385 
9 10.7 8.3 13.1 22.4 17.192 23.1927635 

10 9.3 7.4 11.3 18.4 14.424 27.64351012 
11 11 9.1 9.7 29.5 17.62 22.62939785 
12 12.1 9.7 11.3 29.8 18.7 21.32245936 
13 12.3 9.9 11.8 28.5 18.48 21.57629816 
14 11.7 9.4 11.2 25.6 16.96 23.510023 
15 10.3 8.5 9.4 21 14.04 28.39957194 
16 6.5 4.9 14.4 15 14.742 27.04721137 
17 7.7 5.6 15.9 16.6 16.299 24.4634634 
18 8.1 5.8 16.3 16.7 16.528 24.12451537 
19 7.6 5.5 15.6 15.2 15.372 25.9387191 
20 6.2 4.6 13.8 12 12.774 31.21418428 
21 4.3 3.1 15.1 9.4 11.281 35.34526993 
22 5.6 3.9 16.6 11.6 13.25 30.09282944 
23 6 4.1 16.9 12.1 13.684 29.13840909 
24 5.5 3.8 16.2 11 12.716 31.35655788 
25 4.1 3 14.3 8.4 10.347 38.53580652 
26 9.8 7.3 15.5 21 18.25 21.84821863 
27 9.8 7.4 11.4 22.5 16.284 27.54674765 
28 6.7 4.7 14 14.2 14.114 31.78200643 
29 6.6 4.6 13.7 14.2 13.985 32.07516902 
30 9.5 7.2 11.2 20.6 15.336 29.24955913 
31 10.9 9.3 23.5 26.2 25.039 35.82980461 
32 14.7 12.5 19.7 37.1 27.356 32.79508984 
33 10.7 9 23 24.3 23.741 37.78874005 
34 15.4 12.8 15.8 37.8 24.6 32.41707236 
35 8.4 6.9 23.3 19.4 20.687 38.54884614 
36 12.6 10.2 20.5 29.3 24.9 32.02650522 
37 12.6 10.2 20.5 29.3 24.9 32.02650522 
38 10.6 8.9 17.8 24.8 21.3 37.43943568 
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39 12.8 12 33.7 29.8 31.087 76.95756877 
40 13.9 12.6 34.9 31.6 32.689 73.18608523 
41 14.2 12.7 35.1 31.7 32.822 72.8895235 
42 13.6 12.2 34.1 30.3 31.554 75.8185948 
43 12.1 11.3 32 27.2 28.784 83.11492288 
44 15.4 14.1 31.8 37.2 34.878 68.59280751 
45 16.5 14.7 33.1 38.5 36.178 66.12803196 
46 16.8 14.7 33.2 38.2 36.05 66.36282775 
47 16.2 14.3 32.3 36.3 34.58 69.18391961 
48 14.7 13.2 30.2 32.8 31.682 75.51227638 
49 21.3 19.3 23.5 57.3 37.02 64.62398542 
50 22.3 19.8 24.8 57.2 37.76 63.3575196 
51 22.5 19.8 25.1 55.5 37.26 64.20772786 
52 21.8 19.2 24.2 52.2 35.4 67.58135424 
53 20.2 18.1 22.3 47.3 32.3 74.06749041 
54 19.7 17.7 26.7 50.9 37.348 64.05644051 
55 20.8 18.3 28 51.3 38.252 62.54261059 
56 20.9 18.3 28.2 50.1 37.836 63.23025532 
57 20.3 17.7 27.3 47.3 36.1 66.27091247 
58 18.7 16.6 25.4 42.8 33.056 72.37354611 
59 17.8 16 29.5 44.2 36.85 64.92211507 
60 18.8 16.6 30.8 45.1 37.95 63.04031463 
61 19 16.6 31 44.3 37.65 63.54262789 
62 18.4 16.1 30 41.9 35.95 66.54742532 
63 16.9 15 28 38 33 72.49636182 
64 2.6 1.5 11.6 7.9 9.121 52.45872032 
65 4.6 3.1 10.9 12.1 11.584 41.30490228 
66 6.2 4.4 9.9 15.9 12.9 37.09116186 
67 7.5 5.6 8.4 19.4 13.24 36.13866979 
68 8.5 6.5 6.4 22.6 12.88 37.14875684 
69 1.3 0.8 9.5 9 9.165 52.20687267 
70 3.2 2.2 9 11.8 10.596 45.15628426 
71 4.8 3.5 8 14.3 11.15 42.91264467 
72 6 4.5 6.6 16.5 10.956 43.67250712 
73 6.8 5.4 4.7 18.3 10.14 47.18698107 
74 1.3 0.7 10.1 4.3 6.214 76.99967622 
75 3.3 2.3 9.4 8.9 9.115 52.49325157 
76 5 3.6 8.3 13.2 10.75 44.50939424 
77 6.3 4.8 6.8 17.2 11.376 42.06012553 
78 7.3 5.8 4.8 20.9 11.24 42.56903808 
79 2.6 1.6 11.3 10.2 10.563 45.29735757 
80 4.5 3.1 10.7 13.5 12.296 38.91314151 
81 6.1 4.3 9.7 16.5 13.1 36.52488458 
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82 7.3 5.4 8.3 19.1 13.052 36.6592084 
83 8.2 6.3 6.4 21.3 12.36 38.71164952 
84 3 1.8 12 9.8 10.526 45.45658256 
85 5 3.3 11.4 13.6 12.654 37.81223234 
86 6.6 4.6 10.4 17 13.7 34.9252546 
87 7.9 5.7 8.9 20 13.784 34.71241933 
88 8.8 6.7 7 22.8 13.32 35.92162072 
89 11 9 18.1 25.4 21.75 36.66482667 
90 20.5 17.4 26.5 48.4 36.136 41.37805686 
91 8.6 6.8 18.6 23 21.108 35.41873846 
92 8.8 7 19 21.9 20.653 36.19903798 
93 16.5 14 31.6 36.4 34.336 43.5472234 
94 12.2 9.8 15.2 31.1 22.196 33.68258836 
95 11.9 9.5 14.9 30.4 21.72 34.4207519 
96 20.1 16.9 25.9 45.8 34.656 43.14512531 
97 17.5 14.4 26.7 40.3 33.5 35.70716329 
98 20.7 17.2 20.8 50.7 32.76 36.51373535 
99 17.8 14.4 27 41 34 35.18205794 
100 13.2 11 31 30.1 30.397 39.35223772 

4. Data processing  

To normalize the input and output data, the linear function method was used to 
transform the sample data into the interval [0,1]: 

  (1) 

where Xnorm denotes the normalized input parameters and predicted output; X denotes 
the original input parameters and actual output; Xmax and Xmin denotes the maximum 
and minimum value of the data, respectively. The inverse normalization formula for the 
predicted output is: 

  (2) 

where Ynorm denotes the normalized predicted value; Y denotes the inverse normalized 
predicted value; and Ymax and Ymin denote the maximum and minimum values of the 
data, respectively. 

5. Hyperparameters optimization 

Hyperparameters are parameters that are set before the actual learning process begins. 
For an artificial neural network (ANN) model, the number of hidden layers and neurons 
determine the capacity of the network. More layers and neurons can increase the 
model's ability to learn complex patterns but may also increase the risk of overfitting. 
Therefore, it was optimized by the grid search method to find the optimal combination 
within the specified ranges. For the reinforcement learning (RL) model, the 
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hyperparameter selection was optimized by a random search method: 1) Define a search 
space for each hyperparameter; 2) Generate multiple configurations by randomly 
sampling from the defined search space; 3) Train the RL model with each configuration, 
and then evaluate the performance of each configuration using a validation metric (e.g., 
accumulative reward); 4) Choose the configuration that performs best based on the 
evaluation metric, and consider running additional simulations with slight variations 
around the best configuration to refine the results. 

6. Artificial neural network model  

An ANN is a common SL model [3,4]. Indeed, it can be viewed as a sophisticated 
function [5]. The goal of ANN training process is to find optimum weight and bias 
values to reduce the discrepancy between predicted and actual values. The loss function 
at the output serves as an adjustment signal to constantly optimize the weights in the 
direction of the input and will reduce to an acceptable level or within a specified number 
of training epochs (where epoch is defined as one complete cycle of training data being 
processed through the algorithm). Fig. S2 presented the example of this process. The 
MSE of the network decreases continuously during the training and converges at about 
60 epochs. Once the loss function is computed, the partial derivatives of the weights 
are determined by using the chain rule, then we use gradient descent method to update 
the network parameters.  

 
Fig. S2. MSE of the best fitness value in each epoch for ANN 

 
 
 
 
 
 
 

7. Relative significance of different parameters 
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Fig. S3. Importance analysis between reaction performance and four different operating parameters. 

8. Reinforcement learning model 

8.1 Basic concepts 
RL aims to formalize the decision-process based on experience through interaction with 
the world. The decision-maker or learner is called as agent while the environment 
encompasses everything the agent interacts with. At any time step t, the agent observes 
the environment, represented as state st, and it must choose an action a(t), and it also 
receives some rewards, r(t). Through this action, it reaches new state (st+1). The 
objective is to develop a policy π (a|s), in order to maximize the expected cumulative 
future reward. Thus, the reward signal determines which actions are good or bad, 
guiding the agent’s subsequent actions. Fig. S4 shows such a closed-loop operation. In 
the next, we will present fundamental RL concepts and explain how to train the RL 
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controller (RLC) for plasma-catalytic DRM process discussed in this paper. 

 
Fig. S4. Schematic principle of RL. 

8.2 States, actions, and rewards 

The states and actions are defined by the four operating parameters described in the 
main paper. It should be noted that the agent's actions must remain within the defined 
limits when considering the model within investigated range. The reward function is 
employed to guide optimization toward the best possible outcome. In our case, we aim 
to maximize the reaction performance (gas conversion and product yield) while 
minimizing the EC. Therefore, the reward function is determined by the value 
difference between current time step and previous time step during the iteration. 
Specifically, the higher the reaction performance and lower the energy cost, the higher 
is the reward. 

8.3 Actor-critic framework 

The Actor-critic (AC) algorithm is an extension of the idea of gradient bandit methods 
[6]. The actor is responsible for choosing actions, represented by the policy and the 
critic is used to evaluate the quality of actions made by the actor. The working process 
of AC framework is presented in Fig. S7:  
(1) The actor selects an action at by using its policy πθ(at|st) 
(2) According to the current state st, leading to a new state st+1 and a reward rt;  
(3) Based on the reward, the critic compares the value of the new state V(st+1) with the 
previous state V(st) by evaluating the temporal difference (TD) error: 

  (3) 

where γ denotes the discount factor (0,1).  
(4) The critic's value function is updated by gradient descent to minimize TD error: 

  (4) 

where αc and θc are the learning rate and parameters for the critic network, respectively.  
(5) Based on the feedback from the critic, the actor's policy is updated by policy 
gradient [7]: 

  (5) 

The actor updates the policy according to the critic's evaluation, to favor actions that 
are more likely to yield higher rewards: 
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  (6) 

where αa and θ are the learning rate and parameters for the actor network, respectively.  
The process is repeated for step (1) to (5) in the episode, continuously updating the 

actor and critic until convergence or until the end of the episode. 

 
Fig. S5: The actor–critic architecture. 

8.4 Proximal policy optimization algorithm  

Proximal policy optimization (PPO) is a specific algorithm built on the AC framework, 
designed to improve the stability and performance by constraining policy updates 
through clipping. The PPO algorithm updates its critic network similarly to the AC 
algorithm, but it features two types of policies in its actor network, which are called the 
target policy and the current policy, respectively. The current policy is used to generate 
the batch of trajectories (sequences of states, actions, and rewards), and the target policy 
updates the gradient according to these data and updates the current strategy at the end 
of each iteration cycle. The probability ratio rt (θ) measures the divergence between the 
new policy πθ (at|st) and the old one πθ_old (at|st) for a given action by importance 
sampling： 

  (7) 

The TD error is then multiplied by the probability ratio to update the target policy, thus 
transforming the AC algorithm from an On policy to Off policy. The PPO's objective 
function is designed to maximize the expected reward, while keeping the target policy 
close to the current policy. Therefore, the loss function is clipped in the PPO algorithm 
as follows: 

  (8) 

where ε denotes a hyperparameter that determines the clipping range, restricting rt(θ) 
to the interval [1−ε,1+ε]. 

8.5 Network structure for RL agent training 
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Fig. S6. Block diagram representation of the network structure. 

The block diagram of the PPO algorithm is shown in Fig. S8. Each iteration cycle needs 
to generate a batch of training data (N = 200 roll-outs and T = 300 time steps) based on 
the current actor policy to update current weight. At the start of each roll-out, we 
randomly select a new setpoint from the uniform distribution, χsp ~ u [7,8]. In each actor 
training step, we perform 10 times updates of the critic target values, with the critic 
network being updated 1 gradient steps per target update. Based on the optimised crtic 
network, the target actor network is updated with 1 gradient steps. 

Table S4. Detailed parameters of the RL controller 
Parameter Actor network Critic network 
Number of input layers 4 4 
Number of hidden layer  16 16 
Number of output layers 4 1 
Activation function tanh softplus 
Learning rate α 1e-3 1e-2 
Discount γ 0.98 
Scaling factor  0.95 
Clipped factor ε 0.2 

The parameters of the RLC are shown in Table S4. The input layer of the network 
contains one hidden layer with 16 neurons. The output layer of the actor network 
contains 4 nodes, represented by the probability distribution of the four action 
parameters. The activation function for the mean parameter is a tanh function. The 
sampled action values are controlled by clipping in the range of [0,1]. The softplus 
activation function is used for the critic network.  

 

9. Comparative analysis of the predicted and experimental results 
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Fig. S7. Comparison of predicted values with available experimental data, using 7.5 wt% Ni/Al2O3 

for total conversion (a, c, e) and energy cost (b, d, f). 
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Fig. S8. Comparison of predicted values and unseen experimental data, using 7.5 wt% Ni/Al2O3 for 
model generalization evaluation: (a) Total conversion; (b) Energy cost. 

10. RL agents training results 

The maximum training iterations for the agent is 300. Before training, the two RLC will 
generate 1 random number uniformly distributed within their limited interval, and each 
random number will be trained for 200 rounds. Therefore, in each iteration cycle, 200 
data are used to train the critic network. The training results of CO2 conversion and total 
conversion within investigated range are shown in Figure S9. The average return of 
both agents in each iteration converges to the maximum value 23 after about 25 
iterations. 

 
Fig. S9. Trainning curve of CO2 conversion and total conversion RL agent. 

 
 
 
 
 
 
 

11. A visualization figure of the input distribution for the SL model 
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Fig. S10. Prediction results of input distribution including discharge power, CO2/CH4 ratio, and total 
flow rate on the performance of plasma-catalytic DRM process using 7.5 wt% Ni/Al2O3. (a) CO2 
conversion; (b) CH4 conversion; (c) CO yield; (d) H2 yield; (e) Total conversion; (f) EC. 
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